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Kinetic theory of positron-impact ionization in gases
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A kinetic theory model is developed for positron-impact ionization (PII) with neutral rarefied gases. Particular
attention is given to the sharing of available energy between the postionization constituents. A simple model for
the energy-partition function that qualitatively captures the physics of high-energy and near-threshold ionization
is developed for PII, with free parameters that can be used to fit the model to experimental data. By applying
the model to the measurements of Kover and Laricchia [Phys. Rev. Lett. 80, 5309 (1998)] for positrons in H2,
the role of energy partitioning in PII for positron thermalization is studied. Although the overall thermalization
time is found to be relatively insensitive to the energy partitioning, the mean energy profiles at certain times can
differ by more than an order of magnitude for the various treatments of energy partitioning. This can significantly
impact the number and energy distribution of secondary electrons.
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I. INTRODUCTION

An understanding of the behavior of positrons in gases un-
derpins many areas of technology and scientific research [1–5].
Of particular interest are applications to the medical imaging
technique of positron emission tomography (PET) [6]. To op-
timize PET technologies and quantify the associated radiation
damage requires a thorough understanding of the processes
by which an energetic positron (and the secondary species)
thermalize. It has been shown recently by Sanche [7–10] that
the secondary electrons created via ionization can cause signif-
icant DNA damage. The number of secondary electrons ejected
along the positron track is on the order of 104 per MeV of
primary radiation produced in water [11,12], so it is clear that
particular attention needs to be paid to the ionization process.

Although there has been extensive research on electrons
in gases, positrons remain significantly less well understood.
Specific collisional processes are available to the positron that
do not exist for electrons, e.g., annihilation with an electron
and positronium formation [13,14]. Although the impact from
either a sufficiently energetic positron or electron can ionize a
gas molecule, the ionization process differs in a crucial way:
Ionization by positron impact is a particle-conserving process
with respect to positrons, while ionization by electron impact is
non-particle-conserving with respect to electrons [15–19]. The
two types of ionization will be referred to as positron-impact
ionization (PII) and electron-impact ionization (EII), respec-
tively. In the framework of kinetic theory, Ness [20] developed
a collision operator for EII, but no positron equivalent has yet
been developed. Instead, previous investigations [21–26] have
generally treated positron ionization as a simple excitation
process that effectively assumes that the scattered positron
receives all of the available postionization energy, although
[27] has highlighted the effects of the secondary electron
energy distribution.

In this paper, a PII equivalent of the EII collision operator
of Ness is derived. Macroscopic transport coefficients, such
as mean energy and flux drift velocity, are compared for a
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simple benchmark model using both a kinetic theory approach
based on the Boltzmann equation and Monte Carlo simulation.
Particular attention is paid to the effect of energy sharing
between postionization constituents and the influence that
different energy-partitioning models have on transport. A basic
energy-partitioning model that captures, at least qualitatively,
the physics of high-energy and near-threshold positron ioniza-
tion is proposed, which can then be fitted to the rather limited
experimental data that are available. The present kinetic theory
model is used to investigate the transport of positrons in dilute
H2 gas using a recently compiled complete set of cross sections
[4] and the proposed energy-partitioning model fitted to the
experimental data of Kover and Laricchia [28].

II. THEORY

A. The kinetic equation and its multiterm solution

The fundamental equation describing a swarm of positrons
moving through a dilute gaseous medium subject to an electric
field E is the Boltzmann kinetic equation for the phase-space
distribution function f ≡ f (r,v,t) [24]:(

∂

∂t
+ v · ∇ + qE

m
· ∂

∂v

)
f = −J (f ), (1)

where t is the time and r, v, q, and m are the position, velocity,
charge, and mass of the positron, respectively. The right-hand
side describes the effect of collisions on the distribution
function at a fixed position and velocity. Essentially, the
Boltzmann equation is an equation of continuity in phase space
[29]. Solving Eq. (1) for the distribution function yields all
relevant information about the system. Macroscopic transport
properties including mean energy and drift velocity can then be
found via averages over the ensemble as detailed in Sec. II C.
The purpose of this paper is to investigate the effect of
ionization, so for simplicity we will consider only spatially
homogeneous situations.

If there is a single preferred direction in the system, e.g., due
to an electric field in plane parallel geometry, then the angular
dependence of the velocity component can be adequately
described by an expansion in terms of Legendre polynomials
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[30], i.e., if f (v,t) → f (v,μ,t), where μ = v̂ · Ê, then

f (v,t) =
∞∑
l=0

fl(v,t)Pl(μ), (2)

where Pl is the lth Legendre polynomial [31]. Substituting
the expansion (2) into Eq. (1) and equating the coefficients of
Legendre polynomials results in the following coupled partial
differential equations for the fl in energy space:

∂fl

∂t
+

∑
p=±1

�
(p)
l

qE

m

(
U

1/2 ∂

∂U
+ p

l + (3p + 1)/2

2
U

−1/2

)
fl+p

= −Jl(fl) (l = 0,1,2, . . . ,∞), (3)

where U = 1
2mv2, Jl is the Legendre decomposition of the

collision operator, and

�
(+1)
l = l + 1

2l + 3
,

�
(−1)
l = l

2l − 1
.

Equation (3) represents an infinite set of coupled partial
differential equations for the expansion coefficients fl . In
practice, one must truncate the series (2) at a sufficiently high
index l = lmax. The history of charged-particle transport in
gases has been dominated by the two-term approximation [32],
i.e., where only the first two terms have been included. The
assumption of quasi-isotropy necessary for the two-term ap-
proximation is violated in many situations, particularly when
inelastic collisions are included [33] or when higher-order mo-
ments are probed [34]. Such an assumption is not necessary in
our formalism. Rather, lmax is treated as a free parameter to be
increased until some convergence or accuracy criterion is met.

B. Collision operators in the multiterm representation

To solve Eq. (3) we require the collision operators for all of
the relevant collisional processes and their representations in
terms of Legendre polynomials Jl . If we assume that the neutral
background gas is at rest and in thermal equilibrium at a tem-
perature T0, then the background medium has a Maxwellian
distribution in velocity space and the collision operator is linear
in the swarm approximation [35]. Below we detail the specific
kinetic theory forms of the collision operator for conservative
elastic and inelastic collisions, particle-loss collisions such as
annihilation and positronium formation, and ionization, which
is the focus of this work. A further expansion of each collision
integral with respect to the ratio of swarm particle mass to
neutral particle mass m/m0 has been performed. Because this
ratio is small for positrons (and electrons), only the leading
term of this expansion for each collision process and in each
equation of the system (3) was taken into account.

The total collision operator can then be separated for each
of the different types of processes, e.g.,

J = J el + J in + J ann + J Ps + J ion,

where the right-hand-side terms represent the elastic, inelastic,
annihilation, positronium formation, and ionization collision
operators respectively. Microscopic scattering information is
included via the appropriate scattering cross sections [14,36]. It

is more natural to work with the collision frequency rather than
the scattering cross sections directly. A collision frequency ν

is defined for a particular process by

ν(U ) ≡ n0

√
2

m
U 1/2σ (U ), (4)

where σ is the corresponding cross section of the process.

1. Conservative elastic and inelastic collisions

For particle-conserving elastic and inelastic collisions we
assume the Wang-Chang et al. [37] semiclassical collision
operator and its limiting cases. For an elastic collision, if all
terms proportional to the mass ratio are neglected there is
no energy transfer during a collision. To obtain a nonzero
expression, a first-order mass ratio approximation is required
[38], i.e.,

J el
l (fl) =

{
− 2m

m0
U−1/2 ∂

∂U

[
U 3/2νel

1 (U )
(
f0 + kT0

∂f0

∂U

)]
, l = 0

νel
l (U )fl, l � 1,

where νel
l = n0

√
2/mU 1/2(σ el

0 − σ el
l ) and σl is defined from

the differential scattering cross section [36] σ (U,μ) via

σl(U ) = 2π

∫ π

0
dμPl(μ)σ (U,μ).

If the background gas has internal degrees of freedom then,
to zeroth order in the mass ratio, energy exchange can still
occur through excitation and deexcitation of those internal
states. Hence, unlike the isotropic part of the elastic collision
integral, the scalar part of the inelastic collision integral
does not vanish under a zeroth-order mass assumption. The
Legendre decomposed form of the inelastic collision operator
in the cold gas limit is given by [39,40]

J in
l (fl) =

∑
j

ν in
j (U )fl

−
{(U+Uj

U

)1/2
ν in

j (U + Uj )fl(U + Uj ), l = 0

0, l � 1,

(5)

where the subscript j denotes the available inelastic channels,
such as excitations and rotations, with an associated inelastic
scattering cross section σ in

j (U ) and a threshold energy Uj .
It is implicit in the above equation that there is no thermal
excitation of internal states.

2. Annihilation and positronium formation

Positron annihilation and positronium formation occur
through distinctly different physical mechanisms. However,
from a transport theory perspective they each represent a
unidirectional particle loss process and hence the form of their
collision operators are identical. Since there is no postcollision
scattering the collision operator is simply [41]

J loss
l (fl) =

∑
k

ν loss
k (U )fl,

where k are the available loss process channels and ν loss
k is the

collision frequency for the kth loss process corresponding to
the cross section σ loss

k (U ).
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3. Ionization

Ionization by electron impact is fundamentally different
from ionization by positron impact. Since the ejected electron
is of the same species as the impacting particle, EII is a
non-particle-conserving process, i.e., the indistinguishability
of electrons leads to a gain in the number of electrons in the
swarm. Since the scattered positron can be distinguished from
the ejected electron, PII is a particle-conserving process. A
different collision operator needs to be used for each case. In
previous studies, PII was treated as a simple excitation process,
which ignores the possible partitioning of energy between the
scattered positron and ejected electron. In what follows, we
develop an explicit expression for the PII operator.

Following the approach of [20], the details of which are
given in Appendix A, the PII collision operator takes the form

J ion
l (fl) = ν ion(U )fl(U )

−
{∫ (

U ′
U

)1/2

P (U,U ′)ν ion(U ′)f0(U ′)dU ′, l = 0

0, l � 1,

(6)

where U ′ is the impact particle energy and ν ion is the collision
frequency for ionization, corresponding to an ionization cross
section. The P (U,U ′) term is the energy-partitioning function,
defined such that P (U,U ′)dU represents the probability of the
positron having an energy in the range U + dU for an incident
positron of energy U ′. The energy-partitioning function has the
following properties:

P (U,U ′) = 0 for U ′ < U + UI ,∫ U ′−UI

0
P (U,U ′)dU = 1 for U ′ � U + UI ,

where UI is the ionization threshold energy, i.e., the energy
needed to overcome the electron binding. The energy sharing,
which is determined by the energy-partitioning function P , is a
major theme in the present work. It will be shown in Sec. V that
different energy-partition models significantly affect positron
transport.

C. Transport properties

The cross sections and collision operator terms represent
the microscopic picture of positron interactions with the
medium. The macroscopic picture, e.g., transport properties
that represent experimental measurables, are obtained as
averages of certain quantities with respect to the distribution
function f . Among the transport properties of interest in the
current paper are the number density n, flux drift velocity
W , and mean energy ε of the positron swarm, which can be
calculated via [35]

n = 2π

(
2

m

)3/2 ∫
dU U 1/2f0(U ),

W = 1

n

2π

3

(
2

m

)2 ∫
dU Uf1(U ),

ε = 1

n
2π

(
2

m

)3/2 ∫
dU U 3/2f0(U ).

The focus of this paper is the ionization process, so it is also
useful to calculate the average ionization collision rate defined
by

αion = 1

n
2π

(
2

m

)2 ∫
dU U 1/2ν ion(U )f0(U ).

III. NUMERICAL APPROACH FOR
A MULTITERM SOLUTION

In this section we detail a numerical solution of the system
of coupled ordinary differential equations (3) once an l-index
truncation has been applied.

A. Method of lines

The method of lines (MOL) [42,43] is a technique for
solving partial differential equations (PDEs) in which all
but one dimension is discretized. In developing a numerical
solution to the Boltzmann equation, we choose to first
discretize the energy (or, equivalently, speed) space. In general,
applying the MOL to linear PDEs results in a system of
equations of the form

M
d

dt
u = Lu, (7)

where [u]i = ui(t) ≡ u(xi,t) and L and M are matrices
resulting from the discretization process, commonly known
as the stiffness matrix and mass matrix, respectively [44]. The
formerly continuous variable x has been discretized into a
set of xi for i = 0,1, . . . ,n. The MOL formalism allows easy
implementation of linear boundary conditions or constraints
via the mass matrix. Let the discretized boundary conditions
and constraints of (7) be represented by Gu = 0, where G
is a matrix and 0 represents a vector of zeros. Then clearly
d
dt

Gu = G d
dt

u = 0 and, provided the initial solution satisfies
the constraints

M
d

dt
u = Lu, (8)

where M and L are the modified mass and stiffness matrices,

M =
[

G
M

]
, L =

[
0
L

]
.

In a pure MOL approach, the system of ordinary differential
equations (ODEs) (8) is solved analytically. However, one is
eventually forced to discretize the time variable as well for
complicated systems of equations, such as those arising from
the discretization of the Boltzmann equation. In this work
we choose to discretize the time dimension with a first-order
implicit Euler method [45], for its good stability properties.
Applying the implicit Euler method to Eq. (7) or (8) gives

(M − hL)un+1 = Mun, (9)

where un and un+1 are the solution vector u at times tn and tn+1

and h = tn+1 − tn is the time step. For linear systems, Eq. (9)
can be solved directly with linear algebra techniques.

B. Finite-difference representation in energy space

The finite-difference method [46] is a local approximation
method that seeks to replace the continuous derivatives by a
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weighted difference quotient of neighboring points. It is widely
used, simple to program, and leads to sparse matrices with band
structures approximating derivatives [47]. Similar to the work
of Winkler and co-workers [15,48,49], the system of ODEs
is discretized at centered points using a centered difference
scheme, i.e.,

df (U,t)

dx

∣∣∣∣
Ui+1/2

= f (Ui+1,t) − f (Ui,t)

Ui+1 − Ui

,

f (Ui+1/2,t) = f (Ui+1) + f (Ui)

2
.

Although a general form can be constructed for an arbitrary
grid, the simplest case is for evenly spaced points, i.e.,

Ui = i�U, 0 � i � n,

where �U is a constant. Discretizing at the center between two
solution nodes results in a system of linear equations that is
underdetermined. The extra information is naturally provided
by boundary conditions that are appended to the system.

C. Initial and boundary conditions

In positron experiments [13], unmoderated positrons have
a peak in their emission energy spectrum of around half an
MeV, which then lose energy rapidly via collisions. There
is little information about the initial source distribution in
thermalization experiments [50]. For our purposes, we wish
to probe the influence of PII collisions and accordingly choose
an initial distribution with a mean energy far above the
ionization threshold so that a large range of the ionization
cross section can be sampled during relaxation. One of the
source distributions used by Campeanu and Humberston [50]
in their investigations of helium is a distribution that is
constant in speed space up to some sufficiently high cutoff
value vmax = √

2Umax/m, i.e., f0(v) = 	(vmax − v)C, where
	(x) is the Heaviside step function. The mean energy of this
distribution function is given by ε = 3

5Umax. We use this type
of initial distribution for our investigations of thermalization
and choose Umax to be sufficiently high to sample the ionization
cross sections accordingly.

The system of coupled equations (3) requires boundary
conditions on the expansion coefficients fl . Winkler and
co-workers [15,48,49] have analyzed the multiterm even-order
approximation and discovered that the general solution of
the steady-state hierarchy contains 1

2 (lmax + 1) nonsingular
and 1

2 (lmax + 1) singular fundamental solutions when U

approaches infinity and the physically relevant solution has to
be sought within the nonsingular part. They give the boundary
conditions necessary for the determination of the nonsingular
physically relevant solution as

fl(U = 0) = 0 for odd l,

fl(U = U∞) = 0 for even l,

fl(U > U∞) = 0 for all l,

where U∞ represents a sufficiently large energy. In practice,
U∞ has to be determined in a prior calculation and is chosen
such that the value of f0(U∞) is less than 10−10 of the
maximum value of f0.

IV. MONTE CARLO SIMULATION

The Monte Carlo simulation code employed in the current
investigation is a particle-tracking model, similar in most
respects to those described in [51,52]. For brevity, we shall only
describe the different features that are necessary to carry out the
ionization simulations featured in this paper. For further details
of the simulation procedure the reader is referred to [53].

The treatment of ionization by the Monte Carlo code
depends on the type of transport particle. For positron-impact
ionization, since we are not interested in the transport of the
resulting electrons to determine positron properties, we treat
ionization as an inelastic process where the amount of energy
that is lost is sampled from the ionization energy partitioning
function P (U,U ′) using inverse transform sampling [54]. For
the partitioning functions used here, the cumulative probability
distribution can be calculated analytically, which simplifies
this procedure significantly.

For electron-impact ionization, we must include the impact
of the additional electrons in the statistical model of the
swarm. However, if the ionization rates are high, tracking
the subsequent motion of every generated particle becomes
computationally infeasible. Instead, we employ a form of
Russian roulette variance reduction [55], where in an ion-
ization event we select only one of the two postcollision
electrons to continue tracking. Each selection has an equal
probability of choosing either the original or ejected electron,
so the selected electrons form a representative sample of all
electrons that otherwise would have been in the swarm. Each
resulting electron must then contribute towards the statistical
measures of the swarm with a weighting that is twice as much
as the precollision electron. Note that this can happen many
times for one electron track and after n ionization events, the
resulting electron will have a statistical weight of 2n.

Sampling the transport coefficients presented below is
performed in a manner similar to that in [53], except for the
inclusion of the statistical weighting factor for each particle.
For example, the mean value of a particle property φ at a single
time is given by

〈φ〉 =
∑N

i=1 wiφi∑N
i=1 wi

,

where N is the number of electrons and wi and φi are the
statistical weight and measured property of the ith electron,
respectively. The flux and bulk drift velocities employ this type
of weighted mean in the following expressions:

Wflux = 〈vz〉,
Wbulk = d〈rz〉

dt
,

where vz and rz are, respectively, the velocity and position of
the particle along the axis of the electric field. Note that for
positron-impact ionization there is no difference between the
two drift velocities, because the number of positrons in the
system is a conservative quantity.

V. RESULTS AND DISCUSSION

In this section we apply both the kinetic theory and Monte
Carlo techniques detailed in the previous sections to describe
positron transport in a benchmark model and positron transport
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in real H2 gas. Comparisons are made to EII where possible.
Particular attention is given to the role of energy partitioning
between the scattered and ejected particles postionization, and
a simple energy-partitioning model is proposed to capture the
underlying physics.

A. Positron ionization benchmarking

We first discuss several benchmark models for EII that
can act as a test bed for our numerical techniques and
solution model. The Lucas-Saelee [56] model is a popular
benchmark, but focuses on the differences between excitation
and ionization rather than energy partitioning specifically.
Taniguchi et al. [57] modified the partition function of the
Lucas-Saelee model, which assumes a distribution with all
energy-sharing fractions equiprobable, to instead share energy
equally between the two electrons, but found that it did not
alter the transport coefficients significantly. Instead, Ness and
Robson [41] proposed a step model for testing energy sharing
for EII, which was shown to have some variation for the
partitionings they investigated. The details of the model are

σ el
0 − σ el

l = 10 Å
2
,

σ in =
{

1 Å
2
, U � 10 eV

0, U < 10 eV,

σ ion =
{

1 Å
2
, U � 15 eV

0, U < 15 eV,

m0 = 25 amu,

T0 = 0 K.

(10)

Transport coefficients for EII calculated using kinetic theory
are compared against the results of Ness and Robson and the
Monte Carlo simulations in Table IV of Appendix B. The
results support the integrity of our methods and solutions.
Transport coefficients for PII under this model are given
in Table I for varying energy-sharing fractions Q, where
Q = U

U ′−UI
. As described in Appendix A, the collision

operator (6) breaks down when Q = 0, hence there is no
value given in Table I corresponding to the kinetic model
for positrons with Q = 0. We are unaware of any previous
positron-impact calculations for model (10), so the transport
properties from our kinetic theory model are compared solely
against an independent Monte Carlo simulation in Table I. The
uncertainty in the Monte Carlo simulations has been estimated
to be less than 1% for the ionization collision rates and less than
0.5% (generally less than 0.3%) for the drift velocity and mean
energy. The two approaches give αion/n0, ε, and W values
that differ by less than 0.6%, 0.3%, and 0.3%, respectively,
over the range of reduced electric fields and available energy
fractions, all of which are within the corresponding Monte
Carlo uncertainty. As the reduced field E/n0 is increased, the
velocity distribution function samples more of the ionization
process leading to a greater ionization rate and a stronger
dependence of the transport coefficients on the postcollision
energy partitioning.

The convergence of transport coefficients for 1000 Td
with increasing lmax is shown in Table II. Since an even-
order approximation is required for the appropriate boundary

TABLE I. Comparison of average ionization rates αion/n0, mean
energies ε, and flux drift velocities W for PII for model (10)
for different reduced fields E/n0 and energy-sharing fractions Q.
Columns labeled “Current” correspond to the current kinetic theory
calculations and columns labeled “MC” are the results of the Monte
Carlo simulation. Note that a Q entry of AFE corresponds to all
fractions equiprobable.

αion/n0 ε W

E/n0 (10−15 m3 s−1) (eV) (105 ms−1)

(Td) Q Current MC Current MC Current MC

300 0 1.711 6.869 2.767
1/4 1.720 1.718 6.919 6.931 2.722 2.730
1/3 1.725 1.719 6.940 6.942 2.711 2.706
1/2 1.740 1.739 6.983 6.979 2.693 2.689
2/3 1.757 1.761 7.021 7.023 2.677 2.676
3/4 1.767 1.774 7.041 7.040 2.671 2.664
1 1.807 1.804 7.098 7.087 2.654 2.648

AFE 1.745 1.739 6.979 6.981 2.699 2.701

500 0 4.856 9.210 3.951
1/4 4.915 4.917 9.379 9.375 3.819 3.822
1/3 4.955 4.949 9.446 9.450 3.789 3.780
1/2 5.060 5.055 9.579 9.588 3.738 3.739
2/3 5.211 5.208 9.716 9.714 3.697 3.697
3/4 5.288 5.293 9.788 9.789 3.678 3.678
1 5.565 5.599 10.03 10.05 3.627 3.628

AFE 5.119 5.107 9.589 9.577 3.754 3.755

800 0 9.903 13.30 5.260
1/4 10.21 10.23 13.75 13.76 4.986 4.992
1/3 10.39 10.40 13.93 13.93 4.922 4.925
1/2 10.84 10.83 14.32 14.33 4.816 4.818
2/3 11.40 11.41 14.79 14.81 4.719 4.725
3/4 11.68 11.70 15.07 15.09 4.672 4.678
1 12.92 12.95 16.27 16.31 4.518 4.527

AFE 10.92 10.94 14.38 14.36 4.850 4.857

conditions, the lmax are odd in our calculations. Clearly the
two-term approximation (lmax = 1) leads to an overestimation
of the ionization rate, mean energy, and flux drift velocity by
approximately 2%. Indeed, six terms are required to achieve
convergence to four significant figures.

The variation of mean energy with Q for PII at a reduced
electric field of 800 Td is shown in Fig. 1. For PII, the mean
energy of the positron swarm increases monotonically with the
energy-sharing fraction Q. This behavior is to be expected,
as the ejected electron directly removes energy from the
positron swarm. The ionization collision frequency increases
with energy in model (10), so the greater the energy of the

TABLE II. Convergence of transport properties with lmax for the
PII model (10) at 1000 Td and Q = 1/2.

αion/n0 ε W

lmax (10−15 m3 s−1) (eV) (105 ms−1)

1 12.77 18.23 5.460
3 12.47 17.96 5.350
5 12.48 17.95 5.349
7 12.48 17.95 5.349
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FIG. 1. (Color online) Variation of mean energy ε with the
energy-sharing fraction Q for the PII model (10) at a reduced field of
800 Td.

swarm, the higher the rate of ionization collisions. Hence
αion/n0 also increases monotonically with Q. The flux drift
velocity W , in contrast, decreases with increasing Q. The
effect of collisions is to randomize the directions of the swarm
particles such that an increase in the ionization rate decreases
the average velocity of the swarm. The transport properties
for the all fractions equiprobable (AFE) distribution are very
similar to that of the equal-energy-sharing case.

The variation of mean energy with Q for EII at 800 Td
is shown in Fig. 2. The mean energy profile is symmetrical
about Q = 0.5 due to the indistinguishability of postcollision
electrons and for 800 Td has a concave shape with a minimum
value corresponding to equal energy sharing. It should be noted
that, in contrast to PII where the mean energy always increases
with Q, the exact nature of the EII mean energy profile depends
on how the distribution function samples the elastic, inelastic,
and ionization cross sections. The variation in the transport
properties for EII with respect to Q for the fields considered
is small, suggesting that EII is relatively insensitive to the
exact nature of the energy partitioning for the model (10).
Ness and Makabe [58] have shown that for EII in argon the
choice of energy-sharing fraction can in fact cause differences

0 0.1 0.2 0.3 0.4 0.5

13

13.1

13.2

Q

ε 
(e

V
)

FIG. 2. (Color online) Variation of mean energy ε with the
energy-sharing fraction Q for the EII model (10) at a reduced field of
800 Td.

of ∼25%, so care must still be taken when choosing the energy-
partitioning function.

The qualitative shape of the Q dependence of the mean
energy for PII is insensitive to the reduced electric field
and the range of values for a particular reduced field is
considerably larger than that for EII. In previous positron
studies [15,17,23,59], PII has been treated as a standard
excitation process. The current results suggest that PII is
particularly sensitive to the form of the energy partitioning and
if real-world PII differs significantly from the model of pure
scattering with excitation, large errors can result. To comment
on this, we need to develop a realistic model of PII energy
partitioning.

B. Positron ionization energy-partitioning model

We now wish to develop a model for postionization
energy partitioning that captures the following basic physical
behaviors.

(i) For high impact energies, the positron ionization scatter-
ing cross section approaches the electron ionization scattering
cross section. The first Born approximation [60] is valid for
high impact energies and shows a heavy bias towards the case
where the scattered positron leaves the collision with almost
all of the energy that is available postcollision.

(ii) For impact energies near the ionization threshold,
there is significant correlation between the scattered positron
and ejected electron. In the Wannier theory [61] originally
developed for near-threshold EII, the repulsion between the
two electrons cause them to emerge with similar energies but
in opposite directions. In terms of the interaction potential
between the two electrons, one may talk about a Wannier
ridge upon which the system is in an unstable equilibrium.
Klar [62] was the first to adapt Wannier’s classical idea to
PII. As in Wannier’s theory, the energy is predicted to be
shared equally, however now the positron and electron emerge
in similar directions due to the Coulomb attraction. Ashley
et al. [63] measured the positron ionization cross section in
helium, which they were able to accurately represent by a
power law, albeit different from that derived by Klar. Ihra
et al. [64] extended the Wannier theory to be consistent with
both Klar and experiment. The success of these power-law
models justifies the assumption of equal energy sharing at
near-threshold impact energies, although recent experiments
[65] suggest a slight asymmetry. It should be noted that the
positron and electron escape in similar directions with similar
energies and are highly correlated, so no clear distinction
between ionization and continuum state positronium can be
made [13].

(iii) Ionization at intermediate energies appears to be a
combination of the above two effects, i.e., a strong peak in
the energy-sharing distribution corresponding to the scattered
positron leaving with all the available energy and a second
peak occurring when the positron and electron emerge with
similar energy and direction and in a highly correlated state.
This feature has been shown in the studies of atomic hydrogen
by Brauner et al. [66] and measured experimentally in H2 by
Laricchia and co-workers [28,65].

To capture simply the above three characteristics we pro-
pose a model consisting of an exponentially decaying function
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ghigh(Q) to represent the high-impact-energy ionization and a
rational polynomial (sometimes called the Cauchy or Lorentz
distribution) glow(Q) centered around equal energy sharing to
represent the near-threshold ionization, i.e.,

ghigh(Q) = Ahigh exp(βhighQ), (11)

glow(Q) = Alow
[
β2

low + (Q − 0.5)2
]−1

, (12)

where Q is the fraction of the available energy, Ahigh and
Alow are normalization constants, and βhigh and βlow are
free parameters to be fitted. An energy-fraction-partitioning
function that depends only on the impact energy and Q can
then be constructed as

g(U ′,Q) = w(U ′)ghigh(Q) + (1 − w(U ′))glow(Q), (13)

where w(U ′) is chosen as a hyperbolic tangent function to
transition smoothly between ghigh and glow, i.e.,

w(U ′) = 1

2

[
1 + tanh

(
γ

U ′ − UI

q
− δ

)]
, (14)

where q is the elementary charge and γ and δ are free param-
eters that control where and how sharp the transition is. The
relationship between the energy-fraction-partitioning function
g(U ′,Q) and the energy-partitioning function P (U,U ′) used
in Eqs. (6) and (A7) is given simply by

g(U ′,Q)Q = P (U,U ′)U.

In the following sections we investigate a test model with
reasonable values for the free parameters that can serve as a
future benchmark model and then fit the energy-partitioning
model to real experimental H2 data.

1. Test model

In this section we investigate the effect that the energy-
partitioning model (11)–(14) has on positron transport for a
range of reduced electric-field strengths. The parameters for
the energy-partitioning function are

βhigh = 10, βlow = 0.05,

γ = 0.05, δ = 3.5, (15)

with the same cross sections, neutral temperature, and mass
as model (10). The energy-partition function for model (15) is
displayed in Fig. 3.

Transport properties calculated via kinetic theory and
Monte Carlo are shown in Table III. The kinetic theory and
Monte Carlo results agree to within 0.4%. Also included
in the table for 800 and 5000 Td are the swarm properties
assuming the energy partitioning was replaced by only glow

or ghigh, respectively. At 800 Td, the swarm properties for
the full energy-partitioning model are close to that which
results from the inclusion of only glow, which indicates that
the distribution is generally sampling the even-energy-sharing
part of the full energy-partitioning distribution. At the higher
field of 4000 Td the swarm properties are now close to those
that come from allowing only ghigh to have an effect. As the
field has increased, the distribution has shifted from sampling
mostly the even-sharing region to the region that is heavily
biased towards the positron getting large amounts of available
energy.

FIG. 3. (Color online) Variation of the energy-fraction-partition
function with impact energy, relative to the ionization threshold, and
energy-sharing fraction Q for the parameters in (15).

2. Model for positron-impact ionization in H2

Laricchia and co-workers [28,65] have measured exper-
imentally the energy sharing of postionization species for
PII for a specific impact energy and angle. Their results for
ionization by a 100-eV positron, where both the positron and
electron emerge at the same angle of 0◦, are included in Fig. 4.
It is evident that there is a bias towards the positron getting
all or large amounts of the available energy, with a secondary
peak close to equal energy sharing due to electron-positron
correlation effects. Our model predicts that this peak should
occur at exactly Q = 0.5, but experiments show that there
is a slight energy-sharing asymmetry in positron ionization
such that the peak actually occurs at Q > 0.5 [65]. A more
sophisticated energy-partitioning model will need to take
this effect into account. We have performed a nonlinear
least-squares calculation to fit the free parameters of model
(11)–(14) to the experimental data, which were determined to

TABLE III. Comparison of average ionization rate αion/n0, mean
energies ε, and flux drift velocities W for PII for model (15).
Columns labeled “Current” correspond to the current kinetic theory
calculations and columns labeled “MC” are the results of Monte Carlo
simulation.

αion/n0 ε W

E/n0 (10−15 m3 s−1) (eV) (105 ms−1)

(Td) Current MC Current MC Current MC

800 10.92 10.90 14.40 14.37 4.810 4.814
800a 10.86 10.85 14.35 14.32 4.816 4.820
800b 12.48 12.37 15.82 15.70 4.555 4.585
1600 26.29 26.26 34.12 34.04 6.331 6.348
2400 40.97 40.88 65.56 65.42 6.910 6.932
3200 53.97 53.85 104.1 103.9 7.201 7.229
4000 64.95 64.90 144.8 145.0 7.491 7.517
4000a 49.18 49.11 86.49 86.52 9.509 9.527
4000b 66.96 66.64 149.5 149.2 7.150 7.178

aw(U ) = 0.
bw(U ) = 1.
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FIG. 4. (Color online) Differential PII cross section for an impact
energy of 100 eV, as a function of the energy-sharing fraction Q. Large
(red) squares are the experimental data of Kover and Laricchia [28]
for the triply differential cross section for an impact energy of 100 eV
and ejection angle of 0◦. The model fit has been calculated with the
parameters in (16) and by assuming that the triply differential cross
section is the same at all ejection angles.

be

βhigh = 5.88, βlow = 0.0468,

γ = 0.0584, δ = 3.45. (16)

The fitted profile is shown in Fig. 4 and qualitatively repro-
duces the main features of the experiment. It should be noted
that at the 0◦ scattering angle the secondary peak is particularly
dominant and if one were to average the triple-differential cross
section over all angles, a similar form with a reduced secondary
peak would result. Due to the lack of experimental data at a
variety of angles, we will assume that the angle-integrated
cross section has the exact same shape as the 0◦ angle cross
section for the purpose of this paper, which will have the
effect of exaggerating the equal-energy-sharing part of the
full energy-sharing distribution. The parameters in Eq. (16)
have been chosen to ensure a smooth transition between glow

and ghigh while ensuring that the relative weights give the
fit to experiment for an impact energy of 100 eV. The full
three-dimensional energy-sharing distribution is qualitatively
similar to Fig. 3.

C. Positrons in molecular hydrogen

In the previous section, a model for the postionization
energy sharing for PII from H2 was proposed. In this section,
the effect of the energy sharing on transport properties is
investigated for PII in rarefied H2. The set of H2 cross sections
employed is that compiled in [4,26] and using the elastic cross
section of [67] calculated with a convergent-close-coupling
formalism [68] up to 1000 eV, extrapolating where necessary
(see Fig. 5). It is clear that the ionization process, which
turns on at 15.4 eV is particularly important and dominates
at energies above 50 eV.

In order to assess the importance of energy partitioning on
ionization we investigate the time dependence of the mean
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FIG. 5. (Color online) Cross section set for positron scattering in
H2. References are given in the text.

energy for a source of positrons in H2 gas at 293 K, as they
relax to thermal equilibrium in the absence of an electric field.
The source distribution is chosen to be uniform in velocity
space up to the 1000-eV cutoff, which is equivalent to an
initial mean energy of 600 eV. The thermalization profiles for
the energy-partitioning model (16) and using the PII collision
operator with Q = 0.5 (equal energy sharing) and Q = 1
(standard excitation form) are shown in Fig. 6. There are
two distinct regions of rapid relaxation, one due to ionization
at high energies and one due to the vibrational modes at
lower energies. The first occurs on time scales of between
0.1 and 2 ns amagat and the second at about 5 ns amagat,
which shows that the relaxation due to inelastic collisions
is very rapid. While in the ionization-dominated region, the
three profiles show significant differences in mean energy
of up to an order of magnitude. The profile corresponding
to Q = 1.0 has the highest mean energy since the positron
loses the least amount of energy during an ionization collision
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FIG. 6. (Color online) Mean energy temporal relaxation of a
positron swarm in H2 at 293 K. The initial source distribution is
uniform in speed space up to 1000 eV. The H2 model ionization
parameters are given in Eq. (16) and are compared with constant
energy-sharing fractions of Q = 0.5 and 1.0.
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in that limit. It takes significantly longer to relax until the
positron energies fall below the ionization region and thus
they will experience more ionization collisions. The Q = 0.5
profile shows the lowest mean energy since the ejected electron
removes large amounts of energy from the swarm and exits
the ionization region quickest. The real H2 model profile
sits between the even-energy-sharing and standard excitation
profiles as expected, since it is essentially a mixture of the
two. At lower energies, once ionization collisions become
insignificant, all three energy-partitioning profiles coalesce,
resulting in essentially the same total thermalization times.

Although the total thermalization time is essentially in-
sensitive to the form of the ionization energy partitioning, the
large differences in mean energies in the ionization-dominated
region can have other important effects. In a space-dependent
situation, the higher mean energies can allow the positron to
travel larger distances during thermalization. This is important
to PET simulations since the resolution of PET images
is dependent on the distances traveled between positron
emission and annihilation [6]. Similarly, the higher the mean
energy, the longer the positron swarm can significantly sample
the ionization cross section and hence the more secondary
electrons that are created via PII. It is the secondary electrons
created in the human body during PET scans that can cause
DNA damage [7–10]. Furthermore, the exact energy profile of
the secondary electrons will be dependent on the form of the
PII energy partitioning.

VI. CONCLUSION

Ionization by positron impact is a fundamentally different
process than ionization by electron impact. Applications such
as PET demand increasingly accurate models for positron
transport, so it is important to be able to describe the ionization
process in detail. To this end, a kinetic theory model with a
general PII collision operator has been developed. The key
feature of the ionization collision operator is the energy-
partition function, which controls how the available energy
is shared between the postcollision constituents.

The kinetic theory results were compared against a Monte
Carlo simulation for a simple test model (10), which may
serve as a benchmark for ionization. The transport properties
calculated differed between the two approaches by less than
0.6% over a range of reduced electric fields and available
energy fractions, which is within their respective uncertainties.
The sensitivity of the transport properties to the energy-sharing
fraction Q for PII was shown to be significant and much greater
than that of EII. Thus large errors can result in real-world
applications if PII is not treated carefully.

A simple energy-partition function was developed to
capture qualitatively the underlying physics of PII. At high
impact energies, the scattered positron leaves the collision
with almost all of the available energy, while at near-threshold
impact energies the Wannier theory [61] suggests that both the
scattered positron and ejected electron share approximately
half of the available energy. In reality, there is a slight energy-
sharing asymmetry in near-threshold positron ionization [65]
and a more sophisticated energy-partitioning model will need
to take this asymmetry into account. The model parameters

were fit to the experimental results of Kover and Laricchia
[28] for positrons in H2 with good qualitative agreement.

Using the H2 energy-partitioning function constructed
herein, we investigated the temporal relaxation of a positron
swarm from a high-energy source (600 eV) to thermalization
at room temperature and compared the equal-energy-sharing
model with the common approach of treating the PII as
a standard excitation process. In the ionization-dominated
region there can be more than an order of magnitude in
difference in the mean energy profiles and hence the choice of
energy-partition function has a significant effect on the number
of ionization collisions and the energy distribution of the
secondary electrons created, which is particularly important
for radiation damage modeling [9]. Our modeling also suggests
that the spatial relaxation will be sensitive to the energy
partitioning, which is a topic to be further investigated.
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APPENDIX A: DERIVATION OF POSITRON-IMPACT
IONIZATION OPERATOR

The case of EII has been treated by Ness [20] and we
follow this work closely to derive the PII collision operator. For
simplicity, we consider one ionization process with a neutral
in the ground state, but the generalization is straightforward.
To derive the collision operator we consider the scattering of
positrons into and out of an element of phase space drdv.

Let us consider a beam of positrons incident upon the
background neutrals that are at rest. The flux of incident
positrons I in drdv is

I = vf (r,v,t)dv.

If σ ion(v) is the total ionization cross section for an incoming
positron of speed v, then the number of ionization collisions
in drdv per unit time per neutral is

Iσ ion(v) = vf (r,v,t)σ ion(v)dv

and hence the total rate of positrons scattered out of the element
drdv for n0 neutral particles due to ionization is

J ion
out (f )drdv = n0vσ ion(v)f (r,v,t)drdv. (A1)

In EII, either the primary or ejected electrons (which are
indistinguishable) from an ionization event somewhere else in
phase space may be scattered into the element drdv. Since
one can distinguish between electrons and positrons, the PII
equivalent is simpler. Let us consider a different element of
phase space with the same configuration space location but
different velocity space location, i.e., drdv′. Similar to (A1),
the total number of PII in drdv′ per unit time is

n0v
′σ ion(v′)f (r,v′,t)drdv′. (A2)
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The momentum postionization is shared between the scattered
positron and the ejected electron. We define a quantity B(v,v′)
such that B(v,v′)dv is the probability of the positron having a
velocity between v and v + dv after ionization, given that the
incident positron has velocity v′. Assuming the neutral particle
remains a bystander at rest during the process (to zeroth order
in the mass ratio m/m0), then by conservation of momentum

v′ = v + v̄,

where v̄ is the velocity of the ejected electron. It follows from
Eq. (A2) and the definition of B(v,v′) that the number of

positrons that enter drdv per unit time due to an ionization
event in drdv′ is

n0v
′σ ion(v′)f (r,v′,t)B(v,v′)dvdrdv′.

Integrating over all possible incident velocities thus yields the
total rate of positrons scattered into drdv due to PII, i.e.,

J ion
into(f )drdv = n0drdv

∫
v′σ ion(v′)f (r,v′,t)B(v,v′)dv′.

The total PII collision operator is then the difference in the
rates of positrons scattered into and out of the element drdv,
i.e., J ion = J ion

out − J ion
into,

J ion(f ) = n0vσ ion(v)f (r,v,t) − n0

∫
v′σ ion(v′)B(v,v′)f (r,v′,t)dv′. (A3)

If we assume central forces, then the scattering cross section and partition function are dependent only on the magnitudes of
the pre- and postcollision velocities and the angle between them, i.e., v, v′, and v̂ · v̂′. We may then further define a differential
scattering cross section for ionization σ ion(v,v′; v̂·v̂′) such that σ ion(v,v′; v̂ · v̂′)dv is the number of positrons scattered into the
range dv about v due to incident electrons of velocity v′ divided by incident flux,

σ ion(v,v′; v̂ · v̂′)dv = σ ion(v′)B(v,v′; v̂ · v̂′)dv. (A4)

The partition function satisfies a normalization condition so that

σ ion(v′) =
∫

σ ion(v,v′; v̂ · v̂′)dv.

Substituting Eq. (A4) into Eq. (A3) gives the PII collision operator

J ion(f ) = n0vσ ion(v)f (v) − n0

∫
v′σ ion(v,v′; v̂ · v̂′)f (v′)dv′.

This operator is particle-number conserving, i.e.,∫
J ion(f )dv =

∫
n0vσ ion(v)f (v)dv − n0

∫∫
v′σ ion(v,v′; v̂ · v̂′)f (v′)dv′dv

= n0

∫
vσ ion(v)f (v)dv − n0

∫
v′f (v′)dv′

∫
σ ion(v,v′; v̂ · v̂′)dv

= n0

∫
vσ ion(v)f (v)dv − n0

∫
v′σ ion(v′)f (v′)dv′

= 0,

as required.

1. Legendre decomposition

For central scattering forces the partition function can be decomposed in terms of Legendre polynomials, i.e.,

Bl(v,v′) = 2π

∫ 1

−1
B(v,v′)Pl(μ)dμ,

where μ = v̂ · v̂′. For isotropic scattering, Bl(v,v′) = 0 for l � 1. Multiplying Eq. (A3) by Pl (cos χ ) and integrating over all
angles leads to

J ion
l (fl) = n0vσ ion(v)fl(v) −

{
n0

∫ ∞
0 v′σ ion(v′)B0(v,v′)f0(v′)v′2dv′, l = 0

0, l � 1.
(A5)

We now seek to represent Eq. (A5) in terms of energy rather than speed, i.e., U = 1
2mv2. The probability of a positron having a

speed in the range v + dv after ionization for an incident positron of speed v′ is

v2dv

∫
B(v,v′; v̂ · v̂′)dv̂ = B(v,v′)v2dv ≡ P (U,U ′)dU, (A6)
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TABLE IV. Comparison of average ionization rate αion/n0, mean energies ε, flux drift velocities Wflux, and bulk drift velocities Wbulk for EII
for model (10) for different reduced fields E/n0 and energy-sharing fractions Q. The first column lists the current kinetic theory calculations,
the second column lists the results of our Monte Carlo simulations, and the third includes the kinetic theory calculations of Ness and Robson
[41]. The values enclosed in square brackets have been performed using a Burnett function expansion similar to that of Ness and Robson.
A Q entry of AFE corresponds to all fractions equiprobable. Note that there was an error in the AFE case in the original Ness and Robson
work [41].

αion/n0 ε Wflux Wbulk

E/n0 (10−15 m3 s−1) (eV) (105 ms−1) (105 ms−1)

(Td) Q Current MC [41] Current MC [41] Current [41] Current MC [41]

300 0 1.620 1.61 6.739 6.73 2.780 3.236 3.23
1/4 1.598 1.611 1.60 6.737 6.741 6.73 2.752 2.754 3.200 3.204 3.20
1/3 1.595 1.596 1.60 6.739 6.741 6.73 2.748 2.749 3.194 3.196 3.20
1/2 1.591 1.589 1.59 6.742 6.744 6.74 2.744 2.745 3.189 3.192 3.19
AFE 1.600 1.606 1.51 6.733 6.746 6.75 2.756 2.755 3.198 3.206 3.19

[1.60] [6.73] [3.21]

500 0 4.643 4.68 9.009 8.99 3.920 4.752 4.74
1/4 4.504 4.515 4.51 9.007 9.007 9.01 3.835 3.839 4.632 4.644 4.63
1/3 4.482 4.492 4.49 9.013 9.023 9.01 3.823 3.822 4.617 4.617 4.62
1/2 4.464 4.452 4.47 9.017 9.028 9.02 3.814 3.816 4.604 4.606 4.61
AFE 4.511 4.525 4.37 9.000 9.007 9.04 3.846 3.843 4.635 4.647 4.62

[4.52] [9.00] [4.64]

800 0 9.736 9.62 13.17 13.21 5.112 6.284 6.25
1/4 9.413 9.422 9.41 13.01 13.02 13.01 4.953 4.957 6.108 6.118 6.11
1/3 9.357 9.372 9.37 12.99 12.99 12.99 4.933 4.936 6.090 6.092 6.09
1/2 9.320 9.339 9.33 12.97 12.98 12.97 4.919 4.922 6.079 6.095 6.08
AFE 9.461 9.445 9.20 13.03 13.02 13.09 4.968 4.976 6.137 6.137 6.12

[9.46] [13.02] [6.13]

where U and U ′ are the post- and precollision positron energies respectively, and now the right-hand-side term of Eq. (A6)
represents the probability of a positron having an energy in the range U + dU after ionization for an incident positron of U ′. The
energy-partitioning function P (U,U ′) has the following properties:

P (U,U ′) = 0, U ′ < U + UI∫ U ′−UI

0
P (U,U ′)dU = 1, U ′ � U + UI .

Finally, we can represent Eq. (A5) in terms of energy and the energy-partition function P (U,U ′),

J ion
l (fl) = n0

√
2U

m
σ ion(U )fl(U ) −

{
n0

√
2

mU

∫ ∞
0 U ′σ ion(U ′)P (U,U ′)f0(U ′)dU ′, l = 0

0, l � 1.
(A7)

2. Modified Frost-Phelps operator

If the scattered positron leaves the collision with an exact
fraction Q of the available energy U ′ − UI , where UI is the
threshold energy, then the energy-partition function has the
form

P (U,U ′) = δ(U − Q(U ′ − UI )) = 1

Q
δ

(
U ′ −

(
U

Q
+ UI

))

and the integral in Eq. (A7) reduces to

J ion
l (fl) = ν ion(U )fl(U )

−
{

1
Q

(U/Q+UI )1/2

U 1/2 ν ion
(
U
Q

+ UI

)
f0

(
U
Q

+ UI

)
, l = 0

0, l � 1,

(A8)

where ν ion(U ) = n0
√

2U/mσ ion(U ) is the ionization collision
frequency. Equation (A8) can be considered a modified Frost-
Phelps operator. A similar result for EII was given in [69]. In
the case where the positron gets all of the available energy,
i.e., Q = 1, Eq. (A8) reduces to the standard Frost-Phelps
operator (5), as required. Clearly, Eq. (A8) breaks down when
Q = 0.

APPENDIX B: ELECTRON-IMPACT
IONIZATION BENCHMARKS

Transport coefficients for EII are given in Table IV, in
which they are compared to the results of Ness and Robson
[41]. Due to the indistinguishability of postcollision particles,
the results for Q and 1 − Q with respect to EII are identical

052710-11



BOYLE, TATTERSALL, COCKS, DUJKO, AND WHITE PHYSICAL REVIEW A 91, 052710 (2015)

and so we consider only Q < 0.5. The modified Frost-Phelps
form of the collision operator (A8) breaks down when Q = 0,
hence there is no value given in Table IV corresponding to
Q = 0 and 1 (if one of the electrons gets the fraction Q = 1
of the available energy, then the other receives Q = 0 and
the same problem is encountered). The EII calculations using
our kinetic theory model agree closely with both our Monte
Carlo simulations and the kinetic theory approach in [41].
There are generally differences of less than 0.6% and 0.3%
in the ionization rate and mean energy, respectively, between
the present kinetic theory results and both the Monte Carlo
simulation and [20] over the whole range of reduced fields
and energy-sharing fractions, except for the AFE case. An
error is present in the AFE calculations of [20]. Values for

the AFE case have been recalculated using a Burnett function
[70] expansion similar to that of Ness and Robson (which are
included in Table IV enclosed within square brackets), which
agree closely with our calculations. In Ref. [20], the bulk drift
velocities are given, which must not be confused with the flux
drift velocity [71–73]. The two types of transport coefficients
can be significantly different when there are nonconservative
effects. Following [73] we have solved the first level of
spatially inhomogeneous equations, which come from a den-
sity gradient expansion [70], in addition to Eq. (3) to determine
the bulk drift velocity. Both the flux and bulk drift velocities
generally agree to within 0.3% between the three calculation
methods over the range of fields and energy-sharing fractions
considered.
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