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1. Introduction

The idea of thermodynamic equilibrium (TE) is one of the 
most widely used ideas in the foundations of plasma physics. 
Not only is TE used as a background gas, but it is also used 
as the plasma itself, and, further, TE is implicitly incorpo-
rated in most theories through application of the Maxwell 
Boltzmann distribution function. On the other hand, the 
idea of local thermodynamic equilibrium (LTE) in principle 

means that TE is not maintained, and that energy converted 
into the effective temperature is being used as a fitting 
parameter, but also that all the principles of TE still apply 
for the adjusted (local) temperature. It is often overlooked 
that TE implies that each process is balanced by its inverse 
process. It is difficult to envisage just exactly how this con-
dition could be met under circumstances where most of the 
energy that is fed into the non-equilibrium, low-temperature 
discharges comes from an external electric field. The notion 
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Abstract
In this article we show three quite different examples of low-temperature plasmas, where one 
can follow the connection of the elementary binary processes (occurring at the nanoscopic 
scale) to the macroscopic discharge behavior and to its application. The first example is on 
the nature of the higher-order transport coefficient (second-order diffusion or skewness); 
how it may be used to improve the modelling of plasmas and also on how it may be used to 
discern details of the relevant cross sections. A prerequisite for such modeling and use of 
transport data is that the hydrodynamic approximation is applicable. In the second example, 
we show the actual development of avalanches in a resistive plate chamber particle detector 
by conducting kinetic modelling (although it may also be achieved by using swarm data). 
The current and deposited charge waveforms may be predicted accurately showing temporal 
resolution, which allows us to optimize detectors by adjusting the gas mixture composition 
and external fields. Here kinetic modeling is necessary to establish high accuracy and the 
details of the physics that supports fluid models that allows us to follow the transition to 
streamers. Finally, we show an example of positron traps filled with gas that, for all practical 
purposes, are a weakly ionized gas akin to swarms, and may be modelled in that fashion. 
However, low pressures dictate the need to apply full kinetic modelling and use the energy 
distribution function to explain the kinetics of the system. In this way, it is possible to 
confirm a well established phenomenology, but in a manner that allows precise quantitative 
comparisons and description, and thus open doors to a possible optimization.
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of non-equilibrium is implemented very well in a wide range 
of plasma models, starting from fluid models and hybrid 
models, all the way to fully kinetic codes such as particle-in-
cell (PIC) modelling.

At end of a field of ionized gases, opposite to the fully 
developed plasma, at the lowest space charge densities, 
electrons are accelerated (gain energy) from the external 
electric field and dissipate in collisions with the background 
gas. This realm is known as a swarm (swarm physics), and 
is often described by simple swarm models. We shall try to 
illustrate how and where one may employ concepts developed 
in low-temperature plasmas for problems that are not 
traditional non-equilibrium plasmas such as positrons in gases 
and gas-filled traps, gas breakdown and particle detectors.

The three selected examples are: the use and properties of 
higher-order transport coefficients (skewness) and how they 
may be implemented to close the system of equations  for 
modeling of atmospheric plasmas; modeling of resistive 
plate chamber (RPC) particle detectors with a focus on the 
development of avalanches, and prediction of the current and 
deposited charge; and, finally, modeling of a generic repre-
sentation of the three stage gas-filled positron trap, where 
the same models as for electrons may be employed in a full 
kinetic description to calculate the temporal development of 
the energy distribution function, and, through that, to describe 
how and when individual elementary processes affect the per-
formance of the trap.

This is a review article as it covers three different topics 
that will (or have been) be presented in detail elsewhere. Yet 
the majority of the results will be developed in this paper. 
Necessarily, as it is a broad review, some finer points will be 
omitted in pursuit of the bigger picture, however, all will be 
covered elsewhere and the relevant literature is cited.

2. Higher-order transport and plasma modeling

The fluid equations often employed in plasma modeling are a 
part of an infinite chain, and whenever the chain is broken one 
needs a higher-order equation and related quantities to close 
the system of equations  (Dujko et  al 2013). That is why a 
closing of the equations is forced, sometimes labeled as ansatz, 
although the closure is not quite arbitrary. It is often based on 
some principles or simplifying arguments (Robson et al 2005) 
involving higher-order equations  and related transport coef-
ficients. Robson et al (2005) claimed that some serious errors 
have been incorporated into fluid equations  that are com-
monly used in plasma modeling, and suggested benchmarks 
to test plasma models.

Equations (1) and (2) shown below, are the flux gradient 
equation  and generalized diffusion equation, respectively, 
truncated at the contribution of the third order transport 
coefficients (also known as skewness). The terms, including 
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the flux of charged particles, charged particle number density, 
flux drift velocity, flux diffusion tensor, flux skewness tensor, 
bulk drift velocity, bulk diffusion tensor, bulk skewness tensor 
and rate for reactions, respectively. If equations (1) and/or (2) 
are coupled to the Poisson equation for an electric field then 
the system of corresponding differential equations might be 
closed in the so-called local field approximation. This means 
that all transport properties are functions of the local electric 
field. The skewness tensor has been systematically ignored 
in previous fluid models of plasma discharges, although its 
contrib ution may be significant for discharges operating at 
high electric fields, and in particular for discharges in which 
the ion dynamics play an important role.

As for experimental determination of the higher-order dif-
fusion of electrons, there have been some attempts, but those 
were mostly regarded as unsuccessful due to the end effects 
(Denman and Schlie 1990). In other words, those experiments 
may have failed to comply with both the requirements for neg-
ligible non-hydrodynamic regions and for lower pressures. An 
estimate was made that reliable skweness experiments would 
have to be up to 10 m long with pressures that are at least ten 
times smaller than those in standard swarm experiments. It 
seems that the only reliable yet very weak result was observed 
for H2 in time of flight (TOF) emission experiments of Blevin 
et al (1976, 1978), as described in the PhD thesis by Hunter 
(1977). This is because the measurement was made away from 
the electrodes, thus providing a hydrodynamic environment.

At the same time some calculations were performed based 
on the available cross sections either by using a Monte Carlo 
simulation (MCS) and two term solutions of the Boltzmann 
equation (BE) (Penetrante and Bardsley 1990) or by using the 
momentum transfer theory (Vrhovac et  al 1999). Whealton 
and Mason (1974) were the first to determine the correct struc-
ture of the skewness tensor in the magnetic field free case. For 
ions there have been more general studies and in particular 
theoretical studies. Koutselos gave a different prediction of 
the structure and symmetry of the tensor (Koutselos 1997) 
but those results were challenged (corrected) by Vrhovac et al 
(1999), who confirmed the structure of the skewness tensor 
previously determined by Whealton and Mason. Subsequently 
Koutselos confirmed the structure of the skewness tensor 
obtained by previous authors (Koutselos 2001).

Finally, having in mind the need for data in fluid modeling 
and the poor likelihood of experimental studies in the near 
future, a systematic study has been completed by Simonović 
et  al (2016) dealing with the symmetry by using the group 
projector method (Barut and Raczka 1980, Tung 1984), 
multi-term Boltzmann equation solutions and MCS results in 
general terms. It should be noted that the third-order transport 
coefficients are often called skewness, but in principle it is the 
term that was to be applied only for the longitudinal diagonal 
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term, which defines most directly the (departure from the) 
shape of the moving Gaussian. We will, however, use the term 
skewness for the entire tensor and all its terms.

The structure of the skewness tensor is the following 
(Whealton and Mason 1974, Vrhovac et al 1999, Koutselos 
2001, Simonović et al 2016):
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where a b x y z, , ,{ }∈  and Qabc are the independent, non-
zero terms in the tensor (although some of them may be 
identical if they are established for different permutations 
of the same derivatives). The components of the tensor 
may be grouped as longitudinal Q QzzzL =  and transverse 

Q Q Q Qzxx xxz xzxT
1

3
( )= + + .

In this paper, we present results for skewness of electron 
swarms in methane. Methane is known for producing 
negative differential conductivity (NDC) and in this work 
we will demonstrate the unusual variation of the longitudinal 
and transverse components of the skewness tensor for E/N 
(electric field over the gas number density) regions in which 
NDC occurs. NDC is characterized by a decrease in the drift 
velocity despite an increase in the magnitude of the applied 
reduced electric field. Cross sections  for electron scattering 
in methane are taken from Šašić et al (2004). For the purpose 
of this calculation we assumed a cold gas approx imation: 
T  =  0 K, which is justified as we covered mostly the E/N  
range where mean energies are considerably higher than the 
thermal energy. The initial number of electrons in the simula-
tions was 107 and those were followed for sufficient time to 
achieve full equilibration with the applied field before sam-
pling was applied. Sampling in an MCS is performed either  

for the flux (velocity space) Q r r rabc t a b c
f 1

3 !

d

d
( )( ) = ∗ ∗ ∗  or for the 

bulk (real space) Q r r rabc t a b c
b 1

3 !

d

d
( ) = ∗ ∗ ∗  components (Simonović 

et al 2016) where r r ra a a= −∗ .
Uncertainties are established as the root mean square devi-

ations. Statistical fluctuations in MCSs are more pronounced 
for skewness than for the lower-order transport coefficients. 
Thus, it is very important to present statistical uncertainties 
(errors) associated with the results. In addition to Monte Carlo 
results, the skewness tensor is calculated from the multi-term 
Boltzmann equation solution. The explicit formulas for skew-
ness tensor elements in terms of moments of the distribution 
function will be given in a forthcoming paper (Simonović 
et al 2016).

In figures 1 and 2 we show the variation of the longitudinal 
and transverse skewness tensor components with E/N for elec-
trons in CH4, respectively. In figure 3 we show the variation 
of independent components of the skewness tensor with E/N. 
The independent components of the skewness tensor have 
been calculated from a multi-term solution of the Boltzmann 
equation.

The first observation that is very important is that the multi-
term Boltzmann equation results agree very well with those 
obtained in MCSs. This is an important cross check and it 
means that the techniques to calculate the skewness are inter-
nally consistent, although two very different approaches are 
implemented (having said that we assume that the solution to 
the Boltzmann equation and the MC are both well established 
and tested (Dujko et al 2010)).

We see that QT becomes negative in the same range of E/N 
where NDC occurs. At the same time QL remains positive. 
Qzxx and the sum of Qxxz and Qxzx are negative in different 
regions of E/N.

Comparing the second- and third-order longitudinal trans-
port coefficients we noticed that if diffusion decreases with 
increasing E/N then the skewness also decreases, but even 
faster (figures  4 and 5). When it comes to the effect of the 
cross sections (or inversely to the ability to determine the cross 
sections from the transport data) it seems that skewness has a 

Figure 1. The longitudinal component of the skewness tensor 
calculated for electrons in methane.

Figure 2. The transverse component of the skewness tensor 
calculated for electrons in methane.
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more pronounced structure, and thus is more useful in fixing 
the shape and absolute values of the cross sections. If the dif-
fusion increases, then we are able to distinguish between the 
two scenarios: if diffusion increases as a concave function, 
then the skewness decreases, while if the diffusion increases 
as a convex (or linear) function then the skewness increases.

We have observed that the transverse skewness is also in 
a good, if not better, correlation with the longitudinal diffu-
sion (figure 5). This is a good example that illustrates that the 
skewness tensor represents directional motion.

Different transverse components have different E/N pro-
files. Qzxx follows the behavior of the drift velocity while the 
remaining components change their trends of behavior near 
the end of the NDC region (figure 6). For different gases we 
have seen different trends and a clear correlation was not 
found (Simonović et al 2016).

Furthermore, but without illustrating it with special figures, 
the explicit effect of non-conservative collisions (ionization 
in this case) has been observed. However, in many cases the 

agreement between multi-term BE results and those obtained 
in MCSs is better than what would be expected based on the 
estimated errors. At the same time it turned out that discrepan-
cies between a two-term and multi-term (MCS) results may be 
quite large, ranging up to a factor of 10.

Possible measurements of higher-order transport coef-
ficients seem possible and also profitable for the sake of 
determining the cross sections. Nevertheless the difficulties 
and possible uncertainties may outweigh the benefits. Thus, 
calculation of the data seems like an optimum choice for 
application in higher-order plasma models. The behavior of 
higher-order transport coefficients provides an insight into 
the effect of individual cross sections (their shape and mag-
nitude), and their features such as the Ramsauer Townsend 
effect or resonances on the overall plasma behavior. The 
transport coefficients as an intermediate step give a guidance, 
especially when they develop special features (kinetic effects 

Figure 4. Comparison between longitudinal diffusion and skewness 
for electrons in methane (the scale for the two different transport 
coefficients are provided in the legend).

Figure 5. Comparison between longitudinal diffusion and 
transverse skewness for electrons in methane (the scale for the two 
different transport coefficients are provided in the legend).

Figure 3. All independent components of the skewness tensor 
calculated for electrons in methane.

Figure 6. Off-diagonal components of skewness compared to 
the drift velocity for electrons in methane (the scale for the two 
different transport coefficients are provided in the legend).

Plasma Phys. Control. Fusion 59 (2017) 014026
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(Petrović et al 2009)) that may also be easily implemented in 
the determination of the cross sections.

3. Avalanches in resistive plate chambers

The next example of the connection of the elementary pro-
cesses to plasma behavior through intermediate swarm-like 
phenomenology modeling will be modeling of RPC detectors. 
These devices are used for timing and triggering purposes in 
many high-energy physics experiments at CERN and else-
where (The ATLAS Collaboration 2008, Santonico 2012). 
RPCs may be both used for spatial and temporal detection 
while providing large signal amplifications. They are usually 
operated in avalanche (swarm) or plasma (streamer) regimes 
depending on the required amplification and performance 
characteristics. Numerous models have been developed to 
predict RPC performance and modes of operation (Lippmann 
et al 2004, Moshaii et al 2012). We have studied systemati-
cally the swarm data (Bošnjaković et al 2014a) and then the 

model of RPCs (Bošnjaković et  al 2014b) where RPC effi-
ciency and timing resolution have been predicted by MCS 
without any adjustable parameters, and were found to agree 
with experiment very well. Here we show some of the data 
not presented in Bošnjaković et al (2014b), which focuses on 
avalanche development and furthermore the induced current 
and charge.

Calculations of the development of the Townsend 
avalanche have been performed for a timing RPC gas mixture 
of C2H2F4:i-C4H10:SF6  =  85:5:10 with realistic chamber 
geometry (gas gap  =  0.3 mm) at E/N  =  421 Td. We show 
in figure 7 the development of an avalanche in the gap with 
three initial clusters of charges (first generation secondary 
electrons indicated by arrows at 0 ps) formed by an incoming 
high-energy particle. The first cluster (from the left) has one 
electron, the second has nine and the third has 983 initial 
electrons. The distribution over a small group of cells has been 
randomly selected according to well-established distributions. 
At the beginning, the initial condition shapes the profile of 
the ensemble, but eventually a Gaussian is formed that drifts 
under the influence of an electric field and diffuses due to 
numerous collisions.

Figure 8. The time development of (a) electron induced current and 
(b) induced charge in the RPC device.

Figure 9. Schematic drawing of a generic Surko trap consisting of 
three equal potential drops. The composition of the background gas, 
its pressure and geometry are given in table 1.

Table 1. Parameters for simulation of a generic positron Surko trap.

Parameters Stage I Stage II Stage III

Radius (mm) 5 20 20
Length (m) 0.5 0.5 0.5
Pressure (Torr) 10−3 10−4 10−5

Background gas N2 N2 N CF2
0.5

4
0.5+

Magnetic field (G) 530 530 530
Voltage (V) 20 10 0

The initial parameters

Potential of the entrance 
electrode (V)

30

Potential of the source (V) 0.1
Width (FWHM) of the initial 
energy distribution (eV)

1.5

Figure 7. The spatio-temporal development of electron avalanches 
((a) and (b)) in an RPC device. The number of electrons per cell 
(1D integration of a 3D simulation) is shown where the cells 
(1 cell  =  1 µm) are along the discharge axis x. The cathode 
corresponds to x  =  0 while the anode corresponds to x  =  300 µm.

Plasma Phys. Control. Fusion 59 (2017) 014026
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We will first follow the development of the cluster closest 
to the anode (at 270 µm), as indicated by spatial electron pro-
files at different times in figure 7(a). The largest initial group, 
which is also the closest to the anode, develops the fastest: 
from the initial very sharp profile it quickly establishes a 
Gaussian shape that also very quickly gets absorbed by the 
anode. The second peak (from the right) is quick to follow but 
it is very small and cannot be observed clearly due to interfer-
ence from the first pulse. In figure 7(b), we show the develop-
ment of the first cluster (at 100 µm) for longer times. This 
cluster is the furthest from the anode and it takes the most 
time to reach the anode, again as a well developed moving 
Gaussian. It develops, however, a well-separated and defined 
current pulse (unlike the second cluster of charged particles). 
The induced current and the corresponding induced charge are 
shown in figure 8.

The predictions in figure  8, extended to provide impor-
tant information on the temporal resolution, may be used to 
optim ize the device by changing gas composition, field and 
geometry, and also may be extended to allow for the forma-
tion of the plasma in later stages when a streamer discharge 
may be generated at atmospheric pressure (Bošnjaković 
et  al 2016). Trial and error development of such devices is 
simply too costly to allow for an empirical learning curve. 
Nevertheless, one could argue that it could be possible to 
develop a model based on a standard swarm description of a 
moving Gaussian with drift and diffusion plus the benefit of 
multiplication through ionization. All of these processes have 
their swarm coefficients. However, the very short times of the 
formation of the initial cluster, it being inhomogeneous and a 
very nonlinear growth with a possible separation of faster and 
slower electrons, dictate the need to perform an MCS in order 
to achieve the required accuracy. Thus, this example allows for 
the use of transport coefficients, but is better accomplished by 
full kinetic modeling. Transport coefficients are better taken 
advantage of in fluid modeling of the possibly developing 
streamer (Bošnjaković et al 2016). In any case, the ionized gas 
and the developing plasma channel are both represented very 

accurately (qualitatively and quantitatively). Here we have 
used kinetic swarm modeling, although using transport coef-
ficients may also be an option, albeit a less accurate option.

4. Gas-filled positron (and electron) traps

While it is often assumed that keeping the antimatter away 
from the matter is a way of preserving it longer, the intro-
duction of background gas to the vacuum magnetic field trap 
led to the birth of the so-called Penning Malmberg Surko 
traps (often known simply as Surko traps). These devices 
take advantage of the very narrow region of energies, where 
in nitrogen electronic excitation can compete and even over-
power the otherwise dominant (for almost all other gases and 
inelastic processes) positronium (Ps) formation (Murphy and 
Surko 1992, Cassidy et al 2006, Clarke et al 2006, Sullivan 
et al 2008, Marjanovic et al 2011, Danielson et al 2015). To 
be fair, the principles of the trap have been worked out in great 
detail, but mostly based on beam-like considerations (Murphy 
and Surko 1992, Charlton and Humberston 2000). However 
the device consists of a charge being released in a gas in the 
presence of electric and magnetic fields, and thus it is an ion-
ized gas that is exactly described by a swarm model until the 
space charge effects begin to play a significant role, and then 
it is best described by a plasma model (again with a significant 
reference to collisions and transport). Thus, for quantitative 
representation and accurate modeling of traps, a swarm-like 
model is required and recently two such models were used to 
explain the salient features of Surko traps (Marjanović et al 
2011, Petrović et al 2014, Natisin et al 2015). An explanation 
and quantitative comparisons will be the subject of a special-
ized publication (Marjanović and Petrović 2016). Here we 
only focus on the development of the energy distribution func-
tion, which is the primary medium connecting the large-scale 
behavior of the trap with microscopic binary collisions.

As pressures used in the gas-filled traps are very low, and 
the mean free paths become comparable to the dimensions of 
the trap, one may be assured that the description at the level 
of transport coefficients and fluid models would fail. This 
example thus requires a full kinetic level of description.

The generic (model) trap consists of three stages, each with 
a 10 V potential drop and each of the same length (figure 9). 
The properties, the pressures and other features are listed in 
table  1. A standard, well-tested (for electron benchmarks—
Lucas and Saelee 1975, Reid 1979, Ness and Robson 1986, 
Raspopović et al 1999) Monte Carlo code has been used here. 
Realistic geometry was included along with the boundary con-
ditions (potentials, energy distributions and losses). Special 
care was given to the testing of the modeling of trajectories 
in magnetic fields (Raspopović et al 1999 Dujko et al 2005).

First results are shown in figure 10 where we plot mean 
energies as a function of time in three separate stages 
(chambers) and also averaged for the entire volume. The 
energy steps provided by the potential drops are observable 
for the mean energies in stages II and III. The overall increase 
in energy is also observed in the total volume average. The 
initial plateau of the mean energy is extended mainly due to 

Figure 10. The mean energy of the positron ensemble (swarm) as a 
function of time. Averages for each stage and for the entire volume 
(total) are provided. The energy distribution function is plotted in 
figure 11 for the times marked by the points (a)–(f) in this figure.

Plasma Phys. Control. Fusion 59 (2017) 014026
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the logarithmic nature of the plot. Following another plateau 
due to inelastic energy losses, the mean energy falls to the 
thermal value for the final thermalization.

The voltage drop in the initial stage is used to accelerate 
the positrons coming from the moderator into the energy 
range where electronic excitation of nitrogen is as efficient 
as Ps formation. Thus the initial distribution in figure 11 is 
a mono-energetic beam at 10 eV. Upon development of the 
group of positrons that have lost energy in excitation (figure 
11(b)), positrons leave the stage I and pass into stages II and 
III so the two new peaks develop at 20 eV and 30 eV (figure 
11(c)). The positrons that have collided form a group peaking 
at around 2 eV. During the next period two processes are 
obvious. The first is the quenching of the initial beams into 
the group, peaking at around 2 eV but extending up to 7 eV, 
where Ps formation removes the particles. The second is the 
process that uses vibrational excitation of CF4 and thermal-
izes the 2 eV group into a low-energy group peaking at around 
0.07 eV (figures 11(d) and (e)). It is interesting to see that the 
peak at around 2 eV is the first to disappear, leaving a group at 
around 5 eV to thermalize more slowly. At this point the low-
energy positrons are also mainly localized in the third stage.

The final stage is characterized by two processes, the 
disappearance of the higher-energy group at around 5 eV and 
the gradual thermalization of the low-energy group at around  
70 meV towards the thermal energy ( f ) of around 40 meV. At 
that point a quasi-thermal Maxwellian is developed. The trans-
ition appears to be rapid but, by the virtue of a logarithmic plot, 
it is the longest transition in the process of thermalization and 

involves bouncing between the potential boundaries of the 
third stage many times. At the same time one should see that 
the properties of the trap are adjusted so that in the first bounce 
across the three stages most particles suffer electronic excitation/
Ps formation collisions and either disappear or are trapped.

The simulation provides many different properties of the 
positron ensemble (swarm) but the point of this paper is to 
show a direct connection between binary collision processes 
and the macroscopic behavior. Using the energy distribution 
one can easily see the dominant processes and predict which 
aspects of the processes are promoted by the clever design of 
the Surko trap. It may also be used to optimize its character-
istics (Marjanović et al 2016). Nevertheless, the principles of 
the trap were properly understood from the initial concepts 
but in this case we have detailed representation of the energy 
distribution, allowing accurate quantitative comparisons. For 
example, one may now adjust the details of the cross sec-
tion in order to fit the measured properties (such as sampled 
mean energy that may be somewhat skewed by the sampling 
process). In that respect the measured observables from the 
trap may play a role in the swarm data that need to be fitted in 
order to tune the cross sections so that the number, momentum 
and energy balances may be preserved. As analysis of the pos-
itron swarm data led to a number of complex kinetic effects 
(Banković et  al 2009, 2012) it would be interesting to see 
whether similar effects may be observed or even affect the 
operation of the traps.

These results are akin to the well-established initial 
equilibration for electrons in gases (Dujko et  al 2014) with 

Figure 11. Positron kinetic energy distribution of the entire swarm sampled at different times (indicated in figure 10). Calculations were 
performed for the Surko trap as shown in figure 9 with the conditions listed in table 1.
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temporal and spatial Holst Oosterhuis luminous layers 
(Hayashi 1982, Fletcher 1985) that are strongly related to the 
well-known Frank Hertz experiment (White et al 2012, Robson 
2014). In addition, it must be noted that even if we were to start 
simulation with a Maxwellian distribution and try to follow 
the thermalization, due to the sharp energy dependence of 
the processes non-Maxwellian distribution function, it would 
develop immediately making it necessary to employ a full 
kinetic treatment. While fluid equations  will not work well 
under the circumstances, and while transport coefficients may 
be difficult to define and even more difficult to implement in 
modeling, kinetic (Monte Carlo) modeling is still a typical 
swarm-like model that needs to be employed. Once we fill the 
trap with sufficient charge to allow for plasma effects, then 
we may need to add-in true plasma modeling based on fluid 
equations and on the calculation of the effective fields.

5. Conclusion

In this review we address three recent examples on how 
swarm based modeling may connect the microscopic binary 
processes to the macroscopic behavior of ionized gases, 
even plasmas. The necessary prerequisite for this approach 
to be effective is that the systems belong to the so-called col-
lisional plasmas (also known as the non-equilibrium or low-
temperature plasmas). The examples are chosen to reveal 
three different aspects of swarm modeling: (a) that based on 
transport coefficients and fluid models and how they may 
be improved, (b) a system that may be described by both 
fluid models and simulations where simulations are used 
here to verify the more basic modeling, while the fluid mod-
eling is allowing us to extend predictions further to plasma 
conditions, and, finally, (c) for the situation where full 
kinetic modeling is required. Thus, these examples should 
be viewed as confirmation of the validity and usefulness 
of the swarm models that are often overlooked by plasma 
modelers. Swarm models are sometimes regarded as a limit 
that is unrealistic and useful only to describe well-designed 
experiments that provide swarm data. One subscribing to that 
view would then need to reply to why the use of swarm data 
and also swarm data based fluid equations is so successful. 
In fact, we believe that often an ‘overkill’ is performed by 
using plasma models to describe inherently swarm-like con-
ditions. One such example is the popular modeling of break-
down by PIC of hybrid codes. If done properly, it is all fine, 
although less transparent due to a more complex nature of 
the codes. However, at the same time such complexity does 
not allow us to add special tests or sampling that may reveal 
more insight into the pertinent physical processes. Examples 
may include details of the energy distribution function, 
adjusting boundary conditions to include detailed represen-
tation of surface processes and observation and inclusion of 
the kinetic phenomena.

In doing modeling of low-temperature plasmas that may 
need to go both more towards the swarm-like and plasma 
conditions we would strongly recommend that all the plasma 
codes need to be verified against swarm benchmarks and 

include sampling of relevant data. It all may become more 
and more difficult as one develops codes for inhomogeneous 
systems with complex geometry, but in the limit of a simple 
geometry and simple swarm conditions all swarm benchmarks 
should be satisfied to the highest of accuracy.

This article may be viewed as an extension of an article 
that has been recently submitted for a special issue on plasma 
modeling covering physical situations where swarm type 
models are valid and useful and accurate. There is no overlap 
of the two papers, although a common idea of the need to pre-
sent the usefulness of the swarm model is obvious. The focus 
here is more on how elementary processes are producing 
an intermediate realm of phenomenology (swarm models 
and properties) that then clearly point at the macroscopic 
behavior. Be it sprite propagation or positron traps these con-
nections not only reveal relevant physics, but also provide a 
means to tailor applications based on elementary processes 
and  low-temperature plasmas.
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