
Eur. Phys. J. D (2017) 71: 289
DOI: 10.1140/epjd/e2017-80403-4 THE EUROPEAN

PHYSICAL JOURNAL D
Regular Article

Electron transport in mercury vapor: cross sections, pressure
and temperature dependence of transport coefficients and
NDC effects?
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Abstract. In this work we propose a complete and consistent set of cross sections for electron scattering in
mercury vapor. The set is validated through a series of comparisons between swarm data calculated using
a multi term theory for solving the Boltzmann equation and Monte Carlo simulations, and the available
experimental data. Other sets of cross sections for electron scattering in mercury vapor were also used as
input in our numerical codes with the aim of testing their completeness, consistency and accuracy. The
calculated swarm parameters are compared with measurements in order to assess the quality of the cross
sections in providing data for plasma modeling. In particular, we discuss the dependence of transport
coefficients on the pressure and temperature of mercury vapor, and the occurrence of negative differential
conductivity (NDC) in the limit of lower values of E/N . We have shown that the phenomenon of NDC
is induced by the presence of mercury dimers and that can be controlled by varying either pressure or
temperature of mercury vapor. The effective inelastic cross section for mercury dimers is estimated for a
range of pressures and temperatures. It is shown that the measured and calculated drift velocities agree
very well only if the effective inelastic cross section for mercury dimers and thermal motion of mercury
atoms are carefully considered and implemented in numerical calculations.

1 Introduction

The behavior of electrons in mercury vapor under the
influence of electric field is of vital interest in model-
ing of the gas-discharge lamps [1–3], lasers [4,5] and in
special applications such as ion thrusters for space propul-
sion [6]. Further optimization and understanding of such
applications is dependent on an accurate knowledge of
the cross sections for electron scattering, transport coef-
ficients and the physical processes involved. For example,
fluid models of low-pressure discharges used in fluores-
cent lamps often require swarm transport parameters as
a function of the reduced electric field and the gas tem-
perature [7,8]. Current models of high-pressure mercury
discharges, however, usually require a knowledge of the
electrical conductivity, which can be calculated from the
cross sections for electron scattering in mercury vapor and
electron mobility.

A number of methods have been applied to investigate
the behavior of electrons in mercury vapor and have been
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successfully applied to a variety of problems. For scatter-
ing theorists, the problem of the scattering of electrons
on mercury atoms is challenging due to importance of
relativistic effects and the correlation between different
subshells which require the use of either Dirac equations
or modified forms of the Schrödinger equation [9,10]. The
correct representation of a very large low energy resonance
in both elastic and momentum transfer cross sections
below the first inelastic threshold of the 3P0 state at
4.66 eV and impact of 6s6p2 resonances on the elastic
scattering and the excitation cross-section in the energy
range between 4 and 7 eV are also very important issues.
This makes mercury a particularly interesting target for
scattering theorists. No less challenging is the problem
of the transport of electrons in mercury vapor, given the
difficulties that occur in both the experimental measure-
ments, as well as in theoretical calculations based on the
Boltzmann equation and Monte Carlo simulations. For
example, it is very difficult to find the experimental data in
the literature for drift velocity and characteristic energy of
electrons in mercury vapor for high values of the reduced
electric fields, because such measurements require lower
vapor pressure and therefore lower temperature, which
is difficult to control accurately. In the domain of the
theoretical studies of electron transport in the mercury
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vapor based on the Boltzmann equation, only recently
it has been shown that nonlocal effects, resonances and
striations in mercury electrical discharges have much in
common with the behavior of electrons in mercury vapor
in the famous Franck–Hertz experiment [11–14].

In literature, already, some cross section sets for elec-
tron scattering in mercury vapor have been reported. Raju
reviewed measured and theoretically calculated electron
collision cross sections for mercury vapor and recom-
mended the values of drift velocity and reduced ionization
coefficient [15,16]. Complete sets of cross section were
reported by Rockwood [17], Nakamura and Lucas [18,19],
Sakai et al. [20] and Suzuki et al. [21]. Winkler et al. [22,23]
and Yousfi et al. [24] made significant contributions to the
development of transport and collision data for electrons
in mercury vapors by including the kinetics of excited
states and Penning ionization in their models of fluores-
cent lamps. The properties of electron swarms in pure
mercury vapor have also been analyzed by Garamoon and
Abdelhaleem [25], Braglia et al. [26] and Liu and Raju [27]
while the effects of metastable mercury and argon atoms
on electron transport were subject of studies performed
by the group of Prof. Tagashira [20,28,29]. The influence
of thermal motion of background mercury atoms on elec-
tron transport has been analyzed by Winkler et al. [30]
while the impact of a magnetic field on various transport
properties in a crossed field configuration was investigated
by Liu and Raju [31].

The common thread among many of these previous
studies is a systematic neglect of non-hydrodynamic
behavior of transport coefficients, which is reflected in
their dependence upon the pressure and temperature of
mercury vapor. Moreover, the effects of thermal motion
of mercury atoms have also been often neglected, duality
of transport coefficients (e.g., the existence of two differ-
ent families of transport coefficients, the bulk and the flux)
for electrons in mercury vapor has never been considered
and finally many studies have been made in the frame-
work of the two term theory for solving the Boltzmann
equation, despite its limitations and concerns regarding its
accuracy that have been well-documented [32,33]. Using
these facts as motivational factors, in this paper, we revisit
the issue surrounding computation of electron transport
properties in mercury vapor as a function of electric field,
pressure and temperature of mercury vapor. As a first
step, we have developed a complete set of cross sections for
electron scattering in mercury vapor. We apply the stan-
dard swarm procedure of deriving cross sections [33–35].
The initial set of cross sections is composed of cross
sections for the individual collision processes that are col-
lected from the literature. Using this initial set of cross
sections as an input for solving Boltzmann’s equation,
transport coefficients are calculated and compared with
the corresponding experimental data. The initial cross sec-
tions are then modified and the procedure is repeated in
order to obtain better agreement with the experimental
transport coefficients. The cross sections are considered
satisfactory when the calculated values for drift velocity,
ionization coefficient and characteristic energy match the
experimental values to within a standard experimental
uncertainty.

Other sets of cross sections for electron scattering in
mercury vapor that are available in the literature were
also incorporated into the Boltzmann equation and Monte
Carlo codes with the aim of assessing their completeness
and accuracy. This has been done through a series of
calculations focused on comparisons between the experi-
mentally measured and theoretically calculated transport
coefficients. In particular, we consider the pressure depen-
dence of transport coefficients due to the presence of mer-
cury dimers. The mercury dimers are molecular species
that can cause a significant change in the rate of energy
lost by the electrons via rotational and vibrational excita-
tion and hence a considerable change in the drift velocity.
The formation of dimers and their effect on the measured
drift has been studied by Nakamura and Lucas [18,19],
Elford [36] and England and Elford [37]. It was shown that
the drift velocity increases with pressure, but the occur-
rence of negative differential conductivity (NDC) has not
been reported. A cross section for momentum transfer in
elastic collisions and an effective inelastic cross section for
dimers have been derived using the well-established swarm
method of deriving cross sections. In order to reduce
the non-uniqueness of the initially derived cross section
for momentum transfer, McEachran and Elford [10] have
demonstrated that cross section for the momentum trans-
fer can be further refined by considering the additional
transport data.

In the present paper we extend the previous studies by
considering the occurrence of NDC in the limit of lower
values of E/N . NDC is the well-known phenomenon in
transport theory which is characterized by a decrease in
the drift velocity for increasing the applied electric field.
The conditions for the occurrence of NDC have been inves-
tigated previously. It was shown that NDC can be induced
and controlled by the presence of inelastic [38,39] and non-
conservative collisions [40,41], electron–electron collisions
[42,43] and anisotropic scattering [44]. For liquid argon
and xenon, however, there is a new type of NDC that
does not require inelastic collisions or non-conservative
processes, i.e. it is purely a consequence of the medium
structure [45,46]. In this work we demonstrate the NDC
phenomenon induced by the presence of mercury dimers.
The collision frequencies and the averaged energy losses
due to elastic and inelastic collisions are calculated with
the aim of explaining the development of NDC. The pres-
sure dependence of other transport properties, including
the mean energy and diffusion coefficients is also inves-
tigated. Particular attention is paid to the effects of the
mercury vapor temperature and how this affects the basic
properties of the drift and diffusion over a range of the
reduced electric fields of practical interest. This has been
done through a series of calculations based on a multi term
theory for solving the Boltzmann equation and Monte
Carlo simulation technique in which thermal motion of
background mercury atoms is rigorously accounted for.

This paper is organized as follows. In Section 2 we out-
line the theory used to solve the Boltzmann equation and
the basic elements of our Monte Carlo method for deter-
mining transport properties of electrons in mercury vapor.
In Section 3.2 we present a new collision cross section set
for electron scattering in mercury vapor, which revises the
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previous sets summarized by Rockwood [17], Sakai et al.
[20] and Suzuki et al. [21]. Comparison between the mea-
sured and calculated swarm data is shown in Section 3.3
while the pressure dependence of transport coefficients
and dimer-induced negative differential conductivity are
discussed in Section 3.4. In Section 3.5 we investigate the
synergism of thermal effects and the effects induced by the
mercury-dimers on electron transport in mercury vapor.
Finally, we summarize our conclusions in Section 4 and
also provide an outlook regarding the future transport
studies for electrons in mercury vapor.

2 Methods of calculation

In this work, we investigate a swarm of electrons moving
through a neutral gas under the influence of a uniform
electric field. The electron number density is assumed to
be sufficiently low so that the following conditions apply:
(i) electron–electron interactions and space-charge effects
can be neglected; (ii) the motion of the electrons can
be treated classically, and (iii) the background of neu-
tral atoms remains in thermal equilibrium. Electrons gain
energy from the external electric field and dissipate it by
collisions to the neutral gas atoms. The collisional transfer
of this energy to the neutral gas atoms occurs by elastic
and different types of inelastic collisions. This is a typi-
cal non-equilibrium system and its correct mathematical
description can only be obtained from kinetic theory [47].

2.1 Multi term solution of Boltzmann’s equation

To calculate the transport of electrons in mercury vapor,
we apply a multi term solution of the Boltzmann equation
for the phase-space distribution function f (r, c, t):

∂f

∂t
+ c · ∂f

∂r
+
eE

m
· ∂f
∂c

= −J (f, f0) , (1)

where r and c denote, respectively, the position and veloc-
ity co-ordinates in phase space, while e and m are the
charge and mass of electron, respectively, and E is the
applied external field. The right-hand side of equation (1)
represents the collision operator J , describing the rate of
change of the phase-space distribution function due to col-
lisions between the electrons and the neutral background
mercury vapor atoms.

In the present work we employ the original Boltzmann
collision operator for elastic processes [48] and its semi-
classical generalization for inelastic processes [49]:

Jin (f, f0) =
∑
jk

∫
[f (r, c, t) f0j (c0)− f (r, c′, t) f0k (c′0)]

× gσ (jk; g, ĝ · ĝ′) dĝdc0, (2)

where σ (jk; g, ĝ · ĝ′) is the differential cross section for
the scattering process (j, c, c0) → (k, c′, c′0). This cross
section depends on the electron’s incident kinetic energy
and on the angle between the incident and post-collision
relative velocity, g and g′, respectively. For a neutral
mercury vapor with temperature T and number density

N , the distribution of neutral velocities c0 in state j is
Maxwell–Boltzmann:

f
(j)
0 (c0) =

N

Z (T )
exp

(
− εj
kT

)
ω (α0, c0) , (3)

where Z (T ) is the partition function, εj is the energy of
a mercury atom (or mercury dimer) in quantum state j
and

ω (α0, c0) =

(
α2
0

2π

)3/2

exp
(
−α2

0c
2
0

)
, (4)

with α2
0 = m0/kT .

Electron ionization processes are described through the
operator [51]:

JI (f, f0) =
∑
j

N0jc
[
σI (j; c) f(r, c, t)− 2

×
∫
c′σI (j; c′)B (c, c′; j) f (r, c′, t) dc′

]
, (5)

where σI is the ionization cross section while B (c, c′; j) is
the probability for one of the two electrons after ionization
having a velocity in the range c to c+dc, for incident elec-
tron velocity c′, and N0j is the number density of mercury
atoms in the state j. In the present work we assume that
all fractions are equally probable. The probability function
must satisfy the following normalization conditions:

∫
B (c, c′; j) dc = 1, (6)

and

B (c, c′; j) = 0, if ε′ − ε < εI (j) , (7)

where ε′ and ε are the incident and post-ionization energy
of the electrons while εI (j) is the ionization potential of
the jth channel.

Solution of non-conservative Boltzmann’s equation (1)
has been extensively discussed by Robson and Ness
[50,51], White et al. [52,53] and Dujko et al. [54,55]. In
brief, we expand the phase-space distribution function in
terms of spherical harmonics with the aim of resolving
its angular dependence in velocity space. Transport coef-
ficients of charged particle swarms are exclusively defined
in the hydrodynamic regime. In the hydrodynamic regime,
the space-time dependence of the phase-space distribution
function is expressed by an expansion in terms of the gra-
dient of the electron number density n (r, t). In order to
resolve the speed-dependence of the phase-space distribu-
tion function, the expansion is made in terms of Sonine
polynomials about a Maxwellian distribution function.
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Thus, we solve equation (1) by making the expansions

f (r, c, t) = ω (α, c)
∞∑
l=0

l∑
m=−l

∞∑
ν=0

∞∑
s=0

s∑
λ=0

F (νlm|sλ)

×Nνl
(
αc√

2

)l
S
(ν)
l+1/2

(
α2c2

2

)
Y [l]
m (ĉ)G(sλ)

m n (r, t) , (8)

where ω (α, c) is a Maxwellian distribution at a tempera-

ture Tb and S
(ν)
l+1/2

(
α2c2

2

)
are Sonine polynomials. Y

[l]
m (ĉ)

is a spherical harmonic, a function of the angles ĉ and

G
(sλ)
m is the irreducible gradient tensor operator [50]. The

two-term approximation which forms the basis of the con-
ventional theories for solving the Boltzmann equation, is
based upon the choice of setting the upper bound on the
summation in (8) to lmax = 1. Its limitations and domains
of applicability in calculating transport coefficients for
electrons are thoroughly discussed in references [32,33].

Substitution of expansion (8) into equation (1) and
performing the appropriate “matrix element” operations
allows the Boltzmann equation to be converted into a
set of matrix equations for the expansion coefficients
F (νlm|sλ),

∞∑
ν′=0

∞∑
l′=0

l′∑
m′=−l′

[
Mνlm, ν′l′m′ +Rδν′νδl′lδm′m

]
×F (ν′l′m′|sλ) = Xνlm (sλ) ,

ν, l = 1, 2, . . . ,∞; m = −l, . . . ,+l, (9)

where R is the reaction rate. Explicit expressions for
the matrix of coefficients Mνlm, ν′l′m′ , which contains the
applied electric field and matrix elements of the collision
operator, and right-hand side Xlmν (sλ), can be found
elsewhere [51,54]. The expansion coefficients F (νlm|sλ)
are called “moments” and are related to the electron
transport properties as discussed in our previous works
[52–55]. These quantities are numbers that depend on the
applied electric field, the neutral number density N and
cross sections for electron scattering. They are required
for determination of both the bulk and the flux transport
coefficients. The flux drift velocity is the swarm averaged
velocity, while the bulk drift velocity is the rate of change
of the swarm’s centre of mass. The duality of transport
coefficients and its implications in plasma modeling has
been recently thoroughly discussed in references [56–59].

Of particular importance for the current paper is to
note that the motion of the neutrals is systematically and
rigorously incorporated into all collision process operators
and all spherical harmonic equations. In contrast, in con-
ventional theories which are usually based on the two term
approximation, the consideration of the thermal motion of
neutrals is often limited to the isotropic matrix elements
of the elastic collision operator. Errors resulting from such
theories will be discussed and illustrated in Section 3.4.

2.2 Monte Carlo method

A Monte Carlo simulation technique is also used in the
present work, but as an independent tool with the aim of
verifying the results of Boltzmann equation analysis. We
follow the space and time development of a swarm of elec-
trons in an infinite gas under the influence of a uniform
electric field. The electron trajectories between collisions
are determined by solving the collisionless equation of
motion of a single electron. The position and velocity of
each electron are updated after the time step ∆t which is
determined from the mean collision time divided by a large
number (usually 100) depending on the simulation condi-
tions. These small time steps ∆t are used for numerical
integration of the equation for the collision probability

p (t) = νT (ε (t)) exp

(
−
∫ t

t0

νT (ε (t′)) dt′
)
, (10)

where νT is the total collision frequency while t0 is either
the time of the electron entering the gas or the time of
a previous collision. Equation (10) gives the probability
that the electron will have a collision in the time interval
(t, t+ dt) and its numerical solution requires the use of
random numbers. The type of collision is also determined
using random numbers as well as relative probabilities for
individual collisional processes. The details of our Monte
Carlo method and explicit formulas for both the bulk
and flux transport coefficients are given in several of our
previous publications [54,55,60–62].

Two important issues deserve more mentioning in this
work. First, in our Monte Carlo code we have implemented
the procedure for calculating the collision frequency in the
case when thermal motion of the background gas cannot
be neglected for a Maxwellian velocity distribution of the
background gas particles. The details of the procedure can
be found in the recent work of Ristivojević and Petrović
[63]. This was a necessary step in this work, given the
importance of thermal collisions for adequate description
of electron transport in the limit of low electric fields.

Another issue in Monte Carlo simulations of electron
transport in mercury vapor is the simulation speed. To
achieve a good statistics of the final results and also to
make sure that the relaxation of the steady-state con-
ditions has been achieved, one needs to follow a large
number of electrons. Due to numerous elastic collisions
in which only a fraction of the initial electron energy is
transferred to a heavy mercury atom target, the efficiency
of energy transfer between the electrons and neutral mer-
cury atoms is very low. As a consequence, the relaxation
of energy is a very slow process and requires large com-
putation time. In order to optimize the simulation speed,
the simulations were usually began with a relatively low
number of electrons (typically 1.5× 103) and after relax-
ation to the steady state the electron swarm was scaled
up in numbers at fixed time intervals. The newly created
electron has the same dynamic properties as the original
one until the first collision. Following the first collision the
progeny and the original electrons follow different, inde-
pendent trajectories. Detailed testing has shown that this
technique does not affect the final results, but speeds up
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the relaxation considerably. For more details the reader is
referred to [54].

3 Results and discussion

3.1 Preliminaries

In the first part of this section we cover a range of reduced
electric fields between 0.1 and 1000 Td. The temperature
of the mercury vapor is 293 K while the pressure is set
to 1 Torr. Under these conditions the impact of mercury
dimers is negligible. In what follows these conditions will
be designated as “no dimers”. In the second part of the
present work, we consider a much narrower range of the
reduced electric fields: 0.1–3 Td. The temperature is set
to 573 K and calculations are performed for a range of
pressures. The influence of mercury dimers on the drift
velocity and other transport properties is investigated over
a range of conditions that are consistent with those present
in the experiment of England and Elford [37]. In the last
segment of this work, the transport coefficients are cal-
culated using our new set of cross sections for electron
scattering in mercury vapor over a range of E/N values
and temperatures relevant to light sources which utilize
mercury discharges.

The transport coefficients shown below are functions
of E/N and are expressed using the unit of Townsend
(1 Td = 10−21 Vm2). Calculations are performed assum-
ing that the internal states are governed by a Maxwell–
Boltzmann distribution which essentially places all mer-
cury atoms in the ground state. All scattering is assumed
isotropic and hence elastic cross section is the same as
the elastic momentum transfer cross section. The thermal
motion of background particles is carefully considered in
both Boltzmann equation analysis and in Monte Carlo
simulations.

3.2 Cross sections for electron scattering in mercury
vapor

In this work, we consider electron transport in mercury
vapor using the cross section set developed in this study.
This set of cross sections is shown in Figure 1. The cross
section for momentum transfer in elastic collisions is made
as follows. For lower electron energies, we use the experi-
mentally derived cross section of England and Elford [37]
while for higher energies, we use a cross section tabulated
in MAGBOLTZ code [64]. As discussed by England and
Elford, care must be taken in deriving of a cross section
for momentum transfer from the measured drift velocities
due to diffusion effects and the presence of mercury dimers
[37]. Cross sections for electronic excitations for levels 3P0,
3P1 and 3P2 are retrieved from [65] while electronic exci-
tations to 1S0 and 1P1 states as well as a cross section for
higher states are also taken from MAGBOLTZ code. For
electron-impact ionization, we have used the cross section
from [66]. Cross sections were slightly modified during the
calculations to improve agreement between the calculated
and measured swarm parameters. We found that we were
able to achieve a good agreement between calculated and

Fig. 1. Cross sections for electron scattering in Hg vapor: (1)
elastic momentum transfer, (2) excitation 3P0, (3) excitation
3P1, (4) excitation 3P2, (5) excitation 1P1, (6) excitation 1S0,
(7) excitation to higher states and (8) ionization.

measured drift velocities for lower E/N by adjusting only
the magnitude of the elastic momentum transfer cross sec-
tion. For higher E/N (e.g. for higher electron energies),
we have slightly modified the cross sections for electronic
excitations in order to reproduce the measured ionization
coefficient. This procedure is based on the experience that
the calculated ionization rate is affected more by the mod-
ifications of the cross sections for electronic excitations
than by the modifications of the ionization cross section
[33,35].

A single effective inelastic cross section with the energy
threshold of 0.04 eV is added to our cross section set, for
electron scattering on mercury atoms, in order to rep-
resent the energy losses and momentum changes due to
rotational and vibrational excitations of mercury dimers.
It was necessary to include an effective cross section,
since there are no cross sections for other channels of
electron scattering on mercury dimers in the literature.
There are no competing processes in the same energy
range for collisions on monomers thus the contribution
of the rotational–vibrational excitation will be significant.
In principle, we may assume that the abundance of the
dimers is sufficiently low so their overall contribution is
negligible for processes that have a competing channel in
scattering on monomer. In other words, we may assume
that for all the other processes the cross sections are the
same as for the monomer and we may apply an effective
cross section for rotational and vibrational excitation of
dimers and add that process to the set of cross sections
for monomers. This effective cross section is derived using
the experimental measurements of Elford and co-workers
[36,37]. We have used the following assumptions:

– mercury dimers are always present in mercury vapor
at a concentration proportional to the number den-
sity of mercury atoms;

– in order to account for the dimer number density,
the amplitude of the effective cross section is scaled
with their fractional abundance;

– the ideal gas law is assumed for the equation of state
of mercury vapor.

https://epjd.epj.org/
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Fig. 2. Comparison of the drift velocity calculated using
the present set of cross sections with the available experi-
mental measurements of England and Elford [37], Klarfeld
[67] and McCutchen [68]. Our results for the drift velocity
are also compared with the available Monte Carlo calcula-
tions [27], Boltzmann equation results [25] and with the data
recommended by Raju [15,16].

The effective cross section for dimers at pressure p and
temperature T is given by [37]

σ (ε) = 8.3σi (ε)∆ (p, T ) , (11)

where 8.3 is a maximal value of the cross section at frac-
tional dimer abundance of 1 ppm, σi (ε) is the dimer cross
section used to fit the measurements of drift velocity and
∆ (p, T ) is the fractional abundance of dimers at pressure
p and temperature T . Cross sections σi (ε) as a function
of electron energy in units of squared angstroms are given
by England and Elford [37]. Using the above assumptions
and a value of 21.8 × 10−6 for fractional abundance of
dimers at the pressure of 1 kPa and temperature of 573 K
we have

∆ (p, T )

∆1 (p1, T1)
=

n

n1
=

p

p1

T1
T
, (12)

and hence

∆ (p, T ) = 21.8× 10−6
p

1 kPa

573 K

T
. (13)

Combining equations (11) and (13) yields the following
simple expression for deriving the dimer cross section at
the pressure p and temperature T

σ (ε) = 180× 10−6
p

1 kPa

573 K

T
σi (ε) . (14)

From equation (14) it is clear that the mercury-dimer cross
section depends on the ratio p/T . If the mercury vapor
temperature T is fixed and the pressure p is increased,
then the mercury-dimer cross section grows and vice
versa, if one keeps the pressure p fixed and increases the
mercury vapor temperature T , then the mercury-dimer
cross section declines. However, it should be noted that

Fig. 3. Comparison of the drift velocity calculated using the
present set of cross sections with those calculated using the
cross sections sets developed by Rockwood [17], Sakai et al.
[20] and Suzuki et al. [21]. Results are presented for the lower
values of E/N and are compared with the measurements of
England and Elford [37] which have been recommended by
Raju [16]. The temperature of the dimer-free mercury vapor is
573 K.

the saturated mercury vapor pressure at 573 K is 33 kPa
(approximately 248 Torr). This means that at the temper-
ature of 573 K it is not possible to consider the influence
of pressures higher than 33 kPa, and vice versa, it is not
possible to consider the transport of electrons at a pres-
sure of 33 kPa for the temperature less than 573 K. These
conditions correspond to liquid mercury, which is certainly
beyond the scope of this work.

The effective cross section which describes rotational
and vibrational excitations of mercury dimers is consid-
erable at higher pressures and lower temperatures. The
corresponding superelastic cross section has been calcu-
lated using the principle of detailed balance in a thermal
equilibrium.

3.3 Comparison between measured and calculated
transport coefficients

In order to test the present set of cross sections for electron
scattering in mercury vapor, we compare our theoretically
calculated transport coefficients with various measure-
ments and other calculations under conditions in which
the influence of mercury dimers is negligible. In particu-
lar, we compare our calculations with the two sets of data
recommended and published by Raju [15,16]. The trans-
port coefficients are shown in Figures 2–6 as functions of
E/N . Calculations are performed using the present set
of cross sections and those developed by Rockwood [17],
Sakai et al. [20] and Suzuki et al. [21]. We have applied a
multi term approach for solving the Boltzmann equation
assuming the pressure of 1 Torr while the temperature of
mercury vapor is set to 293 K. Under these conditions the
influence of mercury dimers on transport coefficients could
be neglected. The convergence of transport coefficients
was good and a value of lmax = 5 was generally required
for achieving an accuracy to within 1% or better.
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Fig. 4. Comparison of the drift velocity calculated using the
present set of cross sections with those calculated using the
cross sections sets developed by Rockwood [17], Sakai et al. [20]
and Suzuki et al. [21]. Results are also compared with the drift
velocity data recommended by Raju [15,16]. The temperature
of the dimer-free mercury vapor is 293 K.

Fig. 5. Comparison of the characteristic energy, calculated
using the present set of cross sections with those calculated
using the cross section sets developed by Rockwood [17],
Sakai et al. [20] and Suzuki et al. [21]. Results are also com-
pared with the measurements of Ovcharenko and Chernyshev
[69], Hayes and Wojacyek [70] and Klarfeld [67].

The bulk and flux drift velocities along with the exper-
imental results of Klarfeld [67], McCutchen [68] and those
recommended by Raju [15,16] are shown in Figure 2. The
values of drift velocity calculated by a Monte Carlo sim-
ulation technique [27] and those obtained by solving the
Boltzmann equation [25] are also plotted. For the low val-
ues of E/N we observe relatively poor agreement between
our results and measurements of England and Elford [37].
This follows from the fact that our calculations have been
performed assuming the mercury vapor temperature of
293 K while the experimental values of drift velocities in
a dimer-free mercury vapor of England and Elford are
obtained at 573 K. The Raju’s 2012 recommended data
are consistent with the measurements England and Elford
[37]. After increasing the temperature of dimer-free mer-
cury vapor to 573 K in our calculations, we have observed

Fig. 6. Comparison of the ionization coefficient calculated
using the present set of cross sections with those calcu-
lated using the cross section sets developed by Rockwood
[17], Sakai et al. [20] and Suzuki et al. [21]. Results are also
compared with the Raju’s 2012 recommended data.

an excellent agreement between the calculated and mea-
sured drift velocities (see Fig. 3). Comparing our results
and those measured by McCutchen [68], it is evident
that a significant disagreement exists (see Fig. 2). The
signs of NDC are clearly evident in the measurements
of McCutchen [68]. This suggests that the experiment
was operated under conditions in which the traces of
mercury dimers were present. Indeed, the pressure of mer-
cury vapor in his experiment was set to 350 Torr while
no temperatures were given for any experimental runs.
The agreement between our results and measurements
of McCutchen [68] becomes much better for the higher
values of E/N as the impact of mercury dimers on the
drift velocity is reduced. At intermediate fields (10 Td<
E/N <100 Td), our results and Monte Carlo results of Liu
and Raju [27] agree also very well. At higher E/N , above
100 Td, we see that the present calculations tend to lie a
little above the experimental results of Klarfeld [67] and
calculations of Garamoon and Abdelhaleem [25]. Never-
theless, the agreement is still quite reasonable. Due to the
explicit contribution of ionization, the differences between
the bulk and flux values of the drift velocity are of the
order of 25% in the limit of the highest E/N considered in
this work. Below 100 Td, however there is no appreciable
difference between the two. In conclusion, from the pro-
file of the drift velocity calculated using the present set
of cross sections and temperature of 293 K for mercury
vapor, there are no signs of NDC, i.e., the drift velocity is
a monotonically increasing function of E/N .

In Figure 4 we show the variation of the flux and bulk
drift velocities with E/N . The plots were calculated using
the present set of cross sections and those developed by
Rockwood [17], Sakai et al. [20] and Suzuki et al. [21].
For clarity, the flux drift velocity is shown only for the
present set of cross sections. The results are also com-
pared with the two sets of Raju’s recommended data
[15,16]. For the lower values of E/N , we again observe
the inconsistency between our calculated data assuming
the present set of cross sections and Raju’s 2012 rec-
ommended data [16]. Increasing the temperature of the
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Fig. 7. Drift velocity as a function of E/N for a range of
pressures. The temperature of the mercury vapor is 573 K.

mercury vapor to 573 K the agreement between our calcu-
lations and Raju’s 2012 recommended data is excellent
(see Fig. 3). In the same region of E/N , the agree-
ment between the calculated drift velocities assuming
the cross section sets developed by Rockwood [17] and
Sakai et al. [20] is very good. The agreement is not sur-
prising, since the cross section for momentum transfer
in elastic collisions developed by Rockwood [17] was also
used by Sakai et al. [20]. For the intermediate values of
E/N (10 Td< E/N <100 Td), we observe the excellent
agreement between all calculated drift velocities. For the
higher values of E/N , the agreement is slightly deterio-
rated. The calculated flux drift velocity using the present
set of cross sections agrees reasonably well with the calcu-
lated bulk drift velocity assuming the set of cross sections
developed by Sakai et al. [20]. On the other hand, the bulk
drift velocities calculated using the present set and a set
of cross sections developed by Suzuki et al. [21] agree very
well. The set of cross sections developed by Rockwood [17]
could not be used for calculations in the limit of higher
E/N since it covers the range of electron energies only up
to 30 eV. In conclusion, with the exception of the Raju’s
2006 recommended data, our calculations clearly show the
absence of NDC for all sets of cross sections employed in
this work.

Figure 5 shows the flux and the bulk characteristic
energies as a function of E/N . The characteristic energy
provides a good estimate of the average energy of the elec-
trons in the swarm. This quantity is extremely sensitive to
the presence of inelastic processes and hence its compar-
ison with experimental data indicates the quality of the
energy balance of the cross section sets under considera-
tion. Calculations using the present set of cross sections
and those developed by Rockwood [17], Sakai et al. [20]
and Suzuki et al. [21] are compared with the experimen-
tal results of Ovcharenko and Chernyshev [69], Hayes and
Wojacyek [70] and Klarfeld [67]. For the lower values of
E/N , we observe that the characteristic energy calculated
from the present set of cross sections is in quite nice agree-
ment with measurements of Ovcharenko and Chernyshev
[69]. The agreement is also good with the measurements
of Hayes and Wojacyek [70] for the intermediate values of

Fig. 8. Mean energy as a function of E/N for the same
conditions as in Figure 7.

E/N while in the limit of the highest E/N considered in
this work, the calculated values approach to each other
and generally tend to lie a little below the experimental
results of Klarfeld [67].

In Figure 6 we show the variation of the ionization
coefficient with E/N . Calculations using the present set
of cross sections and those published by Rockwood [17],
Sakai et al. [20] and Suzuki et al. [21] are compared
with the Raju’s 2012 recommended data. The agreement
between Raju’s 2012 recommended data and those cal-
culated assuming the present set of cross sections is very
good. On the other hand, calculations assuming the set of
cross sections developed by Suzuki et al. [21] are system-
atically higher than Raju’s 2012 recommended data while
calculations using the sets of cross sections developed by
Rockwood [17] and Sakai et al. [20] are lower at low E/N
than Raju’s 2012 recommended data. We observe that cal-
culation based on the present set of cross sections slightly
deviate from the Raju’s 2012 recommended data only in
the limit of lower E/N . One may expect such behavior as
the computer code must cope with very small values of
the distribution function in the energy region where the
ionization cross section is appreciable. Furthermore, the
experimental measurements of the ionization coefficient
in the vicinity of the ionization threshold, usually have
great uncertainty.

3.4 Pressure dependence of transport coefficients and
NDC effect

In this section we investigate the effects of mercury dimes
on electron transport. Calculations are performed for a
range of pressures while the temperature of mercury vapor
is set to 573 K. The cross sections detailed in Section 3.2
and displayed in Figure 1 are used as an input into Monte
Carlo simulations. In Figure 7 we show the drift veloc-
ity as a function of E/N for a range of pressures. From
Figure 7 we see that the drift velocity increases with the
pressure of mercury vapor for low values of E/N and
becomes pressure independent for higher values of E/N .
Other transport coefficients and properties show pressure
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Fig. 9. Longitudinal and transverse diffusion coefficients as a function of E/N for the same conditions as in Figure 7.

dependence over the same range of E/N . As an illustra-
tive example, in Figures 8 and 9 we show the variation
of the mean energy and diffusion coefficients with E/N .
While the mean energy decreases with an increasing pres-
sure, the diffusion coefficients are increased. The pressure
dependence of the drift velocity (and other transport coef-
ficients) arises through the pressure dependence of the
dimer cross section. It is well known that in elastic col-
lisions a fraction of the initial energy m/M is transferred
from the electron to the neutral particle, while for inelas-
tic collisions a considerably larger fixed energy loss is
transferred in addition, per each interaction. Assuming
isotropic model of scattering, the vector of electron veloc-
ity is arbitrarily oriented after collisions, which leads to
a reduction in the directed component of the velocity. In
other words, elastic collisions have the effect of random-
izing the direction of electron motion, while preserving
their speeds. When inelastic collisions are significant, how-
ever, the energy transfer is no longer relatively small.
This in turns reduces the chaotic component of the elec-
tron velocity, and inelastic collisions no longer have the
effect of randomizing the direction of electron motion.
This indicates that the increase in gas pressure enhances
drift velocity and reduces mean energy. For higher electron
energies, the cross section for mercury dimers is reduced
and transport coefficients become pressure independent.

In addition to the pressure dependence of the drift
velocity and other transport coefficients, we observe the
presence of NDC in the profiles of drift velocity in the
limit of pressures that approach to the pressure of satu-
rated mercury vapor. A study of the NDC for model gases
was performed by Petrović et al. [38] in which the condi-
tions for elastic and inelastic cross sections required for
the occurrence of NDC were discussed. Using momentum
transfer theory, Robson had developed an analytical cri-
terion for NDC in a conservative single gas [39] that was
further extended in [40]. An intimate connection between
NDC and inelastic collisions was recognized in these stud-
ies. It was shown that NDC arises for certain combinations
of elastic and inelastic cross sections in which, on increas-
ing the electric field, there is a rapid transition from
inelastic to elastic dominated energy loss mechanism. In
this transition region, for a given increase in the electric
field, a greater proportion of the energy input goes into

chaotic motion rather than directed motion. As a conse-
quence, the drift velocity falls with an increasing electric
field.

This is exactly what happens in mercury vapor at
higher pressures. As already discussed, mercury dimers
are always present in a mercury vapor at a concentration
proportional to the vapor pressure. Thus, as the pres-
sure of mercury vapor increases, the dimer cross section
increases as well as the corresponding collision frequency
(see Fig. 10). For pressures higher than approximately
100 Torr and in the limit of lower values of E/N , the
inelastic energy loss mechanism dominates the elastic
energy loss mechanism. For increasing E/N the collision
frequency of inelastic collisions decreases while the colli-
sion frequency for elastic collisions rises. This favors the
development of NDC even though the difference between
the collision frequencies is almost five orders of magni-
tude! However, if one takes into account that the average
energy loss in an elastic collision is between 1 × 10−7

and 1 × 10−6 eV, while the energy loss in inelastic col-
lisions is 0.04 eV, it is clear that a relatively small ratio
between collision frequencies in inelastic and elastic col-
lisions is compensated by the substantial differences in
energy losses. At pressures lower than approximately
100 Torr, the concentration of mercury dimers is low. As
a consequence, the energy losses in inelastic collisions are
significantly lower than those in elastic collisions over the
entire range of E/N . Under these conditions, NDC does
not occur in the E/N profiles of the drift velocity.

These physical arguments are illustrated in Figure 11.
Figure 11 shows the ratio between the average elastic and
inelastic energy losses as a function of E/N . The aver-
age inelastic energy loss Ωinel is evaluated as a product
of the rate coefficient for an inelastic dimer process and
the corresponding threshold of 0.04 eV. It should be noted
that the elastic energy loss Ωelas is approximated by the
product of mean energy, the collision frequency of elastic
collisions and the factor 2m/M . By doing so, we have actu-
ally reduced the contribution of elastic collisions, having in
mind that the collision frequency of elastic collisions and
the corresponding energy losses are greater for electrons
with energies higher than the average electron energy. The
accurate calculation may be very efficiently performed in
Monte Carlo simulations, but we defer this to a future
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Fig. 10. Rate coefficients for elastic and inelastic collisions as a function of E/N in the presence of mercury dimers. The rate
coefficient of inelastic processes which describes the presence of dimers is multiplied by the factor of 1 × 105. Calculations are
performed for the same conditions as in Figure 7.

Fig. 11. Ratio between the average elastic and inelastic energy
losses as a function of E/N for the same conditions as in
Figure 7.

work. In any case, we observe that only for higher pres-
sures of mercury vapor the ratio between energy losses in
elastic and inelastic collisions favors the development of
NDC.

Figures 12 and 13 illustrate the importance of includ-
ing an accurate representation for thermal motion of the
mercury atoms in our analysis of the drift velocity in the
limit of lower values of E/N . Our multi term Boltzmann
equation results with the rigorously incorporated effects
of thermal motion of the mercury atoms are compared
with our Monte Carlo results obtained under the condi-
tions in which no thermal motion is considered. Our Monte
Carlo results with the systematically incorporated effects
of thermal motion of the mercury atoms are not included
in this figure as they are essentially the same as those
obtained through a multi term approach for solving the
Boltzmann equation. Both sets of our calculated data are
compared with the measurements of England and Elford
[37]. Comparing experiment and our Boltzmann equation

results with the rigorously incorporated effects of thermal
motion of the mercury atoms, we observe an excellent
agreement between these two sets of data. In contrast,
our Monte Carlo simulation results in which no thermal
motion of the mercury atoms is considered, systematically
overestimate the measurements in the limit of the low-
est E/N . A false NDC like structure in the Monte Carlo
T = 0 profiles of the drift velocity for all pressures of the
mercury vapor is clearly evident. However, for increas-
ing E/N the agreement between the measurements and
Monte Carlo simulations in which no thermal motion is
considered, becomes much better. As expected, the dis-
agreement between the measurements and Monte Carlo
simulations in which no thermal motion is considered is
more pronounced for higher pressures.

3.5 Temperature dependence of transport coefficients

In this section we present results showing the variation of
transport properties with E/N and mercury vapor tem-
perature, T . Calculations are performed for two different
cases: (1) the presence of mercury dimers assuming the
pressure of 248 Torr, and (2) no dimers in the mercury
vapor. Temperatures less than 573 K cannot be considered
in the first scenario as for this pressure the mercury is in
liquid form. These two scenarios for our calculations are
considered with the aim of separating the thermal effects
from those induced by mercury dimers.

In Figure 14 we show the variation of the mean energy
with E/N for various mercury vapor temperatures, T . We
observe that the mean energy is a monotonically increas-
ing function of E/N for a fixed T . In the limit of low
values of E/N the mean energy of the electrons is ther-
mal and does not depend on E/N . This suggests that
the velocity distribution function is essentially a thermal
Maxwellian. For increasing T , the thermal deadlock is bro-
ken at higher E/N . For T = 573 K and T = 1000 K, we
observe that the mean energy is higher in the case where
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Fig. 12. Comparison between the calculated and measured values of drift velocity for pressures of 40.3 Torr (left panel) and
60.4 Torr (right panel). Monte Carlo results are obtained assuming atoms at rest (T = 0 K) while the gas temperature effects
are considered through a multi term approach for solving the Boltzmann equation (T = 573 K).

Fig. 13. Comparison between the calculated and measured values of drift velocity for pressures of 93.0 Torr (left panel) and
108.5 Torr (right panel). Calculations are performed for the same conditions as in Figure 12.

Fig. 14. Variation of the mean energy of the electron swarm
as a function of E/N for various mercury vapor temperatures
as indicated on the graph. The pressure of mercury vapor is
248 Torr.

no mercury dimers occur. It is clear that when the mer-
cury dimers are present, the electrons lose more energy in
inelastic collisions. For T ≥ 2000 K the influence of mer-
cury dimers is negligible. For low and intermediate values

of E/N the mean energy is distinctively dependent on T .
In the limit of higher values of E/N the mean energies
are higher than the corresponding thermal mean energies,
which is a clear sign that the velocity distribution func-
tion is no longer a thermal Maxwellian. In this regime, the
impact of the mercury vapor temperature T on the mean
energies is minimal.

In Figures 15 and 16 we show the variation of the drift
velocity with E/N for various mercury vapor tempera-
tures, T . The drift velocity is a monotonically increasing
function of E/N for all mercury vapor temperatures T ,
except for T = 573 K. At this temperature, NDC is clearly
evident in the E/N -profile of drift velocity. With further
increase in mercury vapor temperature, a decrease in drift
velocity with increasing E/N is firstly reduced and then it
is completely removed. From equation (14) it is clear that
for increasing mercury vapor temperature and fixed pres-
sure, the mercury-dimer cross section declines. As a conse-
quence, the collision frequency of inelastic collisions whose
presence is of an essential importance for the development
of NDC effect, is also firstly reduced, and then severely
minimized which ultimately leads to a disappearance of
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Fig. 15. Variation of the bulk drift velocity of the electron swarm as a function of E/N for the same conditions as in Figure 14.

Fig. 16. Variation of the bulk longitudinal diffusion coefficient of the electron swarm as a function of E/N for the same
conditions as in Figure 14.

NDC. The lesson from this is that the temperature of mer-
cury vapor can be used to control the occurrence of NDC.

In the limit of lower E/N the drift velocity generally
decreases with increasing T , though this is not the case for
T = 8000 K. For T = 8000 K we see that the drift veloc-
ity is above the values calculated for T = 4000 K. For the
temperature of 8000 K, the mean energy is high enough
to exceed the peak value of the “0.4 eV” shape resonance
in the cross section for elastic scattering. On the other
hand, for T = 4000 K, the mean energy is significantly
lower and corresponds to the range of energies in which the
cross section for elastic collisions rises with an increasing
energy of the electrons. As a consequence, the drift veloc-
ity is lower. For the intermediate values of E/N (between
1 and 10 Td, approximately) the behavior of drift velocity
is very complex. In the energy region corresponding to the
intermediate values of E/N , there is an overlap of the dis-
tribution function not only with a very large resonance in
the elastic cross section, but also with the cross sections of
inelastic processes that are now open. Finally, for higher
values of E/N the drift velocity does not depend on the
mercury vapor temperature and the drift of the electrons
is entirely controlled by the electric field.

The variation of the diffusion coefficients with E/N
for various mercury vapor temperatures, T , is shown in
Figures 16 and 17. The impact of mercury dimers on
both NDL and NDT is evident only for lower values of

E/N and lower T . At fixed T and for increasing E/N
the electric field rises the energy of the electrons and
the mercury-dimer cross section begins to fall. The same
occurs at fixed E/N and with increasing T . Furthermore,
in the limit of the lowest E/N and for a fixed E/N both
NDL and NDT display a minimum with respect to T .
In contrast to the drift velocity, the minimum occurs at
T = 2000 K, indicating that diffusion coefficients show a
remarkable sensitivity to the energy dependence of cross
sections and presence of inelastic collisions. For the inter-
mediate values of E/N , the most distinct property is the
existence of a local minimum in the E/N profiles of both
NDL and NDT . With a decreasing temperature, the min-
imum becomes more pronounced and is shifted towards
higher E/N . The fall in both NDL and NDT by increas-
ing E/N reflects the rapidly rising elastic cross section,
e.g., the velocity distribution function samples the lower
energy branch of the “0.4 eV” shape resonance. Com-
paring the behavior of diffusion coefficients at low and
intermediate values of E/N , one can see that the con-
tribution of mercury dimers is more important for lower
values of E/N . In the limit of higher E/N , the impact
of temperature on the behavior of diffusion coefficients
is minimal. However, the longitudinal diffusion coefficient
shows a more complex behavior with varying temperature.

In Figure 18 we show variation of the ratio NDT to
NDL with E/N for various mercury vapor temperatures,
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Fig. 17. Variation of the bulk transverse diffusion coefficient of the electron swarm as a function of E/N for the same conditions
as in Figure 14.

Fig. 18. Variation of the ratio of transverse to longitudinal diffusion coefficient of the electron swarm as a function of E/N for
the same conditions as in Figure 14. Bulk values of diffusion coefficients are used.

T . We observe that the degree of anisotropic diffusion is
significantly reduced by increasing mercury vapor tem-
perature, T , in both scenarios considered here, i.e., in the
presence of dimers and in their absence. In the limit of the
lowest E/N diffusion is isotropic, i.e. NDL = NDT since
velocity distribution function is a thermal Maxwellian. At
a fixed T the ratio NDT /NDL increases with increas-
ing E/N , reaching a maximal value between 0.5 and
0.9 Td depending on the temperature T , and then it starts
to decrease with E/N . For T = 573 K there is a factor
higher than 4 between the longitudinal and transverse
diffusion coefficients. In contrast, for T = 8000 K the dif-
fusion is isotropic in a wide range of E/N , and only
for E/N > 1 Td, the longitudinal diffusion coefficient is
greater than the transverse, i.e. NDL > NDT . The rever-
sal of the inequality is a clear sign of the rapid fall in the
elastic cross section. Indeed, in this energy range the veloc-
ity distribution function samples the high energy branch
of the “0.4” shape resonance of the elastic cross sections
which rapidly falls with increasing electron energy.

4 Conclusion

In this paper, we have presented the results of a system-
atic investigation of electron transport in mercury vapor

under the influence of electric field. First, we have com-
piled a complete set of cross sections for electron scattering
in mercury vapor using the available data in the litera-
ture for individual collisional processes. In our evaluation,
performed both with multi term Boltzmann and Monte
Carlo codes, the initially compiled set of cross sections
has been modified in order to reproduce the experimental
data. The best agreement between calculated and mea-
sured drift velocities in the limit of lower electron energies
was achieved by adjusting only the magnitude of the
elastic momentum transfer cross section. For higher elec-
tron energies, we have only slightly modified the cross
sections for electronic excitations in order to reproduce
the measured ionization coefficient. We have also consid-
ered the issue of assessing the completeness, accuracy, and
consistency of other cross section sets for electron scatter-
ing in mercury vapor by comparing calculated transport
coefficients with those measured in various experiments.
Our calculations highlight some inadequacies in these
sets of cross sections and indicate possibilities for their
improvements.

We have also outlined issues associated with the pres-
sure and temperature dependences of transport coeffi-
cients. It was shown that the pressure dependence of the
transport coefficients arise through the pressure depen-
dence of the mercury-dimer cross section. In particular,
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we have discussed the NDC phenomenon in the limit of
lower values of the reduced electric fields. Conditions lead-
ing to NDC have been discussed and it was concluded
that the phenomenon is induced by the presence of mer-
cury dimers. Following the previous works of England and
Elford [37], we have derived the mercury-dimer cross sec-
tion for a range of pressures and temperatures of mercury
vapor. One of the critical elements in our analysis of the
drift velocity in the limit of lower values of the reduced
electric fields was an accurate representation for thermal
motion of the mercury atoms. Within a multi term theory
for solving the Boltzmann equation used in the present
work, the thermal motion of the neutral mercury atoms is
systematically incorporated into all collision process oper-
ators and all spherical harmonic equations. Likewise, our
Monte Carlo simulation code has been improved by imple-
menting an efficient algorithm for calculating the collision
frequency in the case when thermal motion of the back-
ground gas cannot be neglected for a Maxwellian velocity
distribution of the background gas particles. Without
these critical elements in a theory for solving the Boltz-
mann equation and Monte Carlo simulation codes, the
variation of the drift velocity with the reduced electric
field is unphysical in domain of lower electric fields.

Using a set of cross sections presented in this work, in
the near future we plan to investigate the electron trans-
port in crossed electric and magnetic fields. Calculations
will be made with the aim of providing the data for fluid
modeling of inductively coupled mercury discharges which
are utilized in some types of electrodeless lamps. Similar
calculations will be performed for ac electric and mag-
netic fields having in mind that both the electric and
magnetic fields could be time-dependent. We also plan to
develop complete and consistent sets of cross section for
other materials, including indium, sodium and other metal
vapors relevant for the lighting industry. The first steps
have been made and the results are very encouraging [71].
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