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Abstract
Streamer discharges pose basic problems in plasma physics, as they are very transient, far from
equilibrium and have high ionization density gradients; they appear in diverse areas of science
and technology. This paper focuses on the derivation of a high-order fluid model for streamers.
Using momentum transfer theory, the fluid equations are obtained as velocity moments of the
Boltzmann equation; they are closed in the local mean energy approximation and coupled to
the Poisson equation for the space charge generated electric field. The high-order tensor in the
energy flux equation is approximated by the product of two lower order moments to close the
system. The average collision frequencies for momentum and energy transfer in elastic and
inelastic collisions for electrons in molecular nitrogen are calculated from a multi-term
Boltzmann equation solution. We then discuss, in particular, (1) the correct implementation of
transport data in streamer models; (2) the accuracy of the two-term approximation for solving
Boltzmann’s equation in the context of streamer studies; and (3) the evaluation of the
mean-energy-dependent collision rates for electrons required as an input in the high-order fluid
model. In the second paper in this sequence, we will discuss the solutions of the high-order
fluid model for streamers, based on model and input data derived in this paper.

(Some figures may appear in colour only in the online journal)

1. Introduction

Streamers are rapidly growing filaments of weakly ionized
plasma, whose dynamics are controlled by highly localized
space charge regions and steep plasma density gradients. The
dynamics of the streamer ionization front are governed by
electron dynamics in electric fields above the breakdown value;
therefore, the plasma is very far from equilibrium, and the
neutral gas stays cold while the ionization front passes.

Streamers occur widely in pulsed discharges, both in
nature and in technology. As their size scales with inverse
gas density, streamers occur in the limited volumes of
plasma technological devices mostly at high gas densities,

while planetary atmospheres also can host huge discharges
at very low gas densities; so-called sprite discharges [1–3] are
streamers existing at altitudes of up to 90 km in our atmosphere,
i.e. at pressures down to well below 10 µbar. For a cluster
issue on streamers, sprites and lightning, we refer to [4]
and the 19 original papers therein, discussing common issues
of streamer dynamics in atmospheric discharges and plasma
technology, including discharge evolution and subsequent
chemical reactions. Streamers are a key element in gas
processing in so-called corona reactors [5, 6] as well as in
high-voltage technology [7]; they are used for the treatment of
polluted gases [8] and water [9] or for plasma-enhanced vapour
deposition [10]. The plasma bullets observed in plasma jets in
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noble gases have now been identified with streamers [11–16].
Studies of breakdown phenomena at atmospheric pressure in
short non-uniform air gaps [17] or in microwave fields [18]
benefit from related streamer studies. Streamers appear as well
in resistive plate chambers used in high-energy physics, where
the streamer mode of operation must be carefully controlled
and optimized [19–21].

The progress of streamer simulations with fluid models
has recently been reviewed in [22]. The main point for this
paper is that essentially all these numerical studies are based
on the classical fluid model, as we have called it in [23–25].
The classical fluid model for electron density contains a
reaction term for impact ionization and attachment, a drift
term accounting for electron displacement in the local field,
and electron diffusion; the reaction term is typically taken as
a function of the local electric field. The structure of this
classical model with reaction, drift and diffusion is based on
basic symmetry considerations and conservation laws; it has
generally emerged as a purely phenomenological model in the
course of the past century, though it was also derived later from
the Boltzmann equation by Gogolides and Sawin [26].

On the other hand, cross-sections for the collisions of
electrons with molecules have become available with growing
accuracy [27–31]. They are the input either for the Boltzmann
equation or for Monte Carlo models. These microscopic
particle models have not yet been appropriately linked with
the much older phenomenological fluid models. This becomes
evident when comparing their solutions. A negative streamer
ionization front in nitrogen represented by a Monte Carlo
model cannot appropriately be described by a classical fluid
model even if the transport and reaction coefficients for the
fluid model are derived from the Monte Carlo model [32].
In [32], the coefficients for the fluid model were derived
as so-called bulk coefficients; therefore, in this model the
electron swarms evolve correctly, and ionization fronts in a
given electric field propagate with the correct velocity, as they
are so-called pulled fronts [32]. However, the electron density
behind the ionization front is very low. As we will see in
section 3 of this paper, a classical fluid model evaluated with
flux coefficients gives better ionization densities behind the
front, but very low front velocities.

A phenomenological extension of the classical fluid
model with a gradient expansion considerably improves the
approximation of the microscopic electron dynamics [33, 34],
and it cures the deficiency of the local field approximation by
including a dependence of the impact ionization rate on the
local electron density gradient [23]. That the extended fluid
model matches the Monte Carlo model well up to the moment
of streamer branching, can also be seen in a recent comparison
of three-dimensional model simulations in [25]. On the other
hand, the model is still based on a local field approximation,
therefore electron energies in the streamer interior are modelled
erroneously as relaxing instantaneously to the low field in the
streamer interior.

A full simulation by Monte Carlo models would deliver
the physically most reliable results, but this is computationally
extremely costly. As a compromise between accuracy and
efficiency, hybrid methods [23–25, 35] have been developed

in the past years to track the fast and energetic processes in the
ionization front with a particle model, and to model the many
electrons at lower fields in the streamer interior with a fluid
model. Fluid models are also the most efficient for the long
time evolution in the streamer interior where slow chemical
reactions and a slow thermalization of the deposited energy
set in.

These demands on fast and quantitative streamer
simulations ask for the development of a fluid model that
accurately incorporates the microscopic electron dynamics
contained in Boltzmann or Monte Carlo models. We will
follow here the strategy to derive such a model not from
phenomenological considerations, but through a systematic
derivation from the Boltzmann equation.

This paper is the first in an ongoing investigation of
high-order fluid models for streamer discharges; it is focused
on the derivation of first- and higher order fluid models and
on the derivation and correct implementation of transport
data in these models. Section 2 describes the derivation
of models of different order. The starting point is the set
of balance equations obtained as velocity moments of the
Boltzmann equation. Then the derivation of the classical
first-order model is briefly described, and previous approaches
to higher order models are summarized. In section 2.4, our
new high-order fluid model is derived in a systematic manner.
The balance/moment equations are closed after the balance
equation for the energy flux. This is done by approximating
the high-order tensors in the energy flux balance equation by
a product of two lower moments while the collision transfer
terms are evaluated using momentum transfer theory. In
section 3, electron transport properties as an input in fluid
models are calculated using a multi-term theory for solving
the Boltzmann equation [36, 37]. We pay particular attention
to the accuracy of the calculation and the proper use in both
the first- and high-order fluid models. The results of our
multi-term solution of Boltzmann’s equation are compared
with those obtained by the publicly available Boltzmann
solver BOLSIG+ developed by Hagelaar and Pitchford [38]
for electrons in molecular nitrogen. BOLSIG+ is a popular
Boltzmann solver based on a classical two-term theory, so we
have been motivated to check its accuracy and integrity against
the advanced and highly sophisticated multi-term Boltzmann
solver developed by the group from the James Cook University
and their associates [36, 37, 39, 40]. In section 4, we give
the results for negative planar fronts obtained with the first-
order, model with particular emphasis upon the consistent
implementation of transport data. It should be noted that
a full 3D streamer channel is characterized by a high field
enhancement at its growing tip. This field enhancement is
created by a thin space charge layer around its ionized interior
that in turn largely suppresses the interior field. The thickness
of the space charge layer is much smaller than its radius of
curvature [23, 24, 32, 41, 42]. Therefore, when zooming into
the front structure, the curvature can be neglected. Modelling
this front structure is the largest challenge for a fluid model
and therefore this is what we focus on in section 4. The
results for various streamer properties obtained with different
types of input data are compared. A thorough analysis of
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numerical streamer front solutions with our high-order model,
and a comparison with Monte Carlo results is contained in an
accompanying second paper [43].

2. Derivation of first- and higher order fluid models

2.1. General considerations: Boltzmann equation and
moment equations

Our starting point is the Boltzmann equation for charged
particles in an electric field E

∂tfi + c · ∇fi +
ei

mi

E · ∇cfi = −J (fi, f0). (1)

Here fi(r, c, t) is the distribution function in phase space at
the position r and velocity c for each charged component i,
∇ is the differential operator with respect to space r and ∇c

with respect to velocity c, ei and mi are charge and mass of
species i, and t is time. The right-hand side of equation (1),
J (fi, f0), describes the collisions of charged particles with
neutral molecules, accounting for elastic, inelastic and non-
conservative (e.g. ionizing or attaching) collisions, and f0 is
the velocity distribution function of the neutral gas (usually
taken to be Maxwellian at temperature Tg).

Streamer discharges have a characteristic non-linear
coupling between densities of charged particles and electric
field. The space charge modifies the field, and the field
determines the drift, diffusion and rate coefficients. The
electric field has to be calculated self-consistently with
Poisson’s equation

∇ · E = 1

ε0

∑
i

ei ni(r, t), (2)

where ε0 is the dielectric constant, and ei and ni are the charges
and densities of species i that can be electrons and ions. As
ions are much heavier than electrons, their motion is typically
neglected within the ionization front, and the analysis focuses
on the electron evolution. Thus, in what follows we suppress
the charged particle index i in equation (1) and focus on the
electron dynamics.

After solving equations (1) and (2), quantities of physical
interest could be obtained as velocity ‘moments’ of the
distribution functions, starting with the number density

n(r, t) =
∫

f (r, c, t) dc, (3)

followed by higher order quantities

〈
φ(c)

〉 = 1

n(r, t)

∫
φ(c)f (r, c, t) dc, (4)

with φ(c) = mc, 1
2mc2, . . . furnishing the average velocity

v = 〈c〉, average energy ε = 〈 1
2mc2〉 and so on.

Equations (1) and (2) represent a non-linear coupled
system of partial differential equations in six-dimensional
phase space and in time, with a complicated collision operator
J . For a complete problem description, appropriate initial

and boundary conditions on f (r, c, t) in phase space must be
implemented.

For streamers, it is very difficult to solve equations (1) and
(2) due to the large gradients of electric fields and of charged
particle densities at their fronts. Moreover, the streamers
create a self-consistent field enhancement at their tips, which
allow them to penetrate into regions where the background
field is too low for efficient ionization processes to take place.
From a kinetic theory point of view, this is a non-stationary,
non-hydrodynamic and non-linear problem where space and
time should be treated on an equal footing with velocity in
equation (1). Clearly, the numerical solution of equations (1)
and (2) for the full streamer problem is a formidable task
and a fluid equation treatment is more tractable. In a fluid
approach, the problem of solving the Boltzmann equation for
f in phase space is replaced by a set of low-order approximate
(velocity) moment equations of f [36, 44, 45].

Fluid equations may be derived either directly as moments
of (1) or from first principles using physical arguments.
Following the first approach, the set of moment/balance
equations can be found by multiplying (1) by φ(c) and
integrating over all velocities:

∂t

(
n
〈
φ(c)

〉)
+ ∇ · (

n
〈
cφ(c)

〉) − n
e

m
E · 〈∇cφ(c)

〉 = Cφ, (5)

where 〈〉 represents the average over the velocity c of the
charged particles, and Cφ is the collision term in the balance
equation:

Cφ = −
∫

φ(c)J (f ) dc. (6)

To derive the term
〈∇cφ(c)

〉
with its negative sign, a partial

integration over c has been performed.
If one now takes φ(c) consecutively equal to 1, mc, 1

2mc2

and 1
2mc2c, etc, equation (5) generates an infinite series of

equations, a full solution of which would be equivalent to
calculating f itself. In practice, one truncates after a certain
moment equation; in this process obviously some information
of the Boltzmann equation is lost. Therefore, we now discuss
the derivation of first- and second-order fluid models with
their truncations of the moment equations, and then we derive
systematically our new high-order fluid model.

2.2. The first-order or classical fluid model

First, we derive the classical fluid model as an approximation
from the Boltzmann equation. We use continuity and
momentum balance equation, i.e. φ(c) = 1 and mc, and
truncate the set (5) at the momentum balance equation,

∂tn + ∇ · (
nv

) = C1, (7)

∂t (nmv) + ∇ · (nm〈cc〉) − neE = Cmc, (8)

where v = 〈c〉 is the average local electron velocity. Now
the velocities are decomposed into an average velocity v plus
random velocities c − v with zero mean (〈c − v〉 = 0). On
introducing the pressure tensor

P = nm〈(c − v)(c − v)〉, (9)

3



J. Phys. D: Appl. Phys. 46 (2013) 475202 S Dujko et al

equation (8) becomes

∂t (nmv) + ∇ · (nmvv) + ∇ · P − neE = Cmc, (10)

where the following identity was used

∇ · (nm〈cc〉) = ∇ · [
nm

(
vv + v〈c − v〉 + 〈c − v〉v

+ 〈(c − v) (c − v)〉)] = ∇ · (
nm vv

)
+ ∇ · (

nm 〈(c − v) (c − v)〉)]. (11)

The second term on the left-hand side of (10) can be
expanded as

∇ · (nm vv) = nm (v · ∇) v + v
[
∇ · (nmv)

]
. (12)

Now we substitute (12) into (10), use the continuity equation
(7) and introduce the convective time derivative

d

dt
= ∂t + v · ∇, (13)

which measures the rate of change in a reference frame moving
with the mean drift velocity v of the electrons. The momentum
balance equation then obtains the form

nm
dv

dt
= neE − ∇ · P + Cmc − mvC1. (14)

The physical interpretation of this equation is straightforward:
the rate of change of the mean electron velocity is due to the
force of the electric field plus forces due to the pressure of the
electron fluid itself and due to internal forces associated with
the collisional interactions with a large number of neutral gas
molecules. It should be emphasized, however, that the form
with the convective derivative d/dt is not useful for the analysis
of a full streamer problem where local fields and therefore local
mean electron velocities v vary largely in space and time.

Because the system has been truncated, the yet unspecified
tensor P (9) of electron pressure appears on the right-hand
side of (14), and a closure assumption needs to be found. If
the distribution of random velocities is close to isotropic, the
diagonal terms of P are equal and given by the scalar kinetic
pressure p,

P ≈ p I = nkT , (15)

where I is the unity tensor, k is the Boltzmann constant and T

is the electron temperature. It should be emphasized here that
the isotropy of the velocity fluctuations and of the pressure is a
strong assumption at the streamer tip where the electric fields
are high and strong pressure gradients exist. In this streamer
region, the random spread of electrons along the field direction
can differ significantly from the perpendicular direction.

The next simplifying assumption concerns the collision
terms. An expression often used for momentum transfer by
collision is

Cmc = −nmνeffv, (16)

which assumes that the force per unit volume exerted
on the electrons due to collisions with neutral molecules
is proportional to the average electron velocity. The
proportionality constant is called the effective momentum
transfer collision frequency; it accounts for momentum

exchange in elastic and inelastic collisions. With this
simplifying assumption and neglecting the transfer of
momentum in non-conservative collisions5 relative to other
momentum transfer collisions (which is usually a good
approximation), the momentum balance equation (14)
becomes

nm
dv

dt
= neE − ∇p − nmνeffv. (17)

If the rate of momentum change (dtv)/v is smaller than the
rate of momentum transfer νeff , and if the gradients in electron
energy can be neglected, one gets the following expression for
the average flux of the electrons:

Γ = nv = nµE − D∇n, (18)

where mobility and diffusion constant are given by

µ = e

mνeff
, D = kT

mνeff
, (19)

if the system is close to equilibrium. In this case the Nernst–
Townsend–Einstein relation

D

µ
= kT

e
(20)

is valid. The steady-state form of equation (17) is an
acceptable approximation because the effective time constant
for momentum transfer 1

νeff
at atmospheric pressure is generally

much less than the time scale on which the local electric field
varies within a streamer [32, 46].

Further from equilibrium as in the head of the streamer
where the electric fields are high, the approximation (15) is
not valid as the velocity fluctuations of the electrons are clearly
anisotropic. Let us consider once more the special case where
the average velocity of electrons is stationary. From equation
(14) and neglecting momentum transfer in non-conservative
collisions, we obtain

mnνeffv = enE − ∇ · P , (21)

and as a result for the flux we have

Γ = nµE − 1

νeff
∇ · [

n〈(c − v) (c − v)〉]. (22)

Comparing the last equation and equation (18), it is obvious
that quantity

D� = 〈(c − v) (c − v)〉
νeff

(23)

is the reminisce of the diffusion tensor often used in the
drift–diffusion approximation instead of the diffusion constant.
However, the physical interpretation of this quantity is not a
priori clear. Although this quantity assumes the anisotropic
nature of the temperature tensor, it reduces to the diffusion
constant D when the effective momentum transfer collision
frequency νeff is independent of the electron energy. For
an energy-dependent effective momentum transfer collision
frequency, the straightforward generalization of the Einstein

5 Non-conservative collisions do not conserve particle numbers as they
account for ionization, attachment or recombination reactions.
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relation for the diffusion constant (19) to the diffusion tensor
D or application of D� in the equation for the average flux (18)
is misleading and the reader is referred to [47–49] where the
so-called generalized Einstein relation was introduced using
the momentum and energy balance equations. However, the
generalization of the diffusion constant D appearing in (18) to
diffusion tensor D is a very welcome step in fluid modelling of
streamer discharges due to the often strong anisotropic nature
of the diffusion tensor for certain gases and due to deviations of
the electron velocity distribution function from a Maxwellian
distribution of velocities in different spatial regions of the
streamers.

When the above approximation for the particle flux is
inserted into equation (7), we get the well-known reaction
drift–diffusion expression for the charged particle motion in
the discharge:

∂tn + ∇ · (
µ(E)En − D(E) · ∇n

) = C1. (24)

Originally, this approximation was not derived from the
Boltzmann equation, but derived on purely phenomenological
grounds. It is clear that the equation must have the structure of a
continuity equation with a source term for electron generation
and loss. The parametric dependence of the source term is
open at this point; within the classical model the source term
is assumed to depend on local particle densities and on the
local electric field. The second approximation concerns the
electron velocity v. On a time scale much larger than the
collision frequency, the electron motion is overdamped, so
the electrons must drift against the direction of the electric
field according to the second term in (24). The stochastic and
undirected motion is modelled in an ad hoc manner through the
diffusion term; the fact that the diffusion correction is added to
the drift term and not included in any other functional manner
is not a priori clear and can actually be deduced from the above
analysis.

In conclusion, the lowest level of fluid approximation,
also called classical model or first-order model, is given by
the equations

∂n

∂t
= ∇ · (D · ∇n) + ∇ · (µnE) + n(νI − νA), (25)

∂np

∂t
= nνI, (26)

∂nn

∂t
= nνA, (27)

coupled to the Poisson equation for the electric field,

∇ 2φ = e

ε0
(n − np + nn), E = −∇φ. (28)

Here np and nn are positive and negative ion densities, while νI

and νA are the ionization and attachment collision frequencies
due to electron–molecule collisions, and φ is the electric
potential. The numerical solution of the system (25)–(28)
requires the transport properties µ, D, νI and νA as a function
of the local electric field for the gas in question. The derivation
and implementation of transport data are discussed in section 3.
The numerical solutions of planar streamer fronts with these
transport data are discussed in section 4.

2.3. Second-order models including the energy balance
equation

We now turn to models that include the second velocity
moment of the Boltzmann equation, i.e. the energy balance
equation. We will see that the closure of this equation
is not a straightforward process, and we will discuss some
approximations made in the literature. The results of a
second-order model and of our high-order model for planar
streamer fronts will be compared in our second paper [43].

The first important steps beyond first-order fluid models
of streamer discharges, to our knowledge, were carried out by
Abbas and Bayle [50, 51], and by Bayle and Cornebois [52].
They employed a second-order model, which involves the
energy balance equation to explore the zone at the streamer
tip where the electron energy is not determined anymore by
the local electric field only. However, as pointed out by
Kanzari et al [46], the accuracy of their model was restricted
by the drastic assumptions taken in their energy balance
equation. They evaluated the source term in the energy
balance equation and corresponding averages by assuming a
Maxwellian distribution for the electrons. Guo and Wu [53]
have developed a more sophisticated second-order model in
which the Langevin theory was used to simplify the collision
source terms with a priori knowledge of the relaxation times
of electron energy and momentum. Kanzari et al [46] have
made an important step further by calculating the source
term in the energy equation in a more consistent way where
the ad hoc assumptions for the distribution function were
avoided. A similar approach was later used by Eichwald
et al [54] in their simulations of the streamer dynamics and
of the radical formation in a pulsed corona discharge used
for flue gas control. Their results showed that the average
electron velocity in the streamer head is largely overestimated
by the classical first-order model. As a consequence, electron
density and radical density in the ionized channel were up to
50% higher than with the second-order model. The salient
feature of their theory is the fact that the heat flux term
in the energy balance equation was explicitly neglected, but
this, unfortunately, is of questionable accuracy. We will
illustrate in streamer simulations in our second paper [43]
that the energy flux plays an important role in determining
the streamer behaviour. Thus, particular care should be taken
with the closure through specification of the energy flux.
Even for charged particle swarms under non-hydrodynamic
conditions one must be careful how to specify the heat flux
vector [36, 44, 45, 55]. We now discuss how the fluid equations
should be closed for streamers, while we stress that the method
itself is applicable to a much wider range of phenomena.

2.4. The high-order fluid model

We now derive a fluid model including the energy flux equation,
i.e. we truncate at the moment equation with the third power of
velocity. We will argue that the energy flux equation is crucial
for the success of the fluid model for streamers. Inserting
different moments of c into equation (5), one finds

∂n

∂t
+ ∇ · nv = C1, (29)

5
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∂

∂t
(nmv) + ∇ · (nm〈cc〉) − neE = Cmc, (30)

∂

∂t

(
n
〈1

2
mc2

〉)
+ ∇ ·

(
n
〈1

2
mc2c

〉)
− neE · v = C 1

2 mc2 ,

(31)
∂

∂t

(
n
〈1

2
mc2c

〉)
+ ∇ ·

(
n
〈1

2
mc2cc

〉)
−neE ·

〈
∂

∂c

(1

2
mc2c

)〉
= C 1

2 mc2c. (32)

Different forms of these equations that some readers might
be familiar with are given in the appendix. It will be
shown in section 2.4.3 that the explicit form of the high-order
tensors appearing in the divergence term of the energy flux
equation (32) is not required.

This system of equations is exact at this stage, but not
very useful and the reason is twofold. First, there are more
unknowns than equations, the familiar problem of closure.
The set of fluid equations can be increased to an arbitrary size
merely by taking higher velocity moments of the Boltzmann
equation. Second, the definition of the system requires the
respective collision terms Cφ .

2.4.1. Collision processes. In contrast to Monte Carlo
simulations or kinetic equations in which cross-sections for
charged particle scattering enter into the calculations in a fairly
clear way, in fluid equations the collisions are treated in a
variety of ways, which are not necessarily consistent with the
data itself and/or with the system under consideration. There
are many examples that illustrate this issue and the reader
is referred to [36, 44, 45] for a detailed discussion. In the
context of streamer and breakdown studies beyond first-order
fluid models, it has become common practice to evaluate the
collision terms and averages by assuming some particular
form of the velocity distribution function, usually Maxwellian
[26, 52, 53, 56–58].

Let us consider the form of the collision terms in the
balance equations (29)–(32). In this work, we characterize
the elastic, inelastic and non-conservative collisions by
corresponding average collision frequencies. A collision
frequency ν(vr) for collisions between charged particles
and gas molecules is related to the cross-section σ(vr)

characterizing the process by

ν(vr) = ngvrσ(vr), (33)

where vr is the relative velocity and ng is the number density
of the neutral gas. Furthermore, we deal with weakly ionized
systems where the interactions of charged particles with one
another is negligible.

Our calculation takes into account that the charged
particles can lose energy and momentum even in elastic
collisions with the gas molecules as the finite mass and the
thermal energy of the molecules are taken into account. The
momentum exchange in inelastic collisions is included and
νm = νm(vr) denotes the total momentum transfer collision
frequency while να and ν (s)

α are inelastic and superelastic
collision frequencies for the inelastic channel α. The total

collision frequencies for attachment and ionization are denoted
by νA = νA(vr) and νI = νI(vr), respectively. We consider
only single ionization with ionization energy εI, but the
resulting ion can be left in any one of its internal excited states,
characterized by an excitation energy 	ε

(i)
I and a collision

frequency ν
(i)
I .

2.4.2. Momentum transfer theory. The momentum transfer
theory has a long history in kinetic theory of gases and
has proved very successful for describing charged particle
transport in gases under the influence of electric and magnetic
fields. It is discussed comprehensively in the textbook of
Mason and McDaniel [48] and in [36, 44, 45, 49, 59–61]. The
main ideas can be briefly summarized as follows:

(1) We need to express the average collision frequencies
as a function of the mean energy in the centre-of-mass
reference frame. Thus, we replace the variables

vr → ε = 1
2µrv

2
r , (34)

in expressions for collisional frequencies

ν = ν(vr) → ν̃ = ν̃(ε), (35)

where ε is the energy measured in the centre-of-mass
reference frame and µr is the reduced mass.

(2) If we assume that the dominant contributions to the
averages come from regions near the mean energy ε̄, and
that ν(ε) varies sufficiently slowly with ε, then a Taylor
expansion

ν̃(ε) = ν̃(ε̄) + ν̃ ′(ε̄)(ε − ε̄) + · · · , (36)

is expected to be a reasonable approximation. For
conservative collisional processes such as elastic and
inelastic scattering, only the first term of the expansion
(36) is considered. However, when energy-dependent
non-conservative processes such as ionization and
electron attachment are operative then the derivative term
in (36) becomes the leading term and must be included.

(3) Using the momentum transfer approximation, the balance
equations (29)–(32) get the form

∂n

∂t
+ ∇ · nv = −n

(̃
νA − ν̃I

)
, (37)

∂

∂t
(mnv) + ∇ · (

mn〈cc〉) − neE

= −µrñνmv − mnv
[̃
νI + ζ ν̃ ′

A

]
, (38)

∂

∂t
(nε) + ∇ · (nξ) − neE · v

= −ñνe

[(
ε − 3

2
kT0

)
+ �(ε̄)

]
− nε̃νA, (39)

∂

∂t
(nξ) + ∇ ·

(
n
〈1

2
mc2cc

〉)
− neE ·

〈
∂

∂c

(1

2
mc2c

)〉
= −ñνmξ, (40)
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where ε is the average electron energy, ξ is the average
electron energy flux and m0 is the mass of gas molecules.
ζ is given by [49, 60]

ζ = 2

3

m0

m + m0

(
1

2
m

〈
c2

〉 − 1

2
m|v|2

)
. (41)

The average collision frequencies for momentum and
energy transfer

ν̃m(ε̄) = ng

√
2ε

µr
σm(ε̄), (42)

ν̃e(ε̄) = 2µr

m + m0
ν̃m(ε̄), (43)

are prescribed functions of the mean energy in the centre-
of-mass frame

ε̄ = m0ε + m 3
2kT0

m + m0
, (44)

where k is Boltzmann’s constant and T0 is the neutral gas
temperature. The term � represents the average energy
lost in one energy relaxation time ν̃ −1

e , through non-elastic
processes and is given by [36]

�(ε̄) = m0

m + m0

∑
α

(̃να − ν̃ (s)
α )

ν̃e

εα +
∑

i

ν̃
(i)
I

ν̃e

	ε
(i)
I .

(45)

The inelastic channels α are governed by threshold
energies εα and collision frequencies for inelastic and
superelastic processes ν̃α and ν̃ (s)

α , respectively. All
collision frequencies describing the inelastic, non-
conservative and superelastic collisions appearing in
equations (37)–(40) are functions of ε̄. It should be
emphasized that the equations of continuity (37), of
momentum balance (38) and of energy balance (39) are
valid for charged particles of arbitrary mass while the
energy flux equation (40) is obtained in the approximation
of m/m0 � 1. High-order corrections in momentum
transfer theory corrections (e.g. high-order terms in the
Taylor expansion (36)) could be added on the right-hand
side of the system (37)–(40) if desired, without in any
way changing the generality of the physical arguments
associated with the closure assumptions presented below.

2.4.3. Solution regimes and closure assumptions. The
closure of the system of equations (37)–(40) requires
approximations or assumptions on the form of the pressure
tensor. The standard approximation for light particles such as
electrons is that the pressure tensor can be taken as a scalar at
the fluid level of approximation [36, 44, 45, 49]. This means
that, ε̄ ≈ ε � 1

2mv2, and the pressure tensor simplifies to

P = nkT ≈ 2
3nεI, (46)

where T is the so-called temperature tensor that characterizes
energy fluctuations even if the system is not in thermal

equilibrium. This form of the pressure tensor was employed
in all previous swarm-oriented studies [36, 44, 45, 49, 55, 59,
60], as well as in the recent fluid models of streamer
discharges [46, 54]. However, if the velocity distribution
significantly deviates from isotropy in velocity space, then
this approximation is problematic. For ions, the distribution
function in velocity space is always anisotropic (even if elastic
collisions between ions and molecules are predominant) and
hence any assumption on an isotropic pressure tensor is wrong
for ions. This problem can be avoided by considering the
temperature tensor balance equation but this in turn contains
further unknowns. The reader is referred to [61] for how to
treat charged particle swarms under spatially homogeneous
hydrodynamic conditions. In streamer studies, the ions are
usually considered as immobile or they are modelled by a
reaction–drift–diffusion and local field approximation, which
is a reasonable approximation on the time scale on which a
streamer ionization front passes a given point in space.

The next step in the closure of the system of
equations (37)–(40) concerns the energy flux balance equation
(40). The third term can be simplified as follows:

∂

∂c

(1

2
mc2c

)
= mc

∂c

∂c
c +

1

2
mc2 ∂c

∂c
= mcc +

1

2
mc2I,

(47)

where I is the unity tensor. Assuming again as in (46) that the
temperature tensor is isotropic, and hence that

〈cc〉 ≈ 〈c2〉
3

I, (48)

and after some algebra, the energy flux equation can be
written as

∂

∂t
(nξ) + ∇ ·

(
n
〈1

2
mc2cc

〉)
− e

m
E

(
5

3
nε

)
= −ñνmξ.

(49)

The second term in the energy flux balance equation (49)
or (40) is the divergence of the fourth power of the velocity
averaged over the velocity distribution, 〈c2cc〉, while all other
terms in the equation contain only the third power of velocity.
Therefore, this term, which we will call the quartic tensor,
requires either the next equation in the sequence of moment
equations or a closure approximation. This closure assumption
must be physically transparent and consistent with the general
structure of the equations. One way is to approximate the
relevant term by a product of lower moments as〈

c2cc
〉
≈ β

〈
c2

〉
〈cc〉 ≈ β

4

3m2
ε2 I, (50)

where we used (48) for the second equality. β is a
parametrization factor, generically close to unity, when the
higher order correlation term 〈c2cc〉 − 〈c2〉〈cc〉 can be
neglected.

With these closure assumptions the system of fluid
equations (37)–(40) for the electrons becomes

∂n

∂t
+ ∇ · nv = −n

(̃
νA − ν̃I

)
, (51)
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∂

∂t
(nv) +

2

3m
∇(nε) − n

e

m
E = −nv

(̃
νm + ν̃I +

2

3m
ε̃ν

′
A

)
,

(52)
∂

∂t
(nε) + ∇ · (nξ) − eE · (nv)

= −ñνe

[(
ε − 3

2
kT0

)
+ �

]
− nε̃νA, (53)

∂

∂t
(nξ) + ∇

(
β

2n

3m
ε2

)
− 5

3
nεeE = −ν̃m(nξ). (54)

The parameter β that appears in the energy flux equation is
a quantity close to unity, but can be used to fit the neglected
higher order correlations. Variations of this parameter will be
discussed in our second paper [43].

The system of equations (51)–(54) has the following
properties. (i) If the parameter β is specified and if the collision
terms are given then the system of equations containing no
further unknowns can be numerically solved for the density,
average velocity, average energy and energy flux. (ii) The
equations contain mean-energy collisional rates that should be
carefully derived and implemented as elaborated in the next
section. (iii) Attachment enters the momentum and energy
balance equation in terms of the derivative of the attachment
collision frequency while for ionization only the ionization
collision frequency is present. (iv) The above equations are set
for a single component gas; the generalization to gas mixtures
proceeds through the generalization of the collision term to
a sum of terms appropriately weighted according to the mole
fractions of the respective species.

3. Transport and reaction data

3.1. Evaluation of the transport data: Boltzmann equation
analysis

Here we discuss how to evaluate and implement electron
transport properties in both first- and high-order fluid models.
In plasma modelling, transport coefficients of electrons
and/or ions may be obtained either from swarm experiments,
from solutions of the Boltzmann equation or from Monte
Carlo simulations. We note that swarm transport data are
usually given in the literature in the form of tables as a
function of reduced electric field, E/n0 [36, 44]. In fluid
plasma modelling, however, several important issues have
to be considered before directly implementing data from
the literature.

First, transport coefficients are defined far from
boundaries, sources and sinks of charged particles where
the so-called hydrodynamic conditions prevail [36, 37, 39,
40, 62, 63, 69]. Under hydrodynamic conditions, the space–
time dependence of the distribution function is expressible in
terms of linear functionals of n(r, t). A sufficient functional
relationship between the distribution function f (r, c, t) and
n(r, t) in the case of weak gradients is the well-known
expansion

f (r, c, t) =
∞∑

s=0

f (s)(c) 
 (−∇)sn(r, t), (55)

where f (s)(c) are tensors of rank s and 
 denotes an
s-fold scalar product. Direct application of transport
properties measured/calculated in different experimental
arrangements, where often non-hydrodynamic conditions are
present explicitly or implicitly, is problematic and should be
avoided. Typical examples of swarm data obtained under non-
hydrodynamic conditions are those measured/calculated under
the steady-state Townsend (SST) conditions [64, 65]. Before
direct application of SST data one must perform careful swarm
analysis and convert the SST data into the hydrodynamic
transport coefficients. Details of this procedure are presented
in [66].

Second, care must be taken when non-conservative
collisions are significant. In the presence of non-conservative
collisions there are two sets of transport coefficients, the bulk
and the flux [39, 67]. Assuming the functional relationship
(55) the flux Γ and source term C1 (usually denoted by S(r, t)

in previous swarm-oriented studies [36, 37, 62, 63]) appearing
in the equation of continuity (7) can be expanded

Γ(r, t) = nW (�) − D(�) · ∇n, (56)

S(r, t) = S(0)n(r, t) − S(1) · ∇n(r, t) + S(2) : ∇∇n(r, t),

(57)

where W (�) and D(�) define, respectively, the flux drift velocity
and flux diffusion tensor while S(k) are expansion coefficients
of the source term. Substitution of expansions (56) and (57)
into the continuity equation (7) yields the diffusion equation

∂n

∂t
+ W · n − D : ∇∇n = −Ran, (58)

which defines the bulk transport coefficients

Ra = −S(0), (59)

W = W (�) + S(1), (60)

D = D(�) − S(2), (61)

where Ra is the loss rate, W is the bulk drift velocity and D
is the bulk diffusion tensor.

The basic difference between the bulk and flux transport
coefficients should now be apparent. The bulk drift velocity
is the displacement of the mean position of the electron
swarm and it characterizes the motion of the total ensemble
of electrons. The presence of the electric field results in a
spatial variation in the energy throughout the swarm. Under
such conditions, the presence of non-conservative collisions
(ionization/attachment) may lead to a change in the position
of the centre-of-mass of the swarm. This effect on the bulk
drift velocity is denoted by S(1). On the other hand, the
flux drift velocity W (�) represents the rate of change of the
position of the centre-of-mass due to the electric field only
and can be interpreted as the mean velocity of the electrons.
Likewise, the flux diffusion tensor D(�) represents the rate of
spreading of the swarm due to the electric field E and gradients
in density ∇n. The presence of non-conservative collisions
may result in the variation of ∇n throughout the swarm and a
subsequent variation in the rate of change of the mean squared
width of the swarm. Such effects are expressed by the second
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rank tensor S(2). The most appropriate procedure in plasma
modelling would be to use the experimental swarm data (e.g.
bulk values) for the analysis of the validity of the cross-section
and then to calculate the flux quantities, which are necessary
as input data in fluid modelling. More about duality of the
hydrodynamic transport coefficients and their implementation
in fluid modelling can be found in [29, 36, 37, 44, 62, 63].

Third, while the first-order fluid model requires electron
transport data as a function of local reduced electric field, what
really appears in high-order fluid models are mean-energy-
dependent collisional rates. Since momentum transfer theory
is used to determine the collision terms in the fluid equations,
the most appropriate procedure would be to systematically
reduce these fluid equations down to the swarm limit assuming
the hydrodynamic regime. From this set of equations, one can
then find relationships between collisional transfer rates and
the mean energy, in a self-consistent manner. This method
was employed in previous works of Robson and co-workers
(see for example [44] and references therein), but we apply
here a slightly different approach. Instead of using the so-
called generalized Einstein relation to determine the mean
energy from the transverse diffusion coefficient [44, 47], the
mean energy is directly calculated from the multi-term solution
of Boltzmann’s equation. The correspondence between the
mean energy and E/n0 is then used to find the correspondence
between the mean energy and other relevant transport data.
The momentum transfer collision rate is obtained from

νm = e

mµ(ε)
, (62)

where µ(ε) is the electron mobility which is here a function
of the mean energy. The energy-transfer collision frequency
is calculated from equation (43). Thus, our procedure of
determining the electron transport data as an input for high-
order fluid models is entirely consistent with the work of Boeuf
and Pitchford [68].

The electron transport data employed in this work are
calculated using a multi-term theory for solving the Boltzmann
equation. The methods and techniques are by now standard
and the reader is referred to our previous works [36, 37, 62].
Among many important aspects, we highlight the following
important steps:

• No assumptions on symmetries in velocity space are
made, and the directional dependence of the phase-space
distribution function in velocity space is represented in
terms of a spherical harmonic expansion:

f (r, c, t) =
∞∑
l=0

l∑
m=−l

f (r, c, t)Y [l]
m (ĉ), (63)

where Y [l]
m (ĉ) are spherical harmonics and ĉ represents

the angles of c. In contrast to the classical two-term
theory (where the sum over l is performed only up to
l = 1), the number of spherical harmonics is not restricted,
and our method therefore is a truly multi-term approach.
The differences between the two-term approximation and
our full multi-term approach for electron transport in

nitrogen are illustrated in section 3. The inadequacies of a
Legendre polynomial expansion (when density gradients
are not parallel to the field) are highlighted in our previous
publications [36, 37] and avoided in this work.

• As discussed above, under hydrodynamic conditions a
sufficient representation of the space dependence is an
expansion in terms of powers of the density gradient
operator.

• The velocity (energy) dependence of the phase-space
distribution function is represented by an expansion about
a Maxwellian at an arbitrary temperature in terms of
Sonine polynomials.

Using the appropriate orthogonality relations for the
spherical harmonics and for the modified Sonine polynomials,
the Boltzmann equation is converted into a hierarchy of
coupled equations for the moments of the distribution function.
These equations are solved numerically and all transport and
rate coefficients are expressed in terms of moments of the
distribution function [36, 37].

3.2. Cross-sections and transport data

In this section, transport and reaction coefficients for electrons
in N2 at a temperature of 298 K are calculated as an input
for first- and high-order fluid models. The first-order
model is based on the local field approximation; it requires
mobility, diffusion coefficient and ionization rate as a
function of the reduced electric field E/n0 (where n0 is
the gas number density). Compared with our previous
work [62], we extend the electric field range up to 3000 Td
(1 Td = 10−21 V m2). The high-order fluid model requires
average collision frequencies for momentum and energy
transfer in elastic and inelastic collisions, and rate coefficients
for all collision processes as a function of the mean electron
energy.

We use the cross-sections for electron scattering in N2

provided by Stojanović and Petrović [70]. For elastic collision
processes we use the original Boltzmann collision operator
[71] while for inelastic processes we employ the generalization
of Wang-Chang et al [72]. The ionization collision operator
is detailed in [40]. We assume that the ratio between
the energy of the scattered electron and the total available
energy in an ionizing collision is equally distributed between
0 and 1; the same holds then, of course, for the ejected
electron. We remark that at the high electron energies in
the streamer tip, the assumptions on the energy division
can considerably influence transport profiles. Furthermore,
scattering is assumed to be isotropic. This can be problematic
for high values of E/n0 (generally for E/n0 � 1000 Td
for electrons in N2) when electrons scatter predominantly
in the forward direction [24, 75]. However, the errors in
the calculated transport coefficients and rate coefficients are
acceptable in fluid modelling for streamers in the range of
the reduced electric fields E/n0 considered in this work after
appropriate renormalization of cross-sections for the scattering
angle distribution [24].

We present both bulk and flux coefficients obtained
by our multi-term solution of the Boltzmann equation,
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(a) (b)

(c) (d)

Figure 1. (a) Mobility, (b) longitudinal and transverse diffusion coefficient, and (c) ionization rate of electrons in N2 as a function of the
reduced electric field E/n0, as an input for the first-order model. Shown are flux and bulk data obtained by our multi-term solution of the
Boltzmann equation, and flux data obtained by the BOLSIG+ code. BOLSIG+ provides only an isotropic diffusion coefficient for (b).
(d) shows the variation of mean energy with E/n0.

and we compare them with the coefficients obtained by
the public available Boltzmann solver BOLSIG+ derived
from the same cross-sections. BOLSIG+ is based on the
two-term approximation [38] and provides exclusively flux
transport data.

3.3. Input data for the first order model

Figure 1(a) shows the electron mobility (multiplied by the
gas number density) as a function of the reduced electric field
E/n0. We observe that bulk and flux quantities start to differ
visibly above a reduced field of approximately 150 Td, this
means that the ionization processes start to be significant at
this value of the field. As E/n0 increases further, the effect
becomes more pronounced, until the bulk mobility exceeds
the flux mobility by approximately 30% at 3000 Td. The
difference between bulk and flux mobility is the consequence
of the spatial variation of the average electron energy within
an electron swarm [32, 37, 40]. If the ionization rate is an
increasing function of electron energy (as is the case for
the parameters considered here), electrons are preferentially
created in regions of higher energy resulting in a shift in the

centre-of-mass position as well as in a modification of the
spread about the centre-of-mass. In nitrogen up to 3000 Td,
the electrons are preferentially created at the leading edge of
an electron swarm and hence the bulk mobility is larger than
the flux mobility.

Figure 1(a) shows as well that the flux data obtained by
our multi-term solution of Boltzmann’s equation and by the
BOLSIG+ code agree well. Only for E/n0 below about 3 Td
is the BOLSIG+ mobility higher than our flux mobility. As we
have successfully compared our multi-term results with Monte
Carlo results that include the thermal energy of the background
molecules as well, the results shown in figure 1(a) suggest that
the BOLSIG+ code should be carefully tested in the limit of
thermal energies.

Figure 1(b) shows the diffusion coefficients (multiplied by
the gas number density) as a function of the reduced field E/n0.
The bulk and flux values of the longitudinal and transverse
diffusion coefficients are compared with the isotropic diffusion
coefficient calculated by the BOLSIG+ code. As for the
mobility, flux and bulk data start to deviate for E/n0 above
approximately 150 Td, indicating again the onset of ionization
effects. The diffusion coefficients are more sensitive to the
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Figure 2. Density normalized average collision frequency for momentum transfer in elastic collisions ν̃m/n0 (a) and the average energy lost
in one energy relaxation time ν̃ −1

e , through non-elastic processes � (b) as a function of the mean energy of electrons in N2, as an input for
the high-order model. The three curves in each panel show the flux and bulk data obtained by our multi-term solution for the Boltzmann
equation and the flux data obtained by the BOLSIG+ code.

ionization processes than the mobility; the differences between
bulk and flux data can reach almost 50% for E/n0 approaching
3000 Td. For a more thorough analysis of the explicit influence
of ionization processes on the diffusion coefficients one must
consider the second-order variations in the average energy
along the swarm. This is beyond the scope of this work and
we defer this to a future study.

Figure 1(b) clearly shows the anisotropy of the diffusion
tensor, i.e. DL �= DT; for the range of E/n0 considered
here, the transverse diffusion coefficient is always larger
than the longitudinal diffusion coefficient. This is due to
the spatial variation of the average energy within the swarm
and to the energy dependence of the collision frequency.
The theory of anisotropic diffusion in an electric field is
now textbook material (see for example [73]) and rather
than a detailed discussion of the origin of this phenomenon,
we prefer to highlight the implementation of the diffusion
coefficients in fluid models of streamer discharges. For
E/n0 below approximately 30 Td, our results for the flux
component of the transverse diffusion coefficient and those
obtained by the BOLSIG+ code agree very well. For
E/n0 above 30 Td, however, BOLSIG+ with its two-term
approximation is clearly above our multi-term solution. Here
one should bear in mind that BOLSIG+ treats the diffusion
processes under the spatially homogeneous conditions and
hence the transverse diffusion coefficient obtained under
the spatially inhomogeneous conditions should be used for
comparisons. On the other hand, our one-dimensional fluid
model requires the longitudinal diffusion coefficient as an
input as we consider the spatial variations of the electron
density and average electron energy only along the field
direction. Therefore, particular care needs to be taken with
implementation of the diffusion coefficients in fluid models of
streamer discharges.

Figure 1(c) shows that the ionization rate (divided by the
gas number density) differs between the two-term and the
multi-term calculations by up to 30%. It is interesting to note
that the two-term approximation is less accurate in the energy

region dominated by the vibrational excitation of N2 and for
energies well above the ionization threshold. Surprisingly,
for the electric field range between approximately 200 and
600 Td the two-term approximation increases in accuracy. In
this energy region, the cross-sections for inelastic processes
are much smaller than for elastic collisions. Similar but
not identical observations have been made by Phelps and
Pitchford [75].

Figure 1(d) shows the variation of the mean energy with
E/n0. The properties of the cross-sections are reflected in the
profile of the mean energy. The initial slow rise indicates the
influence of low-threshold rotational and vibrational processes.
The sharp rise for mean energies starting approximately from
50 Td indicates the ‘turning off’ of the vibrational processes.
Our results and those obtained by the BOLSIG+ code agree
very well. The mean energy is determined from the balance
between the gain from the field and the loss by collisions with
the molecule. This quantity is directly used in high-order
fluid modelling of streamer discharges. Although it does not
appear in the first-order fluid models, unlike other transport
coefficients such as the drift velocity (mobility), diffusion
coefficients and ionization rate, we often find that a knowledge
of the mean energy is necessary to explain certain phenomena.

3.4. Input data for the high-order model

The density normalized average collision frequencies for
momentum transfer in elastic collisions and the average energy
loss in one energy relaxation time ν̃ −1

e , through non-elastic
processes as a function of mean electron energy are shown
in figure 2. Bulk and flux frequencies obtained with the
multi-term approach are compared with flux values calculated
with BOLSIG+. The flux values of the two approaches for
ν̃m/n0 agree well. The differences between bulk and flux
values of ν̃m/n0 are a direct consequence of the differences
between bulk and flux mobilities (see figure 1(a)). Similar
arguments can be used to explain the difference between bulk
and flux components of �. This quantity should be viewed
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Figure 3. Rate coefficients in N2 as a function of the electron energy, calculated with the multi-term solution of the Boltzmann equations.
(a) Rates for the cross-sections listed in [70, 75]: momentum transfer in elastic collisions (1), rotational excitation (2), vibrational
excitations (3–11), electronic excitation A 3+

u v = (0–4) (12), A 3+
u v = (5–9) (13), B 3� (14), W 3	 (15), A 3+

u v > 10 (16), B ′ 3−
u

(17), a′ 1−
u (18), a 1�g (19), w 1δu (20), C 3�u (22), E 3+

g (23), a′′ 1+
g (24), sum of singlets (25), dissociation [74] (21), ionization (26);

and (b) density normalized momentum transfer rate, density normalized total inelastic rate and ionization rate.

as a ‘measure’ of energy transfer in inelastic collisions in
one energy relaxation time ν̃ −1

e . It is directly proportional
to mobility and hence its bulk dominates the corresponding
flux component for higher mean electron energies. Differences
between flux values of the two approaches for � follow directly
from internal errors of the two-term approximation used to
solve Boltzmann’s equation in the BOLSIG+ code.

Figure 3(a) shows the rate coefficients as a function
of the mean electron energy for all collision processes.
Figure 3(b) compares the density normalized average collision
frequency for momentum transfer in elastic collisions, the
density normalized total inelastic rate (sum of all rates for
inelastic processes without ionization) and the ionization rate.
All results are obtained with the solution of Boltzmann’s
equation. On figure 3(b) the results obtained by the BOLSIG+
code are also included. The ionization rate is significant
for relatively high mean energies (i.e. high E/n0) and is
essential for modelling of streamers. Excepting rates for
dissociation (21), electronic excitation (25) and ionization (26),
the following feature is observed in the mean-energy profiles
of the rate coefficients: at some point their increase with the
mean energy slows down until a maximum is reached and
then they start to decrease. Under conditions considered in
this work, the ionization rate monotonically increases with
the mean energy and in the limit of 100 eV it approaches
the rate for momentum transfer in elastic collisions. In
the low-energy range, however, rotational and vibrational
excitations have the most important role. In particular,
for electron energies less than approximately 0.1 eV, the
processes of rotational excitation control the energy transfer
in the system and should be carefully considered. In
conclusion, collisional rates for inelastic processes enter
the energy balance equation describing the change in the
average energy of electrons. The knowledge of the rate
coefficients is of key importance to calculate the kinetics of
various plasma chemical processes and densities of excited
species and thus used in much broader context of plasma
modelling.

4. First-order streamer model with different
transport data

Here we present simulations of planar negative ionization
fronts in N2 using the first-order fluid model, while simulation
results with the high-order fluid model are presented in our
second paper [43].

4.1. Numerical methods, initial and boundary conditions

In this subsection we briefly describe the numerical method,
and the initial and boundary conditions used to solve
equations (25)–(28) in one spatial dimension. The calculations
are carried out in N2 at atmospheric pressure and at the ambient
temperature of 298 K. The 1D simulations are started with the
same initial Gaussian-type distribution for electrons and ions

n(x)|t=0 = ni exp

[
− (x − x0)

2

σ 2

]
, (64)

in a gap parametrized with the coordinate x ∈ [0, L],
with L = 1.2 mm. We have chosen ni = 2 × 1018 m−3,
x0 = 8 × 10−4 m and σ = 2.9 × 10−5 m. The externally
applied electric field is positive in the x direction, therefore
electrons drift to the left. The field is fixed in the non-ionized
region at the left boundary x = 0, providing a fixed electric
field for the negative streamer ionization front to penetrate. In
this work we consider reduced electric fields of 350, 460, 590,
770 and 1000 Td.

To investigate the sensitivity of streamer properties to the
definition and accuracy of the transport data, we employ three
different sets of data forµ, D and νI: bulk and flux data obtained
by our Boltzmann equation analysis and the flux data obtained
by the BOLSIG+ code.

The finite volume method is used to spatially discretize
the system (25)–(28) on a uniform grid with 1000 points.
More details will be outlined in our second paper [43], where
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numerical methods for solving the high-order fluid equations
are presented in a comprehensive way. To approximate
the spatial derivatives in (25) we use the second-order
central difference discretization while the time derivatives are
approximated with the Runge–Kutta 4 method [76]. The
continuity equation for the electron density has a second-order
spatial derivative, and therefore it requires two boundary
conditions. For x = 0 we use a homogeneous Neumann
boundary condition (∂xn = 0), so that electrons that arrive
at this boundary may flow out of the system. For x = L we
employ a homogeneous Dirichlet boundary condition (n = 0)
to ensure that there is no outflow of electrons from the system.
In any case, it should be noted that the electrons are well
separated from the boundaries, therefore the actual boundary
conditions do not matter. In equation (26) the time derivative is
approximated with the Runge–Kutta 4 method using the same
time step as in equation (25). In the 1D case, equation (28) has
the form

∂xE = e

ε0
(n − nion), (65)

from which we can determine the electric field E by integrating
over x and using the fixed value of E at x = 0.

4.2. Overview of simulation results with different transport
data

Figure 4 displays the spatio-temporal evolution of electron and
ion densities and of the electric field when the reduced electric
field ahead of the front is fixed to 590 Td (or equivalently to
145 kV cm−1 in N2 at atmospheric pressure and temperature
of 298 K). Calculations are performed for three different sets
of transport data as indicated in the figures. We start with a
Gaussian density distribution as described above. Although the
transition from avalanche to streamer has been discussed many
times within the past 80 years [32, 77–79], the characteristics
and main physical processes are discussed here to investigate
the sensitivity to different transport data.

In the early stage of evolution, we see that both the electron
and the ion densities grow due to electron impact ionization. If
this were the only mechanism, the electric field would remain
unchanged and the ionization would continue indefinitely.
However, the electrons drift in the direction opposite to the
electric field while the positive ions would slowly drift in the
opposite direction; as their mobility is so much smaller, this
motion is actually neglected here and in most other streamer
studies. As a consequence, the charge separation starts to
distort the initially homogeneous electric field. Now figure 4
shows that the ionization profiles at time 0.06 ns obtained with
the bulk transport data are somewhat wider while their height
is less than with our flux and BOLSIG+ data. This follows
from the fact that the bulk mobility and diffusion constant are
higher than the corresponding flux data and hence the centre-
of-mass moves faster and the electron package spreads faster.
As the ionization rate is the same in both cases, the height of
the profiles obtained with the bulk data must be less than with
the flux and BOLSIG+ data. As the evolution continues, the
electric field in the ionized region gets completely screened,
and further ionization processes cannot occur in this region

anymore. The transition from avalanche to streamer is then
completed. We mention in passing that the complete screening
of the interior field is due to the 1D set-up and to the fact that
the field ahead of the front does not change in time.

4.3. Front velocities

When the streamers have approached an approximately
uniformly translating state, we see that the streamers obtained
with bulk data propagate faster than those obtained with
flux and BOLSIG+ data, in agreement with earlier studies
[23, 25, 32]. In section 3.1, it was already discussed that in
general flux transport data should be used in fluid equations
derived systematically from the Boltzmann equation; however,
in the particular case of streamer ionization fronts with their
pulled dynamics simulated with the half-phenomenological
classical streamer model, the bulk coefficients approximate
the front velocity better, with the drawback that the ionization
level behind the front is very small [23, 25, 32].

In figure 5 we display velocities of planar fronts as a
function of E/n0. In order to calculate the streamer velocity
we have followed the evolution of a certain level (2ni) of
the electron density at the streamer front. We compare the
velocities obtained with different input data. The flux drift
velocity as a function of E/n0 is also shown. First, we see
that the planar fronts move much faster than the electrons.
This follows from the fact that the velocity of a planar front
is the sum of the drift in the electric field at the front edge
plus a term accounting for diffusion, for creation of additional
electrons due to impact ionization and for the electron density
profile [42]. The difference between front velocity and electron
drift velocity increases with E/n0, up to more than a factor of
2 for the highest field displayed here.

We remark that according to analytical theory [42, 80],
the front velocities in planar configurations (where the field
does not decay ahead of the front) depend for a long time on
initial conditions, and if the initial condition decays less than
e−�∗|x|, �∗ = √

νI/D, it will determine the front velocity for
arbitrarily long times. For this reason, here we do not compare
numerical with analytical results [42].

We finally note that the front velocities calculated with
bulk transport data are up to 30% higher than with flux data.
This illustrates the sensitivity of the model to the input data.
On the other hand, the velocities differ much less between our
flux data and those obtained with BOLSIG+. To explore this
issue in more detail, additional tests are required, particularly
for atomic and molecular systems with large anisotropy of the
velocity distribution function in velocity space.

4.4. Ionization levels behind the front

We now explore how the ionization degree behind the front
depends on the transport data, and we compare with the
analytical approximation

ne,back � ε0

e

∫ Emax

0

νI(E)

Eµ(E)
dE. (66)

This approximation becomes an identity, if diffusion can
be neglected [42]; and it is an upper bound, if diffusion
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(a)

(b)

(c)

Figure 4. Evolution of (a) the electron density, (b) the ion density and (c) the electric field in a negative planar ionization front in N2 with a
reduced electric field of 590 Td ahead of the front. Shown are the spatial profiles obtained with three different sets of input data as indicated
in the graph.

is taken into account [32]. This analytical result has been
derived for planar fronts, and it is independent of the front
velocity.

In figure 6 we compare the ionization levels behind the
fronts calculated with the three different sets of transport data
and with the analytical upper bound, using our flux data. We
see that the approximation (66) indeed serves as such a bound,
but is furthermore also a very good approximation of the

numerical results, when using the same transport data. The
errors of the two-term approximation are negligible indicating
a weak sensitivity of the ionization level to the isotropy of
the distribution function in velocity space that is assumed in
BOLSIG+. The ionization level with bulk data is considerably
lower. Generally, it is evident that the ionization level is much
less sensitive to the type of transport data than the front velocity.
Similar observations have been made in [32].
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Figure 5. Velocities of planar fronts obtained by three different sets
of input data as a function of the reduced electric field. The flux drift
velocity of electrons is also included.

Figure 6. Ionization levels behind planar fronts as a function of the
reduced electric field. Results are shown with three different sets of
input data and with the analytical approximation (66) calculated
with flux data.

5. Conclusion

In this paper, we have derived a high-order fluid model
for streamer discharges. Our goal has been to develop a
comprehensive theory at a level of sophistication appropriate
for the electron energy distributions very far from equilibrium
and for the steep electron density gradients that characterize
a streamer front. The first steps are reported in this paper,
which deals with theoretical foundations and phenomenology.
After examining the application of the Boltzmann equation,
we have proceeded to the evaluation of the velocity moments
of Boltzmann’s equation. To make contact with previous
works and to place our theory in a much broader context, we
have demonstrated how to derive the classical drift–diffusion
approximation often used in the plasma modelling community

to model streamer discharges. Then we have introduced
our more sophisticated high-order fluid approach, proceeding
directly from Boltzmann’s equation and systematically
discussing the critical assumptions required to close the system
of equations and to evaluate the collision terms involved.
Momentum transfer theory has been used to approximate
collision terms in the high-order fluid model while high-
order tensors appearing in the energy flux equation have been
specified in terms of previous moments. In contrast to previous
works, it has been emphasized that the energy flux equation
plays a pivotal role for the correct description of streamer
dynamics. The fluid equations obtained as velocity moments
of the Boltzmann equation have been closed in the local mean
energy approximation and coupled to the Poisson equation to
calculate the modification of the electric field by space charges.
The numerical solutions of the high-order fluid model for
planar fronts and their discussion are deferred to the following
paper.

The second important aspect of this paper concerns the
application of transport data in fluid models of streamer
discharges. In order to illustrate this issue, we have used the
first-order fluid model to investigate the temporal evolution
of negative planar fronts in pure nitrogen. We have focused
on the way in which the inherent streamer properties such as
the velocity of a streamer or the ionization level behind the
front are influenced by different transport data employed as
an input in fluid equations. Our primary goal was to show
which aspects of kinetic theory developed for swarm physics
and particularly which segments of data would be important
for further improvement of streamer models. It was shown
and illustrated that the direct application of transport data
from the literature without knowledge of origin and nature
of the data is problematic and can often lead to significant
errors in the profiles of various streamer properties. In
this respect, the origin and nature of transport data must
be known and, if appropriate, suitably modified before
implementation in the fluid models. This is particularly
important for collisional transfer rates required as input in
the high-order fluid model. We have also discussed the
validity of transport data obtained by a two-term theory for
solving the Boltzmann equation. Our general sentiment was
that two-term data are well acceptable in fluid modelling of
streamers, though additional testing is required for gases with
large anisotropy of the velocity distribution function in velocity
space.
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Appendix. Alternative forms of the high-order
model

To make contact with previous work [46, 51, 52, 54], we here
present different forms of equations (29)–(32). When we
evaluate the averages over the velocities c in these equations
and perform a considerable amount of algebra, we find

∂n

∂t
+ ∇ · nv = C1, (A.1)

∂

∂t
(nmv) + ∇ · (nmvv) + ∇ · P − neE = Cmc, (A.2)

∂

∂t

[
n

(
1

2
mv2 +

3

2
kT

)]
+ ∇ ·

[(
1

2
mv2 +

3

2
kT

)
nv + P · v + q

]
− neE · v = C 1

2 mc2 ,

(A.3)
∂

∂t

[(
1

2
mv2 +

3

2
kT

)
nv + P · v + q

]
+∇ ·

[
2v (P · v) + 2vq +

1

2
v2P + Q : v + S

+

(
1

2
mv2 +

3

2
kT

)
nvv

]
− e

m

(
1

2
mv2 +

3

2
kT

)
nE

−en(vv) · E − en

m
P · E = C 1

2 mc2c, (A.4)

where P is the pressure tensor, q = 1
2nm

〈
(c − v)2(c − v)

〉
is

the heat flux vector, S = 1
2nm

〈
(c − v)2(c − v)(c − v)

〉
is the

high-order pressure tensor and Q = nm
〈
(c−v)(c−v)(c−v)

〉
is the high-order heat flux tensor. The pressure tensors P and
S are the second-order tensors while the high-order energy flux
tensor Q is a third-order tensor.

Using the continuity equation (A.1), the momentum
balance equation (A.2) can be written as

nm

[
∂v

∂t
+ (v · ∇) v

]
− ∇ · P − enE = Cmc − mvC1.

(A.5)

This equation is equivalent to equation (14) and can be used
to exclude the energy of macroscopic motion from the energy
(A.3) and energy flux (A.4) balance equations, respectively.
For this purpose, we multiply momentum balance equations
(A.2) and (A.5) by v and after addition of one of the resulting
equations to another one, we obtain

∂

∂t

(
1

2
nmv2

)
+ ∇ ·

(
1

2
nmv2v

)
+ (∇ · P ) · v

= vCmc − 1

2
v2C1. (A.6)

This is the balance equation for the energy of macroscopic
motion. Taking this equation back into the energy and energy
flux balance equations, we obtain an alternative and more
compact form of the fluid equations:

∂n

∂t
+ ∇ · nv = C1, (A.7)

nm
dv

dt
+ ∇ · P − enE = Cmvr , (A.8)

d

dt

(3

2
p
)

+
3

2
p(∇ · v) + ∇ · q + P : ∇v = C 1

2 mv2
r
, (A.9)

dq

dt
+ q · ∇v + q(∇ · v) + Q : ∇v + ∇ · S

+
(dv

dt
− e

m
E

)(
τ +

5

2
pI

)
= C 1

2 mv2
r vr

, (A.10)

where vr = c − v is the random velocity. The pressure p is
defined as one-third the trace of the pressure tensor

p = 1

3

∑
i

Pii = m

3

∫
(c − v)2 f dc, (A.11)

while τ is the stress tensor

τ = P − pI, (A.12)

where I is the unity tensor (diagonal elements equal to unity).
In equations (A.8)–(A.10), the convective time derivative (13)
has been utilized. The collisional terms on the right-hand side
of the balance equations (A.8)–(A.10) are given by

Cmvr = −
∫

mvrJ (f ) dvr, (A.13)

C 1
2 mv2

r
= −

∫
1

2
mv2

r J (f ) dvr, (A.14)

C 1
2 mv2

r vr
= −

∫
1

2
mv2

r vrJ (f ) dvr, (A.15)

where J (f ) is the collision operator and f is the distribution
function of charged particles. It should be noted that balance
equations (A.7)–(A.10) can be derived directly from the
Boltzmann equation. In such a case, however, the Boltzmann
equation must be transformed into an equation for vr before
the velocity moments are taken.
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