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Abstract
In this work we present a comparative study of fluid modeling methods in order to determine a
recommended procedure to describe electron transport and streamer propagation across gas–
liquid interfacial regions. A test case of a cryogenic argon gas–liquid interface is simulated in
this work to demonstrate applicability of the recommended procedures. The recommended non-
local four moment model takes into consideration the density variation across the interface, and
its associated impact on the transport properties/collisional transfer rates, as well as the spatial
variation of the dielectric permittivity and the conduction band through the liquid binding
energy, V0. The study examines the impacts of various assumptions involved in the modeling of
electron transport across the plasma-liquid interface, by comparing a local field (drift-diffusion)
approximation with the non-local (four moment) model, as well as a step function change in the
density to actual spatially dependent density variations across the interface. We provide
recommendations on necessary physical considerations needed to adequately model transport
phenomena across gas–liquid interfaces.

Keywords: electron transport, gas liquid interface, fluid model, streamer, ionization front, low
temperature plasma

1. Introduction

Over the last century, there has been much effort applied to
furthering the understanding of plasma discharges in gases,
and developing advanced predictive models for both indus-
trial applications, including microelectronic circuit manu-
facture [1–3], and for understanding complex natural
phenomena such as lightning [4–6]. In addition to gas dis-
charges, there is increasing interest in modeling discharges in
liquids [7, 8] to better understand processes such as under-
water arc welding and plasma medicine [9–12]. At the nexus
of these two extremes is the gas–liquid interface, which has
been of particular interest to the plasma community due to
emerging applications such as plasma medicine. While
advanced models for gas discharges, and recently liquid

discharges, are available [13–15] we believe there is an
opportunity to unify the two extremes in order to model
electron transport as a continuous process between gas and
liquid. In this study we present the framework, and applica-
tion, of such a model to electron transport across an argon
gas–liquid interface.

Argon was chosen as the background medium for this
study primarily because much work has already been done to
understand electron transport in both gaseous and, recently,
liquid argon [16, 17] and so the input data required for fluid
models was readily available. In addition to the availability of
input data, the study of electron transport over argon gas–
liquid interfaces is directly applicable to the field of dual-
phase particle detectors used to detect dark matter or neutrino
scattering events [18–22]. In these experiments a very small
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reduced electric field » - -–10 102 1 Td, where
= -1 Td 10 V m21 2, is applied to a large volume of cryogenic

liquid argon, or xenon, to assist in extracting electrons pro-
duced by ionization events in the liquid [22]. These electrons
are extracted through the surface of the liquid, where they
transport across an interface into a vapor region atop the
liquid. Once in the gas phase, the current produced by the
extracted electrons is amplified by multiplier grids providing
stronger reduced electric fields (≈102 Td) to generate ava-
lanche events. We identify this application as one that could
benefit from a modeling framework that could provide a
continuous simulation of electron transport out of the liquid,
across the interface, and into the gas phase.

Conversely, in terms of plasma transport from gas phase
to liquid, a major application is plasma medicine and plasma
treatment of liquids. The importance of electron transfer and
electron induced chemistry at these plasma-liquid interfaces
has been well established in recent years [11, 12, 23]. Despite
this importance, it has been noted that radicals, ions, and
photons are primarily considered when studying plasma-
liquid reactions with little attention given to electron inter-
actions with the liquid phase [11]. We note that this present
study focuses on electron transport in argon, a non-polar
atomic fluid that is relatively simple when compared to
complex biological tissue or even water. Despite this, we
believe the methodology and framework presented in this
study presents an important first step towards simulating more
complicated plasma-liquid interactions.

In order to model charged particle transport between gas
and liquid media, a range of methods have been used in the
literature. Some studies have modeled charged particle
transport in gases and liquids as two separate models, each
including distinctly different physics, coupled by matching
conditions at the boundary [9, 24–27]. Alternatively, liquid
interface effects have been simply treated as a density and
energy absorption or emission boundary condition applied to
a single gas phase model [10, 24, 27]. Finally, we note that
there is an obvious temptation to simply use existing gas
phase transport models and input data, and ‘scale-up’ the
input data to liquid neutral densities in order to simulate
transport in liquids [24, 28]. The errors in this assumption
have been addressed in previous studies [16, 17, 29, 30], and
in this study we demonstrate how to better accommodate
transport in liquids through accurate input data.

The aims of this comparative study were to extend a
recently proposed and benchmarked higher order four
moment fluid model [13], as well as drift diffusion fluid
models [4, 14, 15, 31, 32], to simulate electron transport
across gas–liquid interfaces and formulate a recommendation
for best practice future interfacial modeling. Interfacial con-
siderations will be addressed by comparing the types of fluid
model used but also through comparison of functional form
assumptions for neutral density, n0, variation of the interface.
Inclusion of gas–liquid interface effects, such as variation of
delocalized electron energy level, V0, and dielectric permit-
tivity, ε, into the proposed modeling framework will also be
addressed.

We begin this study by briefly reviewing fluid models
used for electron transport in gases and liquids in section 2
where distinctions between gas and liquid phase electron
transport are highlighted. In section 3 a continuous fluid
model of electron transport between gas and liquid media is
proposed, with modifications to include some interfacial
effects discussed. The results of the proposed interfacial fluid
models are detailed in section 4, with key advantages and
disadvantages of each model highlighted, with details of the
numerical solution method employed in this study available in
appendix B. Finally, in section 5, key recommendations
drawn from the results of this study are made, with a focus on
how to best accommodate interfacial electron transport in
future fluid models.

2. Fluid modeling in gases and liquids

2.1. Fluid models for electron transport

Fluid models have been used to describe plasma phenomena
such as streamers [4, 15, 33], industrial plasmas used in
fabricating microelectronics [2, 34], and more recently bio-
medical [23, 24] applications of discharges. Fluid models are
essentially continuity equations of velocity-averaged, spa-
tially varying macroscopic variables, such as particle density,
momentum, and energy [4, 13–15, 31] derived via velocity
moments of the Boltzmann equation [13, 35]. This gives a
relatively straightforward macroscopic model that provides a
good description of the discharge dynamics, without the
computational overhead of comprehensive particle based
methods. Error bounds of fluid models are considered to be
within 10%–20% [36], and are suited to providing a ‘line-of-
best-fit’ description of charged particle properties, especially
when non-trivial electron velocity distributions are pre-
sent [13].

Advanced solution techniques, like partice-in-cell, Monte
Carlo (MC) [37–39], or solutions of the Boltzmann kinetic
equation [2, 4, 32, 36, 40, 41], directly yield an electron
velocity distribution function (EVDF) as a function of space,
velocity, and time ( )f tr v, , . If electron velocity space
dynamics are of importance then a particle based method
should be used, in lieu of a fluid model as demonstrated in
previous studies [13].

In this study we have selected three approaches to fluid
modeling, and examined the results and subsequent appro-
priateness of each model towards describing interfacial elec-
tron transport between gas and liquid densities of liquid
argon. Here we present a brief overview of the selected fluid
models, with the finer details of the origins and formulations
of the models deferred to previous comprehensive studies on
fluid modeling specifically [4, 13–15, 31, 32].

2.1.1. Drift diffusion models. The most popular approach to
fluid modeling of electron transport in gaseous plasmas has
traditionally been a hydrodynamic drift diffusion continuity
equation (1) of the electron density, ò=( ) ( )n z t f tr v v, , , de .
The electron flux is obtained by assuming a steady-state of the
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momentum balance equation, and that the field-driven
component of electron energy is much greater than the
thermal contribution [15, 32, 36, 42]. The generalized one-
dimensional continuity equation is

n n n
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where input data terms are the drift velocity, W, diffusion
coefficient, D, and ionization/attachment/electron–ion
recombination collision rates, νI, νa, and νr. All input data
are assumed to be functions of the local instantaneous reduced
electric field, E

n0
, where E is the instantaneous electric field

and n0 is the neutral atom density.
Interpolation of steady state transport coefficients and

collision rates is used to provide values for these input
parameters. The steady state values are obtained from the
steady state EVDF which can be found via MC simulations
[37, 43] or a multi-term kinetic solution of the Boltzmann
equation [17, 30, 35, 44], given appropriate microscopic
inputs of electron scattering cross sections for the target gas
(see section 2.2).

In addition to the electron continuity equation (1),
continuity equations for the creation of positive, n+, (via
ionization reactions) and negative, n−, (via attachment
reactions) ion densities are used

n n n
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where ion transport has been neglected over the transient time
scales considered in this study for ionization front propaga-
tion [4, 15] owing to the significantly reduced mobility and
diffusion of molecular ions [45, 46].

Alongside the continuity equations for charged species
densities (1), (2), the space charge effects on the electric field,
E, must be computed to determine any screening effects due
to the creation of electrons and ions. To accommodate a
spatially varying dielectric permittivity in an inhomogeneous,
isotropic material we self-consistently solve

e e
¶
¶

= + -- +( ( ) ) ( ) ( )
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¶
¶

( )E
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, 4

where e is the elementary charge, e ( )zr and ε0 are the fluid’s
relative and the vacuum dielectric permittivities respectively.
Boundary conditions are supplied on the electric potential are
j =( )t0, 0 and j j=( )L t, applied where japplied is a fixed
voltage to produce the desired applied electric field in the
absence of space-charge contributions.

While the model described by (1)–(4) has been
traditionally used to describe charged particle transport within
gases, the functional form of the model has been demon-
strated to be applicable to describe transport within liquid
discharges assuming appropriate modifications to the input
data are made [13]. As the neutral density increases the
single-scattering assumption used for gas transport breaks
down as the effects of elastic coherent scattering and electron

interaction potential screening and polarization become
important [17, 29, 30]. These effects are significant when
the electron de Broglie wavelength is comparable to the

average background particle spacing, l ~ -n0

1
3 , which

corresponds to low-energy electron scattering or scattering
in very dense liquids.

Comprehensive formulations are available on how to
modify gas phase electron interaction cross sections of non-
polar atomic targets, such as noble liquids, to account for
coherent scattering [30], and later the interaction potential
screening and polarization [16, 29]. These structure modifica-
tions were implemented through a density dependent
momentum transfer cross section (MTCS)

òp c c c cS = S -
p

( ) ( )[ ] ( )v n v n, 2 , , 1 cos sin d , 5m 0
0

0

where v is the incoming electron speed, χ is the electron
scattering angle off the target atom, and cS( )v n, , 0 is an
effective differential cross section including coherent scatter-
ing and interaction potential modifications via

c s cS = D( ) ˜ ( ) ( ) ( )v n v S k n, , , ; , 60 0

where s c˜ ( )v, is the liquid phase differential cross section
containing any screening and polarization effects [16, 29],
D( )S k n; 0 is the static structure factor and


D = ck sinm v2

2
e is

the wave number proportional to the change in momentum
[30], where me is the electron mass and ÿ is reduced Planck’s
constant. The static structure factor is a nonlinear function of
n0 of the target material, and may be calculated from
molecular simulations, measured via experiments
[29, 30, 37], or derived analytically through solutions of
pair-correlation functions as per the Verlet–Weis corrected
Percus–Yevick structure factor [47]. For detailed discussion
on the static structure factor, and its implementation in liquid
scattering, readers are directed to previous studies
[29, 30, 37].

These fundamental liquid transport studies demonstrated
substantially different cross sections for liquid transport at
low incoming electron energies compared to transport in gas
phase, particularly in reduced momentum transfer from
preferential forward scattering [16, 29]. It was shown that,
while energy transfer was impacted by modifications of the
cross section due to potential screening, energy transfer was
not explicitly modified by including coherent elastic scatter-
ing effects [30, 31] and energy transfer due to inelastic
excitation collisions is considered localized to the immediate
target atom. In summary, the functional form of the balance
equations used to model electron transport is the same
whether transport is in gas or liquid. However, explicit
modifications to include liquid phase physics must be
performed [17, 30] to obtain the appropriate cross sections
for computing electron transport data. If the correct cross
sections are used to generate input data for either gas or liquid
transport, then the drift diffusion model (1), (2) can then be
applied directly.

2.1.2. Higher order models. In addition to drift diffusion
fluid models, so called higher order fluid models have gained
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popularity for modeling charged particle transport in plasmas
[4, 13, 35, 48]. In these models, the hierarchy of velocity
moments of Boltzmann’s equation is not truncated at the
electron flux, but often extends to include four continuity
equations for electron density, ne, electron particle flux,

òG = á ñ = ( )n f tv r v v v, , de , electron mean energy density,

 ò= á ñ = ( )n n f t mvr v v, , de
1

2
2 , and electron energy flux,

 òxG = á ñ = ( )n f t mvr v v v, , de
1

2
2 , where á ñv , á ñ, and xá ñ

denote the electron average velocity, average energy, and
average energy flux. Following the formulation of a four
moment higher order model benchmarked in gas and liquid
transport [13], we employ the following generalized model
equations, in addition to the ion continuity equations (2)
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where input data is required via collision rates for ionization,
νI, attachment, νa, electron–ion recombination, νr, momentum
transfer, νm, energy transfer, Sò, energy flux transfer, νξ, and
higher order tensor product closure approximations, θm, and
θξ.

In this model, the higher order moments, q = á ñv vm z z and

q =x mv v vz z
1

2
2 , are closed by evaluation over the equili-

brium steady-state EVDF used to also evaluate collision input
rates, similar to that of the input data described in
section 2.1.1. While we choose to specify generic expectation
value expressions for θm and θξ, to facilitate computation via
any particle based method, we note that under the formalism
of a three-term decomposition of the EVDF these expressions
yield the exact results presented by Becker and Loffhagen
[35]. The virtues of this closure technique were demonstrated
previously [13] to provide a parameter free, physically sound
alternative to other closure assumptions, such as non-physical
heat flux assumptions or parameterization in terms of á ñ,
previously used in literature [4, 13, 48].

The same process for generating a look-up table of steady
state input data via an equilibrium EVDF, described in
section 2.1.1, is used for this higher order model also. Higher
order models differ to drift-diffusion models because more
information of electron dynamics is natively included, so that
phenomena such as temporal and spatial non-locality can be
resolved [15]. In lieu of using E

n0
to determine input data as

per the drift-diffusion model, here the electron mean energy,
á ñ, is used as the interpolating variable to determine input
data at each point in space during the simulation [49].

As discussed in section 2.1.1, for a local field dependent
model, a higher order model can also be equally applicable in

gas or liquid, assuming the correct modifications have been
made to generate accurate input data to account for liquid
effects. For further details on the higher order moment model
used in this study we refer the reader to a recent formulation
and benchmarking study [13].

2.2. Transport data in gaseous and liquid argon

Following the generalized fluid models presented in the pre-
vious section, we present the electron scattering cross sections
for gaseous and liquid argon, in addition to the resulting
argon transport and collision data that serves as input to the
fluid models presented in section 2.1. It should be noted that
this study assumes that ion transport is neglected over the
timescales studied [45, 46], and that, for simplicity, singly
ionized molecular argon ions are only considered in this
study. Furthermore, electron–ion recombination and the for-
mation of excited states are neglected in this study as it was
found that at the applied reduced fields used in this study, for
the electron and ion densities in liquid argon, the resulting
recombination rates [50–54] were significant orders of mag-
nitude less than the other collisional processes considered in
this work.

2.2.1. Electron scattering cross sections. As this study
involves both gas and liquid extremes of argon we require
two sets of electron scattering cross sections in order to
generate input data for fluid models. The gaseous argon
electron scattering cross sections of Hayashi [55, 56] were
used as input to a multi-term solution of the Boltzmann
equation [16, 17, 31] to generate input data for this study. The
set comprising of an elastic MTCS, twenty five inelastic
excitation cross sections, and an ionization cross section were
retrieved from the online database www.lxcat.net.

As recommended by recent studies of electron transport
and negative planar streamer fronts in atomic liquids [57, 58],
liquid argon cross sections were compiled from recent works
on accurate low-energy liquid cross sections, combined with
necessary modification of the gas phase Hayashi cross
sections for inelastic processes. To form the basis of the
MTCS scattering cross section, the low-energy (�10 eV)
MTCS for liquid argon proposed by Boyle et al [16] was
taken in order to include the effects of coherent scattering and
atomic potential screening which are critical for low-energy
electron scattering in dense liquids. At higher incoming
electron energies, where the liquid cross section converges to
the gas cross section, the gaseous argon MTCS of Hayashi
[55] was once again used. These two elastic scattering cross
sections were joined and smoothed at ∼10 eV to form a single
elastic scattering cross section.

As precise measurements, or calculations, of liquid phase
ionization cross sections do not exist for atomic argon, a
liquid argon ionization cross section was constructed by
modifying the gaseous argon ionization cross section as
detailed in [59–62]. The liquid argon ionization threshold
energy, Iliq, was computed by modifying the gaseous argon
threshold energy, Igas=15.68 eV, to account for dense liquid
effects. The known gaseous ionization cross section of
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Hayashi [55] was then translated to the new threshold energy
for liquid. The foundation and derivation of these modifica-
tions are detailed in [59], and the key result relevant to this
present study can be summarized by the expression

= + + ++ ( )I I P V E , 11liq gas 0 val

where P+ is the ion polarization energy of the positive ion
(P+ =−1.08 eV for argon [59]), V0 is the energy of the
delocalized electron level in the liquid i.e. the bottom of
conduction band (V0=−0.3 eV for the liquid argon density
used in this study [60]), and Eval is the change in energy of
valence bands due to condensing the gas (Eval=0.1 eV for
argon [59]). This process yields the ionization threshold
energy of Iliq=14.4 eV.

In order to account for excitations in the liquid state, the
set of inelastic atomic excitation cross sections of the Hayashi
database was slightly modified to form a set of excitation
cross sections for intermediate excitons in liquid argon
[57, 58]. This is informed by the work of Laporte et al [63],
which demonstrated that as dilute rare gases are compressed
to high, liquid densities the presence of atomic excitations is
replaced by excitations of intermediate excitons in the liquid
phase [63]. As these intermediate excitons have a unique
parentage, via the isolated atom’s excited states [64, 65], we
thus approximate the cross sections for intermediate exciton
excitations by cross sections of the corresponding atomic
excitations.

The threshold energies of the adopted excitation cross
sections are unmodified from the atomic excitations out of
necessity, because complete threshold energies for excitons in
liquid argon are not available in the literature, especially for
the optically forbidden transitions. This assumption is
supported by the fact that thresholds for known intermediate
excitons in liquid rare gases (argon, krypton and xenon) are

very close (within 5%) to the thresholds of atomic excita-
tions [63, 65].

Finally, the reflectivity spectra of solid argon reported by
Haensel et al [66] demonstrated that lines below 14.5 eV
correspond to discrete excitonic states, while lines above
14.5 eV correspond to continuous interband transitions. We
have therefore excluded the two atomic excitations which
have thresholds above 14.5 eV (being 14.71 and 15.2 eV) as
their energies are in the region of continuous band to band
transitions. The final sets of electron scattering cross sections
in both gaseous and liquid argon are shown in figure 1.

2.2.2. Fluid model input electron transport data. Using the
electron scattering cross sections for both gas and liquid argon
extremes (see figure 1) equilibrium electron transport data
was calculated to serve as input data for the fluid models used
in this study. A multi-term solution of the Boltzmann kinetic
equation [16, 17, 31] was used to calculate EVDFs over a
range of reduced electric field values at 85 K, a common
cryogenic temperature, near the triple point, used in argon
applications and experimental studies [51, 67–69]. These
velocity distribution functions were then used to calculate the
flux transport coefficients necessary for input to the drift-
diffusion fluid model (1). Plots of electron drift velocity,
longitudinal diffusion, and ionization collision rate, used as
input for (1), (2), are shown in figure 2; though not used as a
model input, a plot of the electron mean energy as a function
of reduced field is included to demonstrate key differences
between gas and liquid transport.

Reduced collision rates for input to the higher order fluid
model are directly computed from spatially homogeneous
steady-state EVDFs found via multi-term solution of the
Boltzmann equation [17], these rates are presented in figure 3
demonstrating the variation of collision rates for momentum

Figure 1. Gas and liquid argon electron scattering cross sections utilized in this study. Gas cross section data of Hayashi [55] via www.lxcat.
net. Liquid cross section data of Boyle et al [16] and necessary modifications of Hayashi set detailed in section 2.2.1.
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transfer νm/n0, energy flux transfer νξ/n0, lumped energy loss
Sò/n0, and ionization νI/n0.

3. Modeling at the gas–liquid interface

Following the brief review of fluid modeling methods and
associated input data for electrons in either gas or liquid
presented in section 2, we now discuss necessary interfacial
effects that should be considered when trying to model

electron transport between gas and liquid extrema as a con-
tinuous process. We consider four important factors of the
gas–liquid interface model: (i) functional form of the variation
in n0, (ii) variation of input data for fluid models across the
interface, (iii) variation of the delocalized electron energy
level, V0, across the interface, and (iv) variation of the relative
dielectric permittivity, εr, across the interface. In this study we
examine the effects of differing treatments of (i) the form of
the interface, as well as (ii) the type of input data used in the
models. The presence of spatially varying (iii) delocalized

Figure 2. Input transport data of electrons in argon for local-field dependent electron fluid models. Dashed lines denote gas transport, dotted
lines denote liquid transport. (Top-left) Drift velocity versus reduced field. (Top-right) Electron mean energy versus reduced field. (Bottom-
left) Longitudinal reduced diffusion coefficient versus reduced field. (Bottom-right) Reduced ionization collision rate versus reduced field.

Figure 3. Input collision rates of electrons in argon for mean energy dependent higher order fluid model. Dashed lines denote gas transport,
dotted lines denote liquid transport.
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electron energy level, V0, and (iv) relative dielectric permit-
tivity, εr, are assumed fixed properties in this study as they
present essential physics, induced by large atomic densities,
that cannot be ignored when simulating the gas–liquid
interface.

3.1. Density profile variations

In order to accurately model electron transport between a gas
phase plasma and a condensed liquid, the structure of the
interfacial region must be known. For this study, we assume
the existence of an equilibrium interfacial density profile
formed between gas and liquid phases for atomic fluids, as
outlined in figure 4. The existence of this interfacial profile in
non-polar atoms, such as argon and xenon, has been probed in
various molecular dynamics and MC studies [70–73]. These
simulations employ Lennard-Jones (LJ) potentials as an
approximation to the atomic interaction potentials between
each atom of noble liquid [70–73]. Key measurables from
these studies were equilibrium liquid and vapor densities,
surface tension, and interface layer thickness.

Of particular use in this study, is a commonly proposed
functional form describing the interfacial atomic density
variation via a hyperbolic tangent function [73, 74]

d
= + - -

-⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )

( )

n z n n n n
z z1

2

1

2
tanh

2
,

12

g l g l0
eq eq eq eq int

int

where ng
eq and nl

eq are the gas and liquid equilibrium den-
sities, zint is the center position of the interface, and δint is a
measure of the thickness of the interface, defined as the dis-
tance between 90% and 10% of the liquid density. From
previous studies conducted on the existence of noble liquid

interfaces, the value of δint is around 5σLJ, where
σLJ=0.34 nm is the atomic diameter [68, 70, 71, 73, 74],
while the liquid–vapor density ratios (nl

eq:ng
eq) were found to

vary from 200:1 up to 500:1, depending on the cut-off dis-
tance employed in the LJ potentials [71, 73, 74].

3.2. Fluid model input data for continuum models between gas
and liquid phases

With a well defined density configuration of the equilibrium
interface between gas and liquid argon extremes, we now
consider the effects of this density variation on the required
fluid model input data. One question that we wish to probe in
this study, is whether or not we must use n0 dependent input
data between gas and liquid density extremes, or if we can
simply use pure gas and liquid data either side of a defined
interface point, z0, akin to a step-function profile. One factor
to consider in answering this question is the electron-neutral
collisional mean free path

l
s

» ( )
n

1
, 13mfp

0

where n0 is some neutral background density and σ is an
electron scattering cross section. For gas, liquid, or inter-
mediate densities, a range of mean free paths can be calcu-
lated to determine if the collisional scattering dynamics and
any non-equilibrium behavior will impact transport in the
interfacial transition between gas and liquid. Typical liquid
argon densities are » -n 10 ml

eq 28 3 while the gas density at
the equilibrium interface used in this study is roughly 300
times smaller than the liquid, resulting in mean free paths for
electron scattering in liquid argon in the range 1–100 nm,
while the corresponding mean free path range in gaseous
argon is 0.3–30 μm. Since the equilibrium interfacial region

Figure 4. Equilibrium argon vapor–liquid interface as determined by molecular dynamics simulations [70, 71, 73]. The approximate length of
the full interface transition region as well as the 90%–10% parameter length, δint, used in this study are marked explicitly.
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in argon is on the order of nanometers we must consider n0
dependence in fluid model transport data in this interfacial
region.

We now appropriately label fluid models introduced in
section 2.1, and define explicitly whether n0 dependent input
data is used. Firstly, the simplest fluid model used in this
study is a local-field dependent drift-diffusion model (1), (2),
utilized with n0 dependent input data to allow for both gas-
eous and liquid background media. This dependence is
introduced by asserting the W, DL and νI input parameters of
(1), (2) are now functions of both the instantaneous reduced
electric field and neutral density across the interface,

( ) ( )f f n,E

n

E

n 0
0 0

. This model will henceforth be referred

to as the LFA model.
Finally, taking the higher order model presented in (7)–

(10) we recast the functional form of the input parameters
such that any input parameter dependent on electron mean
energy is now also a function of the neutral density
 á ñ  á ñ( ) ( )f f n, 0 . As this is a higher order four moment

model this model will henceforth be referred to as the 4MM
model. Input data requirements accounting for the density
variation for both the LFA and 4MM models are discussed
and presented in appendix A using the results of a recently
proposed and benchmarked study [75].

3.3. Space-charge field and spatially varying permittivity

Self-consistent solution of the electric field was performed via
solution of (3) and (4) where the functional form of the
spatially varying relative dielectric constant, e e= ( )zr r , was
specified using the same tanh function (12) used to modulate
n0, where liquid and gaseous argon constants were taken as
e = 1.504r

l and e = 1.000 5r
g respectively [76].

3.4. Accommodating spatial variation of V0 across the interface

As gas densities increase to liquid values, we need to also
consider the variation in the energy of the delocalized electron
level in the liquid, V0. This can be positive (neon, helium) or
negative (argon, xenon) and is largely a function of the
electron scattering length of the target atom [59, 60]. The
dependence of V0 on the neutral atomic density of argon, n0,
demonstrates an approximate linear roll-off from 0eV in gas
down to approximately −0.3 eV at the maximum liquid
density used in this study [59, 60]. Given a known equili-
brium ( )n z0 profile, and thus an equilibrium ( )V z0 , an effec-
tive electric field is found by differentiating ( )V z0 , and
combined with the electric field, E, computed via (3) to yield
the total electric field

= + ( )E E E . 14Vtotal 0

4. Results and discussion

Using the fluid models and input data presented in sections 2
and 3, we present results and discussion for two prototype

interfacial problems. Section 4.2 presents transient simula-
tions of an electron swarm propagating from liquid argon into
gaseous argon (left to right in this study’s frame of reference).
Brief results of an ionization front in gaseous argon pene-
trating into liquid argon (from right to left) are presented in
section 4.3. We believe it is most instructive to start investi-
gations with essentially swarm transport in the liquid phase
transitioning to gas phase, where fields and ionization rates
are low, before considering cases where space-charge field
considerations are important due to ionization events. To
examine the impacts of electron transport experiencing a gas–
liquid interface transition in cryogenic argon, we present
results from (i) large macroscopic length scales to examine
the overall qualitative nature of the results, and (ii) small
length scales at the immediate vicinity of the interfacial region
in order to examine the impact of the interface transition.
Liquid to gas results of section 4.2 are presented at early (2
ps), intermediate (15 ps), and late (50 ps) times to demon-
strate the physics of electron transport over different time
scales, while the gas to liquid results of section 4.3 are taken
at 50 ps. Finally, following the results of the two prototype
problems (liquid to gas and gas to liquid), section 4.4
demonstrates the distinctly different results produced by
electron transport simulations that assume a simple step
function interface, in lieu of the equilibrium tanh function
transition proposed in this work.

4.1. Simulation conditions

An applied reduced field magnitude of =∣ ∣E n 300 Td0 in
gas phase, corresponding to 0.8 Td in the liquid, was applied
to drive electrons into the gas–liquid interface; the appropriate
sign was assigned in each simulation to drive electrons left to
right or vice versa. In this study the neutral atom temperature
was kept constant at T0=85 K, a commonly used cryogenic
temperature for liquid argon experiments [21, 69, 77]. The
neutral density, n0, was varied using the tanh function inter-
facial density ramp (12), where = ´ -n 1.8 10 ml

eq 28 3 was
obtained from the liquid argon coexistence curve at 85 K [77].
The van der Waals radius of argon rAr=188 pm was used in
computation of the Percus–Yevick structure factor
[30, 37, 47]. Based on previous studies of equilibrium gas–
liquid interface properties found in literature [70, 71, 73, 74],
the ratio of equilibrium gas density to liquid density was
assumed to be =n n 300g l

eq eq , and the 10–90 interface width,
δint, was assumed to be 2 nm. Using the specified reduced
field strengths, and the density profile provided by a tanh
function, the initial total effective reduced electric field (14) is
shown in figure 5.

Naturally, the space-charge field effects will evolve over
the course of simulations but by simply considering the initial
total fields assists in understanding of the results presented in
sections 4.2 and 4.3. From the liquid to gas plot of figure 5 it
is clear that the effective field due to V0 variation acts to
impede electron transport from the liquid to the gas, while
conversely it enhances electron transport into the liquid when
the applied field is reversed on the right-hand plot.
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Initial conditions for simulation of streamer formation
and propagation were assumed as a narrow Gaussian pulse of
electron/ion densities created by an arbitrary ionization event
prior to the simulation start. To ensure initial conditions did
not experience immediate interfacial effects, initial charged
particle densities for the liquid to gas simulation were set at
2 μm from the interface and the ionization front propagating
from gas to liquid was set at 100 μm from the interface.
Although there is no physical meaning to a mean energy in
regions of zero density, the fluid model input parameters are
interpolated from a mean energy value. Hence, to avoid
numerical issues, we specify the initial values of mean
energy, velocity and energy flux to be their steady-state
values at the corresponding E/n0 value, even in regions of
zero density, as was done in previous fluid modeling studies
[4, 13, 15]. At later times, when the density becomes non-
zero, these fluid model parameters will then vary smoothly
both spatially and temporally.

4.2. Electron transport from liquid argon into gaseous argon

Electron and ion density initial conditions of narrow Gaussian
pulses were used in a simulation of electron transport across
an interface, analogous to a single ionization event within a
liquid argon detection chamber. Evolution of the electron
density in figure 6 shows the initial pulse of electrons diffuses
very quickly, leading to electron extraction from liquid into
the gas phase as electrons impinge on the interface region.
Qualitatively, both models predict similar results over all
times however, it is clear the 4MM model demonstrates
higher rates of electron extraction from the liquid. The LFA
model predicts at least twice as much charge blocking on the

liquid side of the interface compared to the 4MM model.
Examining the expanded interfacial region of figure 6, we see
the charge build-up at a narrow scale, with the 4MM result
demonstrating two distinct roll-off gradients across the
interface. To interpret this structure it is beneficial to consider
the average electron velocity.

Figure 7 demonstrates that far from the interfacial region,
the average electron velocity has relaxed to an equilibrium
value. However, near the interface we see that initially the
4MM result predicts a large positive velocity, due to the large
initial diffusive flux, and never becomes negative. In contrast,
at the immediate vicinity of the interface the LFA model
predicts a negative average velocity due to the blocking field
contribution of the V0 potential in liquid argon. As time
continues, the magnitude of these initially large velocities
decreases but their sign differences remain. As the distance
over which the blocking field is applied is very small, and the
time for mean energy relaxation is quite long, the mean
energy does not rapidly respond to the field variation. This is
an example of non-local electron transport that the LFA
model cannot predict, but the 4MM model can. These major
differences in the average electron velocity at the interface are
the drivers for deviations in electron density results observed
in figure 6.

The top half of figure 7 also demonstrates a short, but
persistent, relaxation length on the liquid side of the interface
well before the interface is encountered. We believe this
gradual decrease in electron average velocity prior to the
interface is a further demonstration of spatial non-locality
being predicted by the mean energy dependent model, which
the LFA model simply cannot predict owing to its reliance on

Figure 5. Reduced electric field profiles for applied and V0 contributions for both simulation configurations presented. Note that symmetric
logarithmic axes have been employed in this figure. The vertical dashed black line denotes the center point of the interface transition.
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Figure 6. Electron density evolution for 4MM and LFA models at short, intermediate, and longer times as the electron swarm propagates
from liquid to gaseous argon. Top view: macroscopic results. Bottom view: expanded view of interfacial results. Initial condition given by
green dash–dot green line. Direction of field-driven propagation is from left to right.
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Figure 7.Average electron velocity for 4MM and LFA models at short, intermediate, and longer times as the electron swarm propagates from
liquid to gaseous argon. Top view: macroscopic results. Bottom view: expanded view of interfacial results. Initial condition given by green
dash–dot green line. Direction of field-driven propagation is from left to right. Note that symmetric logarithmic axes have been employed in
this figure.
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Figure 8. Total E/n0 and space-charge contribution to E/n0 for 4MM and LFA models at short, intermediate, and longer times as the electron
swarm propagates from liquid to gaseous argon. Top view: macroscopic results. Bottom view: expanded view of interfacial results. Note that
symmetric logarithmic axes have been employed in this figure.

12

Plasma Sources Sci. Technol. 27 (2018) 105004 N A Garland et al



the instantaneous electric field, shown in figure 8. From
figure 8 we cannot see a significant variation in the total E/n0
over the lifetime of this transient simulation; this is a result of
the space charge effects being small compared to the applied
field, as indicated in the figure where we have plotted the
isolated contributions of space-charge effects.

Figure 9 demonstrates the electron mean energy of the
4MM model to assist in interpreting the results of the pre-
ceding figures. We can clearly see a gradual relaxation of á ñ
on the liquid side of the interface, consistent with the
observed non-local effects on electron transport in figure 7.
Far from the interface the mean energy relaxes to the

Figure 9. Electron mean energy for 4 MM model at short, intermediate, and longer times as the electron swarm propagates from liquid to
gaseous argon. Top view: macroscopic results. Bottom view: expanded view of interfacial results. Initial condition given by green dash–dot
green line. Direction of field-driven propagation is from left to right.
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equilibrium value given by the value of E/n0 in the gas or
liquid. We note a clear minimum in mean energy is observed
at short times in the expanded interface region of figure 9 due
to the relatively high transient electron flux, combining with
the sign change of the blocking electric field provided by the
V0 potential, as a result of the Γ·E term in the energy balance
equation (9). This energy reduction immediately at the
interface is only present at short times because of the large
initial diffusive electron flux. As this large initial diffusive
flux subsides over time, the energy loss via the Γ·E term
becomes less significant, demonstrated at 15 and 50 ps.

4.3. Electron ionization front transport from gaseous argon into
liquid argon

We now briefly present and discuss results of directing an
electron streamer front in gaseous argon into liquid argon.
This simulation was performed under the same conditions as
the previous section, apart from simply reversing the sign of
the applied electric field to yield a total reduced electric field
configuration as shown in figure 5. The initial condition to
this simulation was provided by allowing a streamer front to
form in gaseous argon, before imposing a gas–liquid interface
transition approximately 100 μm in front of the streamer
front.

For brevity, we present electron transport profiles after 50
ps, instead of multiple time points, in figure 10. Examining
the LFA and 4MM results produced by the tanh interface
assumption, we see that the initial electron density of the
streamer tip is transported across the interface with a notable
attenuation of the electron density further into the liquid.
Examining the expanded view of the interface, the LFA
model predicts a larger charge-build up at the gas side of the
interface compared to the 4MM model consistent with a
noticeably lower speed immediately at the interface, arising
from the combination of the increase in n0 at the interface as
well as space-charge screening effects on E/n0.

When comparing the average electron velocity plot, the
most distinguished point of difference between the two
models is the clear spatial relaxation length of á ñve following
the interface transition. Results of the 4MM model indicate a
decay to the equilibrium drift velocity value observed in
liquid argon, which demonstrates the presence of spatial non-
locality which is not replicated by the LFA model. Addi-
tionally, a discrepancy arises between the two models at the
expanded interface scale, where a smaller average velocity is
produced by the LFA model as a result of a weaker reduced
field occurring at the gas–liquid interface. In this range, the
mean energy dependent 4MM model does experience a
reduction in average velocity, but to a lesser extent than that
found in the LFA results.

Finally, to assist further in interpreting the 4MM results,
the electron mean energy is presented in figure 10. Here we
note that in the expanded interfacial region of figure 10 a
reduction in mean energy occurs on the gas side, due to
increasing collisional energy losses from an increasing n0,
however the electron mean energy experiences a slight
increase over the interface due to the restorative effects of the

V0 field via the Γ·E term in the energy balance equation (9).
Once the effects of the interface transition have subsided, the
mean energy decays to the equilibrium mean energy value for
electrons in liquid argon with a clear relaxation length, indi-
cating the presence of non-local electron transport.

4.4. Impact of step function input data

To determine if using a tanh function to modulate n0 at the
interface, which necessarily requires the density dependent
fluid model input data, between gas and liquid extrema is
actually required compared to simply using a standard step
function variation in the density, we repeated the simulation
of an ionization front propagating from gas to liquid. In this
case we employed a step function transition between liquid on
the left and gas on the right. For brevity, we present results at
50 ps in figure 10, demonstrating the vastly different quali-
tative results produced by assuming a step function transition.

From figure 10, we see that by assuming a step-function
with the LFA model the electron densities are much higher
over the macroscopic length scale. Approximately twice as
many electrons are transported into the liquid as compared
with any of the previous results. At the narrow length scale of
the interface, we see the step-function LFA result actually
decreases prior to the interface before experiencing a sharp
build up of electrons on the liquid side; this is a starkly dif-
ferent qualitatively result compared to any of the previous
results obtained using the smooth tanh function. On the other
hand, while the step-function 4MM results are not equal to
those achieved through the tanh assumption, they are very
similar and produce no major deviations compared to the LFA
results.

The step-function LFA electron density differences are
consistent with a very high average velocity at the interface,
demonstrated in figure 10, compared to any of the previous
simulation results. This order of magnitude difference in the
average velocity transports electrons into the liquid at a
considerably higher rate compared to the results using the
tanh interface assumption. This high average velocity occurs
due to a large E/n0, produced due to the small, gaseous argon
value of n0 assumed near the interface instead of a gradually
increasing value. Once again, compared to the distinctly dif-
ferent observations of the LFA models we see no major
deviation between 4MM results, with the only noticeable
difference being the discontinuity immediately at the
interface.

For completeness, figure 10 also shows the electron mean
energy for the 4MM models using both tanh and step-function
assumptions. We see no major differences in á ñ for the two
results, indicating why differences between 4MM results for
the other variables were minimal. Since á ñ is observably
insensitive to the form of interface assumptions, and
demonstrably a continuous variable, we believe that it is a
much more reliable variable to use when determining input
data compared to E/n0 which suffers from being explicitly
related to the assumptions we impose on n0.
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Figure 10. Electron density, average velocity and mean energy for 4 MM and LFA models after 50 ps of an electron streamer penetrating
from gaseous to liquid argon. Results of assuming a tanh or step function interface on are shown for comparison. Top view: macroscopic
results. Bottom view: expanded view of interfacial results. Direction of field-driven propagation is from right to left.
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5. Conclusions

In this study we have presented results from multiple fluid
models simulating (i) an electron swarm propagating from
liquid argon into gaseous argon over an equilibrium interface
density variation, and (ii) an electron streamer front being
driven out of gaseous argon across the interface into liquid
argon. We presented a method to account for large density
variation from gas to liquid phase by assuming both a realistic
density profile and step-function variation of n0 in order to
implement approximation rules for density dependent input
transport data between gas and liquid extremes. Furthermore,
we have accommodated interfacial effects of the spatial var-
iation of both the dielectric constant, εr, through solution of
Poisson’s equation, and binding energy of an electron in
liquid, V0, through an effective applied electric field.

Using the proposed methods to compare local (LFA) and
non-local transport (4MM) models and their sensitivities, our
key recommendation to best describe electron transport
between gas and liquid densities is to adopt a mean energy
dependent higher order fluid model, such as the 4MM method
used in this study. This model demonstrated greater flexibility
and reliability in resolving non-local physics and interfacial
electron transport compared to the local field drift-diffusion
model. It was demonstrated that a drift-diffusion continuity
equation (LFA) model required careful treatment of input data
between gas and liquid extremes by way of approximating
field dependent input data for intermediate densities using a
tanh function, whereas the non-local 4MM model was rela-
tively insensitive to the functional form of n0 variation.

In summary, this work has presented the findings of a
fundamental comparative modeling study of electron trans-
port across cryogenic argon gas–liquid interfaces. We suc-
cessfully demonstrated the importance of modifying gaseous
electron transport models to account for interfacial and liquid
effects when considering transport at the gas–liquid interface.
A key message of this study is that vastly different electron
transport is produced if gas phase input data is simply scaled
to liquid densities, compared to using accurate liquid phase
data. While this study has focused on a simple atomic liquid-
gas system, we hope that this work will stimulate further
modeling and experimental efforts to benchmark and refine
the work presented. By expanding on the work of this study,
extensions to complex interfacial systems, like those found in
plasma medicine, can eventually be made to better understand
important plasma applications. Further physical processes that
should be considered in interfacial modeling may include
electron solvation processes in polar liquids [11, 78], and
condensed phase evaporation [74].
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Appendix A. Input data at densities intermediate to
the gas and liquid phases

In order accommodate ( )n z0 variation of input data, we have
implemented an approximation method recently proposed,
and benchmarked for simple atomic liquids, by Garland et al
[75] that seeks to approximate input transport data and col-
lision rates as weighted combinations of the gas and liquid
extreme values. This process is analogous to Blanc’s Law
[79], or the energy-dependent approach proposed by Chi-
flikian [80], used for approximating transport data in gas
mixtures, where instead we now seek to describe transport at
intermediate densities between two density extremes of one
substance instead of mixing two distinct gases. Where
necessary to account for the differences in momentum transfer
for gas and liquid systems, nonlinear weightings of gas and
liquid extreme data are combined [75]. Using a zeroth order
momentum transfer theory approximation [31, 75, 81], the
nonlinear dependence is extracted via the angle-integrated
structure factor evaluated at a given electron mean energy,
eá ñ, and at a neutral atom density

òe e
c
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p
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where, for this work, the static structure factor,


eá ñ c( )S m n2 sin ;e

2

2 0 , is assumed to be the analytic Verlet–

Weis corrected Percus–Yevick structure factor [47] which has
been demonstrated to be a good approximation of atomic
liquid structure [16, 29, 37, 82]. The full analytic expression
is included in a preceding study [75]. When considering lar-
gely localized energy transfer due to inelastic excitations, we
use simpler linear combinations of gas and liquid extrema
data as this was demonstrated to provide a sufficient first-
order approximation to the intermediate density’s transport
data because explicit modifications to the energy balance
equation (9) are not required [30, 75].

A.1. Local field dependent input data

For the LFA model the drift velocity at intermediate densities,
Wint, is approximated as function of reduced field, E

n0
. A

weighted sum of reciprocals of gas, Wg, and liquid ,Wl,
extreme values was used
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where the density fractions, xg,l, follow the relation

= - ( )x x1 . A.3l g

These density fractions are determined by defining the
intermediate density, nint, as a sum of fractions of either
density extrema

= + ( )n x n x n , A.4g g l lint
eq eq

and by combining (A.3) and (A.4) we find

=
-
-
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n n

n n
. A.5g

l

l g

eq
int

eq eq

The approximated angle-integrated structure factor at any
intermediate points is given by

» + -( ) ( )s ws w s1 , A.6g lint

where sg is defined as unity for the gas, sl for the liquid
extreme is evaluated via (A.1), and to ensure the approx-
imation is physically grounded in both the high and low
energy limits, the weighting factor, w, is fixed in the low
energy limit by

=
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where ( )S n0; is the D k 0 limit of the analytic structure
factor [47], or otherwise proportional to the fluid compressi-
bility which is a measurable input.

To demonstrate the output generated by this approx-
imation method, we use (A.2) in conjunction with the accu-
rate data of gas and liquid extremes described in section 2.2,
to generate a drift velocity surface, shown in figure A1, which
we interpolate onto as a function of the instantaneous E

n0
and

n0 given at each point in space during the simulation.
We note that the reduced longitudinal diffusion coeffi-

cient n0DL was computed via a generalized Einstein relation

[83] once the drift velocity was known via (A.2)
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Eint
int is the electron mobility derived from the

drift velocity (A.2), T0 is the neutral atom temperature, and
the correction factor [83]
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where ξint is the electron heat flux which can be approximated
via a similar rule as used for Wint via nonlinear combinations
of gas, ξg, and liquid, ξl, extreme values
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A.2. Higher order model input data

The 4MM model collision data was also approximated
between gas and liquid densities with energy dependent
approximation methods [75]. As an example, as was done for
the drift velocity, nonlinear weights taken from the angle-
integrated structure factor are used to generate a sum rule
using gas, nm

g , and liquid, nm
l , data to yield a reduced

momentum transfer collision frequency at intermediate den-
sities, nm

int, evaluated at a common mean energy, eá ñ,
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where n notation is used to denote a reduced collision rate

Figure A1. Drift velocity surface of electrons in argon as a function of E

n0
and n0 used to interpolate input data for LFA models.
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scaled by n0. To demonstrate the application of the nonlinear
sum rule the reduced momentum transfer collision frequency
surface generated via (A.11) is included in figure A2,
demonstrating the reduction in momentum transfer collisions
as the argon density increases.

Appendix B. Numerical solution of system of
hyperbolic PDEs

Numerical solution of both the LFA and higher order fluid
models for electron and ion properties was achieved by a

custom flux-corrected transport (FCT) code [13], with explicit
fourth order Runge–Kutta (RK4) time-integration used to
advance forward in time [84–86]. Spatial discretization was
performed via FCT by augmenting a monotonic first order
upwinding scheme [87], with a second order conservative
finite difference scheme. The FCT flux limiting algorithm of
Boris and Book [85, 86] was used to enable resolution of
sharp gradients found in ionization fronts. To account for the
varying length scales present in the problems, we employed
variably spaced grids, as shown in figure B1, to allow spatial
steps appropriate to liquid, gas, and interfacial regions. Given
the spatial grid sizes, time step size was chosen as the smallest

Figure A2. Reduced momentum transfer collision frequency, n
n

m

0
, surface of electrons in argon computed via (A.11) as a function of á ñ and n0

used to interpolate input data for the 4MM model.

Figure B1. An example of the spatially varying numerical grid steps employed in discretization of the solution domain over the interface
transition region.
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step computed via: (i) a Courant–Friedrichs–Lewy (CFL)
condition of 0.05, or (ii) 1 20 of the fastest collisional
relaxation time. Employing both the spatial discretization of
FCT and RK4 time-integration assists in avoiding excessive
numerical diffusion that may be introduced as a result of
small time steps due to the small CFL number.

Solution of the coupled electric field evolution was
obtained via second order finite difference discretization of
(3) and (4), given fixed boundary conditions for electric
potential at either end of the solution domain [13]. To ensure
the accuracy of this scheme, systematic benchmarking was
performed by comparing numerical solutions against known
analytic solutions, and ensuring particle conservation was
guaranteed at each time step. Typical systems used for
benchmarking are square-wave advection, Gaussian pulse
advection-diffusion, and the solution of Euler’s equations for
Sod’s shock-tube [84–86].

Continuous boundary conditions were implemented to
allow passage of information outside of the solution domain
to avoid impacting the solution. To further assist in this aim,
streamer formation and propagation was performed well
inside the solution domain, away from the necessary bound-
aries, to minimize the impact of boundary conditions.
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