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Abstract. Transport properties of positron swarms in water vapour under
the influence of electric and magnetic fields are investigated using a Monte
Carlo simulation technique and a multi-term theory for solving the Boltzmann
equation. Special attention is paid to the correct treatment of the non-
conservative nature of positronium (Ps) formation and its explicit and implicit
influences on various positron transport properties. Many interesting and atypical
phenomena induced by these influences are identified and discussed. Calculated
transport properties for positrons are compared with those for electrons, and the
most important differences are highlighted. The significant impact of a magnetic
field on non-conservative positron transport in a crossed field configuration is
also investigated. In general, the mean energy and diffusion coefficients are
lowered, while for the measurable drift velocity an unexpected phenomenon
arises: for certain values of the reduced electric field, the magnetic field enhances
the drift. The variation of transport coefficients with the reduced electric
and magnetic fields is addressed using physical arguments with the goal of
understanding the synergistic effects of Ps formation and magnetic field on the
drift and diffusion of positrons in neutral gases.
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1. Introduction

Today positron physics is a large and fruitful area of investigation, interesting not only from
the fundamental point of view [1], but also because of many applications that positrons have
in different areas, ranging from astrophysics [2] and material science [3] to medicine [4]. The
modelling of positron-based technologies or real experimental situations requires knowledge
of two types of fundamental data. The first type is collisional data, i.e. the cross-sections for
every possible channel of interaction between the positron and the atom/molecule of matter.
In the last few decades, a revolutionary breakthrough in atomic physics was made by Surko
et al [5, 6] who have developed the Penning–Malmerg buffer gas trap for positrons, which
now can give high-intensity and high-resolution positron beams for measuring positron cross-
sections at low and well-defined energies [7–10]. The second type relying on the cross-section
data, is data associated with the transport of positrons in neutral gases and soft-condensed
matter [11]. Transport properties are a source of information about a group or ensemble of
charged particles travelling through the medium, such as their mean energy, drift velocity
and diffusion. Unfortunately, there are limited experimental data on transport coefficients for
positrons [12] and only a few groups in the world are directly involved in the modelling of
positron transport. A review of the history and current status of positron swarm experiments has
been given by Charlton [12] and Petrović et al [13].

One of the most important applications of positrons is in medicine, particularly in positron
emission tomography (PET) [4]. PET is a technique for diagnostics of the general metabolic
activity of the human body and is a key technique for the early detection of cancer. It involves the
introduction of a positron-emitting radio-isotope into the body, e.g. 18F, attached to glucose to
form a radiopharmaceutical (e.g. fluorodeoxyglucose (FDG)), which targets metabolic activity.
This diagnostic technique is assumed to be non-invasive and therefore is widely used in clinical
practice. The details of the atomic and molecular processes that take place in human tissue,
between the emission of high-energy positrons from the radiopharmaceutical and the detection
of the gamma rays, are at present not well quantified.

Many Monte Carlo codes have been specifically developed to model this diagnostic
technique [14–18]. Water is the main constituent of living tissue and hence the human body
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is usually modelled as a phantom of appropriate geometry filled with liquid water. In order to
model the tracks of particles in water [19] one needs to know the cross-sections for interactions
of positrons with water, while a knowledge of the secondary electrons, photons and appropriate
ions is also important in understanding radiation damage. In spite of the fact that major advances
have been made in measuring and collecting the cross-sections for positrons, the current
commercial codes either do not deal with positrons at all or at best use only approximate
cross-sections for a very few of the processes. In general, in most such codes the interaction
of secondary electrons with the tissue is neglected. The authors of those codes seem to have
based their approach on the limited experimental data that existed before trap-based beams
were applied, e.g. using the cross-sections for electrons to approximate those for positrons,
or lumping various cross-sections together, inappropriately. The energy deposition is usually
approximated using empirical data, and not based on fundamental positron cross-section data,
while the interaction of particles with liquid water is generally presented using the results for
interaction with the gas phase scaled to higher density [20].

Another issue associated with the Monte Carlo codes used in PET modelling is the fact that
these codes have not been the subject of detailed systematic testing. Validation of theories and
associated codes is an important step before their direct application to a more complex situation
where many parallel processes occurring on different time and space scales are operative. The
procedure we adopt here, which has been applied in low-temperature plasma process modelling,
is to benchmark the calculations in the limit of a swarm of charged particles. Benchmark
calculations of averaged transport properties for electron swarms under the hydrodynamic and
non-hydrodynamic conditions are well established [21–24]. The same strategy should also be
applied for Monte Carlo codes used in PET modelling and the errors associated with traditional
treatments of positron collision dynamics on various transport properties, including the tracks
of positrons, should be identified, highlighted and quantified. One motivation for this paper is
to propose a strategy and benchmark for direct comparisons of the various positron simulation
and modelling techniques, while highlighting the data required for such a comparison.

Recently, we undertook a programme to compile, evaluate, recommend and disseminate
collision and transport data for positrons in neutral gases and soft-condensed matter relevant to
various scientific and technological areas [25–32]. One of the main goals was to establish the
best and most accurate cross-sections for positron and electron scattering in biologically relevant
molecules. Furthermore, it was important to evaluate the transport properties of these particles
in neutral gases and soft-condensed matter with the goal of understanding how differences in
microscopic antimatter–matter and matter–matter interactions are reflected in the macroscopic
transport properties.

For the bio-medical applications of positrons considered here, collision and transport data
for positrons in water vapour are required. So, as a first step for this programme, we made
a reasonably complete set of cross-sections for positron interactions with water vapour. This
cross-section set is complete in the sense that it covers all important processes and therefore
provides a good particle, momentum and energy balance. Among the many interesting points
associated with this set of cross-sections, perhaps the most important is a large cross-section
for Ps formation [10] whose magnitude is comparable to the cross-section for elastic collisions.
The compilation and justification of the cross-sections for positrons in water vapour used in
this work will be addressed fully in a forthcoming paper. Some of the pertinent data have been
reported in an earlier publication [10].
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In this paper, we investigate the transport properties for positrons in water vapour. A Monte
Carlo simulation code has been applied and our new set of cross-sections for positron scattering
in water vapour is used as the input. Since there are no experimental data for positron transport in
water vapour, a multi-term theory for solving the Boltzmann equation has been used to validate
the results obtained by a Monte Carlo simulation technique. Transport properties for positrons
and electrons in water vapour under the influence of the reduced electric field are compared to
each other and the most distinct features of their behaviour are discussed. Special attention has
been paid to atypical manifestations of the drift and diffusion of positrons caused by the explicit
influence of Ps formation. In parallel, the influence of dissociative attachment and ionization on
the drift and diffusion of electrons in water vapour has been addressed with the principal idea of
identifying the commonality in the basic phenomenology between the positrons and electrons,
when the transport is strongly affected by non-conservative collisions. In the second part of
this paper, the synergistic effects of magnetic fields and Ps formation on positron transport
in crossed electric and magnetic fields are studied. We have been motivated to perform our
calculations in a crossed field configuration as possible future applications may use combined
fields to achieve better control of positron transport in neutral gases [26] just as was the case
for electrons in magnetized plasmas. Values and general trends in the profiles of mean energy,
collision frequency, drift velocity elements and diffusion tensor for positrons in water vapour
are reported here.

2. Theory: formalism, techniques and methods for the calculation of transport
coefficients

Transport coefficients for positrons and electrons presented in this paper are calculated using
two entirely different and independent techniques—a Monte Carlo simulation [26, 27] and
a multi-term theory for solving the Boltzmann equation [21]. Computer codes behind these
methods were originally developed for studying the electron transport in varying configurations
of electric and magnetic fields, and they have been the subject of extensive benchmark tests
with excellent agreement [21, 22]. Among the many important aspects, special attention has
been paid to the correct treatment of non-conservative collisions on various transport properties,
which is particularly important for studies of positron transport. For example, the collision
operator for Ps formation has the same mathematical form as the attachment operator for
electrons within the multi term framework for solving the Boltzmann equation. On the other
hand, we found that numerical schemes developed for a correct treatment of the electron
attachment within our Monte Carlo simulation technique are fast and accurate for Ps formation.
Since Ps formation is a non-conservative process with, generally, a huge cross-section and strong
energy dependence, we expect to see its dramatic influence on the profiles of positron transport
properties.

2.1. Basic definitions of transport coefficients

In the physics of swarms, the connection between experiment and theory is made through the
equation of continuity [33]

∂n

∂t
+ ∇ ·0(r, t) = S(r, t), (1)
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where n(r, t) is the number density of swarm particles, 0(r, t) = n〈v〉 is the swarm particle
flux and S(r, t) represents the production rate per unit volume per unit time arising from non-
conservative collisional processes. For positrons, these non-conservative processes include Ps
formation and annihilation, while for electrons in water vapour we consider the dissociative
electron attachment and electron impact ionization. Note that for a positron swarm, the
ionization process is a conservative process, i.e. the number of positrons is not affected when
this process is operative. In addition, direct annihilation of positrons is not considered here as its
magnitude is generally a few orders of magnitude less than the cross-sections for other relevant
processes.

Far from boundaries, sources and sinks, the hydrodynamic regime is assumed to apply [34].
In this regime, the space–time dependence of the phase-space distribution function and other
transport quantities can be expressed in terms of linear functionals of n(r, t). A sufficient
functional relationship between the phase-space distribution function and number density of
swarm particles in the case of weak gradients is the well-known expansion, the so-called
hydrodynamic approximation:

f (r, c, t) =

∞∑
s=0

f (s)(c, t) � (−∇)sn(r, t), (2)

where f (s)(c, t) are time-dependent tensors of rank s and � denotes an s-scalar product.
Assuming this functional relationship, the flux 0(r, t) and source term S(r, t) in the continuity
equation are expanded as

0(r, t) = WF(t)n(r, t) − DF(t) · ∇n(r, t), (3)

S(r, t) = S(0)n(r, t) − S(1)
· ∇n(r, t) + S(2) : ∇∇n(r, t), (4)

where WF and DF define, respectively, the flux drift velocity and flux diffusion tensor.
Substitution of the expansion of the expressions for the source and flux into the continuity
equation yields the diffusion equation

∂n

∂t
+ WB · ∇n − DB : ∇∇n = −Ran, (5)

where

Ra = S(0)(loss rate), (6)

WB = WF + S(1) (bulk drift velocity), (7)

DB = DF + S(2) (bulk diffusion tensor). (8)

From the above definitions, it is clear that the difference between the flux and bulk transport
coefficients exists only in the presence of non-conservative collisions. This is even more evident
if we use the language of a Monte Carlo simulation. In a Monte Carlo simulation, the bulk drift
velocity

WB =
d

dt
〈r〉 (9)

and the bulk diffusion tensor

DB =
1

2!

d

dt
〈r?r?

〉 (10)
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are determined from the mean position of the electron/positron swarm in configuration space.
Here r?

= r − 〈r〉, where 〈r〉 is the mean position of the swarm. In the absence of non-
conservative collisions, one may avoid the differentiation required to calculate the drift velocity
and diffusion tensor by using the flux transport coefficients. For example, the flux drift velocity
components and the flux diagonal elements of the diffusion tensor can be directly sampled in a
Monte Carlo simulation in the following way:

WF,i =

〈
dr i

dt

〉
= 〈vi〉, (11)

DF,i i = 〈r ivi〉 − 〈r i〉〈vi〉, (12)

where vi is the electron/positron velocity and i = x, y, z. It follows from equation (9) that the
bulk drift velocity is the displacement of the mean position of the swarm and reflects the motion
of the centre of mass of the total ensemble of particles. On the other hand, the flux drift velocity
is the mean velocity of particles. One should be aware of the differences in the definition of both
sets and make sure that proper data are employed in the models [35].

2.2. A brief overview of the Monte Carlo simulation technique

The Monte Carlo code applied in this work follows a large number of particles (∼106) moving in
an infinite gas under the influence of spatially homogeneous electric and magnetic fields [27].
Particles (positrons or electrons) gain energy from the electric field and dissipate this energy
through binary collisions with background neutral particles. The charged particle interactions
are neglected since the transport is considered in the limit of low charged-particle density. All
calculations are performed at zero gas temperature.

In general, at the heart of the Monte Carlo method lies the equation for the collision
probability [36]

p(t) = νT(ε(t)) exp

(
−

∫ t

t0

νT(ε(t
′)dt ′)

)
. (13)

This equation gives the probability that the electron/positron will have a collision in the time
interval (t, t + dt), where νT is the time-dependent total collision frequency and t0 is either
the time of the electron entering the gas or the time of a previous collision. This equation is
solved by numerical integration in small time steps where the time steps are determined by
the minimum of two relevant time constants, the mean collision time and cyclotron period for
E × B fields. The nature of the collision has been determined using the relative probabilities
for individual collisional processes. In this work, all electron/positron scattering is assumed
to be isotropic. Transport coefficients are determined after relaxation to steady state using
formulae (8)–(12) outlined in the previous subsection and from those given in our previous
publications [36–38]. Most importantly, sampling of various dynamic swarm properties has
always been performed at times fully uncorrelated with the instants of collisions.

2.3. A brief sketch of the Boltzmann equation analysis

In addition to the Monte Carlo simulation, an alternative approach to the problem of
electron/positron transport in neutral gases is through a Boltzmann equation analysis. A swarm
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of charged particles moving in an infinite neutral gas under the influence of external electric and
magnetic fields is governed by Boltzmann’s equation

∂ f

∂t
+ c ·

∂ f

∂r
+

q

m
[E + c × B] ·

∂ f

∂c
= −J ( f, f0) (14)

for the phase-space distribution function f (r, c, t). Here r and c represent the position and
velocity coordinates, respectively, while q and m are the charge and mass of the swarm particle
and t is the time. In this work, we assume that the electric and magnetic fields are spatially
homogeneous and stationary. The right-hand side of the Boltzmann equation is the linear
charged particle–neutral molecule collision operator, which describes elastic, inelastic and non-
conservative collisions. Elastic processes are described using the original Boltzmann collision
operator [39], while its semiclassical generalization [40] is applied for inelastic processes. Non-
conservative processes are accounted for through the operators detailed in [41, 42].

The methods and techniques for solving the Boltzmann equation are by now standard; for
details see recent reviews [21, 33, 43, 44]. Among many important aspects, we emphasize the
following important steps in solving Boltzmann’s equation:

• No assumptions are made concerning symmetries in velocity space and the directional
dependence of the phase-space distribution function in velocity space is represented
in terms of spherical harmonic expansion. In contrast to classical two-term theory, no
restrictions are placed on the number of spherical harmonics and our method is a truly
multi-term approach.

• Assuming the hydrodynamic regime, the spatial (and implicit time) dependence is
represented by the hydrodynamic approximation given by equation (2).

• The speed (energy) dependence of the phase-space distribution function is represented
by an expansion about a Maxwellian at an arbitrary temperature in terms of Sonine
polynomials [41].

Using the appropriate orthogonality relations for the spherical harmonics and modified
Sonine polynomials, the Boltzmann equation is converted into a hierarchy of coupled equations
for the moments of the distribution function. These equations are numerically solved and all
the transport properties are expressed in terms of the moments of the distribution function
[21, 33, 44].

3. Results and discussion

3.1. Electron and positron transport properties in water vapour

In this section, transport properties of positrons and electrons in water vapour are calculated as
a function of the reduced electric field, E/n0 (n0 is the water vapour density) and compared
to each other. We consider the electric field range: 1–770 Td (1 Td = 10−21 V m2). The cross-
sections for electron scattering in water vapour developed by Hayashi [45] are implemented
in this work. Results obtained by a Monte Carlo technique are given by symbols (flux values:
full symbols; bulk values: open symbols), while those obtained by a Boltzmann analysis are
presented with lines (flux values: solid lines; bulk values: dashed lines).

In figure 1, we show the variation of the mean energy with E/n0 for electrons and positrons.
The mean energy profiles reflect the energy dependence of cross-sections and, in general, one

New Journal of Physics 14 (2012) 035003 (http://www.njp.org/)

http://www.njp.org/


8

Figure 1. Comparison between the positron and electron mean energies as a
function of E/n0. The results obtained by a Monte Carlo technique are given by
symbols, while those obtained by a Boltzmann analysis are presented with lines.

would expect that the mean positron energy dominates the mean electron energy for a fixed
E/n0 (and even for a broad range of E/n0) due to the smaller number of available inelastic
channels. From figure 1, we see that this is true but only for E/n0 less than 60 Td. Above 60 Td,
Ps formation acts in such a manner as to cool the energy distribution function by selectively
removing higher-energy positrons. This leads to a lower mean energy for positrons in the
E/n0 range where Ps formation is an increasing function of energy and dominates the inelastic
processes.

Figure 2 shows the profiles of the flux and bulk components of the drift velocity for
positrons and electrons in water vapour. There is a huge difference between the flux and bulk
components of the positron drift velocity. The flux component is a monotonically increasing
function of E/n0, while the most prominent feature in the profile of the bulk drift velocity
is the existence of negative differential conductivity (NDC), i.e. over a range of E/n0 values
the drift velocity decreases when the field is increased. NDC is a kinetic phenomenon
which has been systematically investigated and explained for electron swarms over the last
three decades [46–49]. For positrons, it originates from the non-conservative nature of Ps
formation and conditions leading to this phenomenon have been discussed in our previous
publications [26–29]. In brief, if the rate of Ps formation is an increasing function of positron
energy, positrons are preferentially removed in regions of higher energy, resulting in a shift in
the centre-of-mass position, as well as a modification of the spread about the centre of mass. For
positrons in water vapour, and in the energy region studied here, the positrons are predominantly
removed from the leading edge of the swarm and hence the magnitude of the flux component
is greater than the equivalent bulk component. In contrast to electrons, NDC for positrons is
present only in the bulk drift velocity component. Comparing NDC for positrons in different
gases, this phenomenon is much more pronounced for argon [26, 27] than it is here for water
vapour and for H2 [28, 29]. For N2, however, the competition between inelastic (electronic
excitation) collisions and those which lead to Ps formation removes NDC from the profile of
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Figure 2. Comparison between the flux and bulk components of the drift velocity
for positrons and electrons as a function of E/n0. The results obtained by a
Monte Carlo technique are given by symbols (flux values: full symbols; bulk
values: open symbols), whereas those obtained by a Boltzmann analysis are
presented with lines (flux values: solid lines; bulk values: dashed lines).

the bulk drift velocity even though the cross-section for Ps formation is high as it is for those
gases with very pronounced NDC [30].

Comparing the drift velocity components for electrons and positrons, we observe differ-
ences in both shape and magnitude. For the sake of completeness, let us consider the influence
of dissociative attachment and electron impact ionization on the drift of electrons. For electrons,
the flux and bulk drift velocities start to diverge around 50 Td, where the electron swarm mean
energy is approximately 0.5 eV. This difference is very small but noticeable, and favours an
enhancement of the flux component. Around 0.5 eV, dissociative attachment begins to play
a more significant role. The attachment collision frequency increases with energy, and so the
more energetic electrons at the front of the swarm are preferentially attached (see figure 3).
This is reflected by the decrease of the bulk drift velocity, i.e. the centre of mass of the swarm is
shifted in the direction opposite to the driving electric field. A similar but not identical situation
has been previously observed for positrons. The cross-section for Ps formation is many orders
of magnitude larger than the corresponding cross-section for dissociative attachment and more
importantly the cross-section for Ps formation is much greater than other cross-sections for
inelastic collisions. In some cases [27] it is even greater than the cross-section for elastic colli-
sions. This means that the positrons are much more affected by Ps formation than the electrons
by dissociative attachment. Returning to electrons, we see that around 90 Td (and a mean energy
of approximately 4 eV) there is a crossing over point where the bulk and flux components start
diverging again. However, now the opposite situation holds and the bulk is greater than the flux.
In this energy range, the rate coefficient for dissociative attachment peaks, the slower electrons
are preferentially attached. At the same time the ionization begins to influence the high-energy
tail of the distribution function (see figure 3). As a consequence of these two combined
non-conservative effects, the centre of the mass is shifted forward in the drift direction.
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Figure 3. Variations of the rate coefficient for Ps formation for positrons and rate
coefficients for dissociative attachment and ionization for electrons with E/n0.
The results obtained by a Monte Carlo technique are given by symbols, while
those obtained by a Boltzmann analysis are presented with lines.

Figure 3 displays a comparison of the rate coefficient for Ps formation and rate coefficients
for non-conservative processes associated with the electron transport, dissociative attachment
and ionization. The rate coefficient for Ps formation dominates over the rate coefficients for
the electron impact ionization and dissociative attachment for the E/n0 range considered in
this work. Since there is competition between the electron attachment (which removes electrons
from the swarm) and ionization (which increases their number), it is clear that non-conservative
effects are less pronounced in electron transport.

The variation of the diffusion coefficients for positron and electron swarms with E/n0

is displayed in figure 4, where panels (a) and (b) compare the longitudinal and transverse
diffusion coefficients, respectively. At low values of E/n0, diffusion coefficients for positrons
are almost an order of magnitude higher than those for electrons. When E/n0 is increased, the
difference further decreases and between 30 and 40 Td the opposite situation holds: diffusion
coefficients for electrons become larger than those for positrons. It is clear from figure 4 that
the diffusion of positrons is more affected by Ps formation than the diffusion of electrons by
the combined effects of dissociative attachment and ionization. A huge difference of almost
three orders of magnitude between the flux and bulk components of the longitudinal diffusion
coefficient for positrons is observed. Such a difference has never been observed for electron
swarms [37, 38, 44, 50].

In figures 5(a) and (b), we highlight the anisotropy of the diffusion tensor and show
the comparison between the longitudinal and transverse diffusion coefficients for electron
and positron swarms, respectively, in water vapour. We see that the anisotropy of the bulk
diffusion tensor for positrons is considerable, with almost two orders of magnitude difference
between the bulk components of the longitudinal and transverse diffusion coefficients. The
degree of anisotropy for the flux diffusion tensor is not as high. For electrons, the situation
is less dramatic. In general, the anisotropy of the flux diffusion tensor follows from a spatial
variation of average electron/positron energies within the swarm and energy dependence of
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Figure 4. Comparison between the flux and bulk components of the
longitudinal (a) and transverse (b) diffusion coefficients for positrons and
electrons in water vapour as a function of E/n0. The results obtained by a Monte
Carlo technique are given by symbols (flux values: full symbols; bulk values:
open symbols), while those obtained by a Boltzmann analysis are presented with
lines (flux values: solid lines; bulk values: dashed lines).

Figure 5. Variation of the diffusion coefficients with E/n0 for electrons (a) and
positrons (b) in water vapour. The results obtained by a Monte Carlo technique
are given by symbols (flux values: full symbols; bulk values: open symbols),
while those obtained by a Boltzmann analysis are presented with lines (flux
values: solid lines; bulk values: dashed lines).

the electron/positron collision frequency. If the electron/positron collision frequency is an
increasing function of the energy and if the average energy increases along the swarm, then
the particles at the front of the swarm have a higher probability of collision with background
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molecules than those at the trailing edge. As a consequence, these two combined effects act to
inhibit the diffusion of the swarm longitudinally. This is the well-known diffusion anisotropy
effect [44, 51, 52]. Conversely, along the transverse direction, there is no such asymmetry in
the local average energy and the anisotropy effect is absent. This is verified in recent Monte
Carlo simulations where spatial uniformity in the average energy along the transverse direction
is observed [29]. When the electron/positron collision frequency is a decreasing function of
energy, the longitudinal diffusion coefficient is higher than the transverse. In such a case, the
anisotropy effect enhances the longitudinal diffusion. Of course, the general tendency due to
thermal motion for electrons/positrons to disperse in all directions is always present, but this
is the only contributing factor in the transverse direction. Similar but not identical behaviour
of the diffusion coefficients has been observed for positron swarms in H2 [29]. For N2 [30],
however, the difference between the flux and bulk diffusion components is drastically reduced
by the large inelastic processes (preferentially the electronic excitations) in the vicinity of Ps
formation.

From figure 2 we observe that the difference between the drift velocities for positrons
and electrons can become higher than two orders of magnitude. The same applies for the
diffusion coefficients as observed from figures 4 and 5. This highlights how important it is
to employ accurate cross-sections for positron scattering in applications involving positrons.
Approximations based on using cross-sections for electron scattering to describe positron
behaviour can seriously plague the modelling, and the results may not be even qualitatively
correct.

3.2. Positron transport in water vapour in E × B fields

The application of a magnetic field gives rise to additional transport coefficients as compared to
the magnetic field free case. In a crossed field configuration, there are some symmetries among
the individual elements of the vector and tensorial transport coefficients. The drift velocity
has two independent components, the longitudinal component WE which describes the drift
along the electric field direction and the transverse component WE×B which describes the drift
along the E × B direction. The diffusion tensor has three independent diagonal elements, n0 DE,
n0 DE×B and n0 DB in the E, E × B and B directions, respectively. There are also two individual
off-diagonal elements that are not the same and experimentally cannot be individually measured
and detected, although together they form the so-called Hall diffusion coefficient which is
experimentally detectable. In this section, we investigate the effects of a perpendicular magnetic
field on non-conservative positron transport in water vapour. The values of the reduced magnetic
field B/n0 considered in this work are 1000, 2000 and 5000 Hx (1 Hx = 10−27 T m3).

It is a well-established practice to express the basic phenomenology of charged particle
transport in E × B fields in terms of the ratio of the cyclotron to the collision frequency
[23, 37, 38, 53]. This ratio for positrons in water vapour is shown as a function of E/n0 for a
range of magnetic field strengths in figure 6. In general, there are three important E/n0 regions
to consider. The first region is the so-called collision dominated regime where the cyclotron
frequency is much smaller than the collision frequency (� � νc). In this region positrons on
average may complete only a part of their circular orbit between two collisions. The second
important region is the magnetic field controlled regime, where the collision frequency is much
smaller than the cyclotron frequency (νc � �). In this region, positrons, on average, may
complete many circular orbits before two succeeding collisions. Between these two regions
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Figure 6. Variation of the ratio between the cyclotron frequency and the collision
frequency with E/n0 for various B/n0 as indicated on the graph.

there is an intermediate region where the cyclotron and the collision frequency are of the same
order (� ≈ νc). From figure 6 it is evident that an unusually strong magnetic field (much stronger
than those required for positrons in N2 and H2 [54]) is required to enter the region where the
magnetic field controls the behaviour of the swarm. Even for a B/n0 of 2000 Hx the transport is
much more affected by collisions than by the magnetic field, and only for E/n0 less than 0.3 Td
is the dominant role of magnetic field definite. For a magnetic field strength of 5000 Hx, we see
that the magnetic field predominantly controls the swarm only for E/n0 less than 2 Td. In the
profiles of the transport coefficients shown below, the distinction between the various regimes
is evident.

Figure 7 displays the variation of the mean energy with E/n0 for a range of B/n0. The
general tendency observed in figure 7 is that the magnetic field cools down the positrons. This
follows from the fact that the positrons change the direction of motion due to the magnetic field
and hence the electric field cannot efficiently pump energy into the system. This effect is a well-
known phenomenon which has been observed many times for electron swarms in atomic and
molecular gases [21, 23, 24, 37, 38, 53], and is seen to carry over to positrons. Interestingly,
this effect is less pronounced for positrons in water vapour than for positrons in Ar [26], N2 and
H2 [54]. Due to the complex energy dependence of the collision frequency, in conjunction with
the cooling mechanisms induced by Ps formation, one can identify the regions of E/n0 where
the mean energy is almost insensitive to the presence of a magnetic field. This unusual physical
situation has not been observed for electrons in gases where the mean energy is a monotonically
decreasing function of the applied magnetic field.

3.2.1. Drift and NDC for positrons in E × B fields. The drift of the positron swarm can be
described in terms of a drift speed at some angle to the direction of electric field (magnetic
deflection angle). Figure 8 displays the flux and bulk components of the drift speed as a function
of E/n0, while the magnetic deflection angle φ is presented in figure 9. We see that there is now
no NDC effect in the drift speed profiles for non-zero magnetic fields. In other words, when a
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Figure 7. Variation of the mean energy for positron swarm with E/n0 for various
B/n0 as indicated on the graph.

Figure 8. Variation of the flux and bulk drift speed components with E/n0 for
various B/n0 as indicated on the graph. The results obtained by a Monte Carlo
technique are given by symbols (flux values: full symbols; bulk values: open
symbols), whereas those obtained by a Boltzmann analysis are presented with
lines (flux values: solid lines; bulk values: dashed lines).

magnetic field is applied the bulk drift speed is increased compared to the magnetic field free
case for E/n0 between 40 and 1000 Td, even though for all B/n0, the effect of Ps formation
on drift speed is clearly evident from the existence of differences between the flux and bulk
components.

So, physically, why does the NDC phenomenon disappear from the profiles of the drift
speed in the presence of magnetic field? How is it that the bulk drift speed is increased
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Figure 9. Variation of the magnetic deflection angle with E/n0 for various B/n0

as indicated on the graph.

Figure 10. Variation of the longitudinal drift velocity component with E/n0 for
various B/n0 as indicated on the graph (flux values: full symbols; bulk values:
open symbols).

although the positron mean energy is reduced? To address these questions we must consider
the longitudinal (E) and transverse (E × B) components of the drift velocity separately, as they
exhibit entirely different behaviour in the presence of a magnetic field. The variations of the
longitudinal and transverse components with E/n0 for various B/n0 are shown in figures 10
and 11, respectively. The profiles of the longitudinal component have a similar shape to those
obtained for the magnetic field-free case (see figure 2), although they are lowered and shifted
to the right, i.e. towards higher E/n0. As expected, for a fixed value of E/n0 the difference
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Figure 11. Variation of the transverse drift velocity component with E/n0 for
various B/n0 as indicated on the graph (flux values: full symbols; bulk values:
open symbols).

between the flux and bulk components of WE is decreased for increasing B/n0. However,
more interesting behaviour is present in the transverse drift velocity component (see figure 11).
For all B/n0 and higher E/n0 there is a clear difference between the flux and bulk components.
A reduction in this difference for increasing B/n0 is clearly evident. This suggests significant
spatial variation in the average energy along the E × B direction, a phenomenon that has never
been observed for electrons either in recent Monte Carlo studies of electron transport in electric
and magnetic fields [37, 38, 55] or in studies where the transport has been examined by means
of a momentum transfer theory [56] and multi-term theory for solving the Boltzmann equation
[21, 43, 51]. A clear distinction between the flux and bulk components of WE×B has never
been seen for electrons even under conditions where the transport is strongly affected by
non-conservative collisions [21]. For positrons in water vapour, due to the combined effects
of magnetic field and Ps formation, the bulk component of WE is actually more affected
than the bulk component of WE×B, which in turn enhances the contribution of the transverse
bulk component in the bulk drift speed. Unlike the bulk components, the flux components
behave more ‘regularly’ and less counterintuitively. Differences between the flux WE and
WE×B components are much less compared to the corresponding differences between the bulk
components. This is verified from the profiles of the magnetic deflection angle shown in figure 9.
For a B/n0 of 1000 Hx, we see that the flux magnetic deflection angle stays at about 20

◦

,
whereas the bulk value goes to 85

◦

in the energy region where the Ps formation channel is open.
This situation is observed only in positron transport, where due to the nature of collisions the
flux and bulk drift velocities differ not only in magnitude, but also in direction! Such behaviour
may be observed only for positrons in gases where Ps formation is significantly larger than other
processes, such as in H2 [54] and argon [26]. For positrons in N2 the opposite situation has been
reported. The distinction between the flux and bulk components of the magnetic deflection angle
in N2 is significantly diminished. This results from the competition between Ps formation and
electronic excitations [30] that are operative in the same energy region.
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3.2.2. Tonks’ theorem for positrons. The influence of a magnetic field on the electron swarm
parameters is often interpreted in terms of the effective reduced electric field concept
[52, 55, 57]. In the absence of experimental data, it has not yet been established whether this
concept is valid for positrons. In this section, we explore the possibility of using Tonks’ theorem
(which falls into the category of effective reduced electric field approximations) for positrons
with particular emphasis on the existence of NDC in electric and magnetic fields. According to
Tonks’ theorem [58, 59] and following the previous works for electrons [52, 55, 57], the average
positron energy and drift speed are, respectively, given by

ε(E, B, 9) = ε(Eeff, 0, 0),

W(E, B, 9) = W(Eeff, 0, 0), (15)

where the combined effect of the electric field, magnetic field and angle between the fields is
accounted for by an effective electric field, Eeff, whose magnitude is given by [52, 55]

Eeff(ε) = E

√
1 + (�/νm)2 cos2 9

1 + (�/νm)2
. (16)

Here � is the cyclotron frequency, νm is the average momentum transfer collision frequency
and 9 is the angle between the fields. Equations (15) and (16) represent a system of nonlinear
equations that has been solved iteratively. So using the average momentum transfer collision
frequency for the magnetic field-free case, one may attempt to derive the positron transport
properties when both the electric and magnetic fields are present.

In figure 12, we show a comparison between the bulk drift speeds for positrons in water
vapour obtained by Tonks’ theorem and the accurate Monte Carlo method (and/or multi-term
approach for solving Boltzmann’s equation). Calculations are performed for a range of magnetic
field strengths in a crossed field configuration. A very pronounced NDC in the profiles of
the bulk drift speed calculated by Tonks’ theorem is clearly evident. On the other hand, from
accurate data we see that NDC is absent when the magnetic field is applied. Surprisingly, for
the mean energy and flux component of the drift speed the agreement is much better (not shown
here), particularly in the collision-dominated regime. This is a clear sign that one should be
careful in the application of Tonks’ theorem for positrons. If Ps formation is a dominant process
compared to other inelastic channels, then Tonks’ theorem has a restricted domain of validity
on the flux drift velocity only. This follows from the fact that Tonks’ theorem cannot handle the
explicit contribution of Ps formation to the distribution function and the corresponding explicit
effects on the drift.

3.2.3. Diffusion of positrons in E × B fields. In this section, the synergistic effects of a
magnetic field and Ps formation on the diagonal elements of the diffusion tensor are investigated.
Before embarking on a discussion, one must be aware that it is hard to fully understand
the behaviour of diffusion coefficients in electric and magnetic fields since many parallel
factors affect them simultaneously. In addition to the effects of thermal anisotropy (dispersion
of positrons due to thermal motion is not the same in different directions) and electric
anisotropy (spatial variation of the average energy in conjunction with energy-dependent
collision frequency produces differences in the average local velocities for a given direction,
which act to inhibit and/or enhance diffusion in that direction), there is the contribution of
magnetic anisotropy (due to the explicit orbital effects, the magnetic field always acts to inhibit
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Figure 12. Variation of the bulk components of the drift speed with E/n0 for
various B/n0 in a crossed field configuration (exact values obtained by a Monte
Carlo simulation and/or multi-term approach for solving Boltzmann’s equation:
solid lines; Tonks’ theorem: dashed lines).

Figure 13. Variation of the bulk and flux components of the longitudinal
diffusion coefficient with E/n0 for various B/n0 as indicated on the graph.

diffusion in a plane perpendicular to its direction) [21, 24, 44, 51]. In addition, collisions and
the complex energy dependence of non-conservative collisions further complicate the issue.

Different diagonal elements of the diffusion tensor show different sensitivities with respect
to magnetic field, Ps formation and generally to the energy dependence of the cross-sections.
We observe that the longitudinal diffusion coefficient (see figure 13) and transverse diffusion
coefficient along the E × B direction (see figure 14) can vary up to five orders of magnitude
in the limit of low values of E/n0 where the behaviour of the swarm is controlled by the
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Figure 14. Variation of the bulk and flux components of the transverse diffusion
coefficient along the E × B direction with E/n0 for various B/n0 as indicated
on the graph.

Figure 15. Variation of the bulk and flux components of the transverse diffusion
coefficient along the B direction with E/n0 for various B/n0 as indicated on the
graph.

magnetic field. The longitudinal diffusion coefficient shows the highest sensitivity with respect
to the presence of Ps formation, i.e. differences between the flux and bulk components are much
higher for this diffusion coefficient than those observed for the transverse diffusion coefficients
along the E × B and B (see figure 15) directions. In particular, the n0 DB component shows the
weakest sensitivity to changes of magnetic field. Essentially, it follows the variation of the mean
energy with both E/n0 and B/n0, and hence the thermal effects play the most important role in
the behaviour of this transport property. In conclusion, a better understanding of the synergistic
effects of the magnetic field and non-conservative collisions on the diffusion in electric and

New Journal of Physics 14 (2012) 035003 (http://www.njp.org/)

http://www.njp.org/


20

magnetic fields requires knowledge of the spatially resolved data along the swarm, particularly
those associated with the second-order variations of the average energy. This is beyond the scope
of this paper and we defer the detailed discussion on the explicit influence of Ps formation on
diffusion processes for positrons in electric and magnetic fields to a future paper.

4. Conclusion

A comprehensive investigation of collision and transport data for positrons in water vapour
has been conducted. We have compiled a set of cross-sections for positron scattering in
water vapour, which we have used as the input into a combined Monte Carlo simulation and
Boltzmann equation analysis of transport properties of positrons and electrons in electric and
magnetic fields. There are two motivating factors behind the current programme of investigation.
Firstly, there is hope that a swarm analysis like the one performed in this paper is going to
trigger a new wave of positron swarm experiments, which would almost certainly improve
the normalization and completeness testing of the cross-sections, as well as providing accurate
experimental transport data. Secondly, the demand for positron collision and transport data for
a wide range of applications has increased considerably. In order to meet this demand and
at the same time due to the absence of experimental data, almost certainly in the short term
theoretically calculated transport data for positrons will be incorporated into models of various
positron-based technologies.

A caution has been issued in this paper on how to deal with the duality of the transport
coefficients and how to handle the synergistic effects of magnetic field and Ps formation on the
positron transport properties. For the magnetic field-free case, the bulk drift velocity of positrons
exhibits a strong NDC effect and physical arguments have been used to explain the nature of this
phenomenon. The behaviour of the longitudinal diffusion is also quite striking since differences
between the bulk and flux components are more than two orders of magnitude, a phenomenon
that has never been reported for electrons. The common practice among positron modellers in
the biomedical community of using cross-sections of electrons to describe positron behaviour is
clearly problematic, and associated errors have been highlighted here. When a magnetic field is
applied, a new level of complexity is introduced. It is shown that the longitudinal and transverse
drift velocity components behave in entirely different manners. The bulk component of the
longitudinal drift velocity is more affected than the corresponding transverse component, which
unexpectedly removes NDC from the profiles of the drift speed.

As detailed in the introduction, this work also serves as a benchmark for any models
or simulations of charged particle tracks or the equivalent. Additional tests under non-
hydrodynamic conditions would also be a very welcome step in the right direction including
investigations of the impact of Ps formation on spatial relaxation behaviour and non-local
positron kinetics under steady-state Townsend conditions, in a Frank–Hertz-type experiment or
even in a Penning–Malmberg–Surko trap [60]. One can easily adapt the basic phenomenology
of positron transport based on a rigorous kinetic theory to a more realistic situation required for
modelling PET or radiation therapy. Many of the methods and techniques reported in this paper
will carry over to this problem.

As mentioned in the introduction, swarm experiments are desirable for two reasons. They
provide a critical test of completeness of the cross-sections and also by adjusting the fields
one may vary the mean energy and scan a wide range of cross-sections. In the early studies,
however, the initial experiments [12, 13, 61] could not be explained properly, and this may
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have contributed to their early disappearance. Nowadays it is evident that an appropriate
understanding of the phenomenology and the codes exists which may take into account the
dramatically pronounced non-conservative effects and provide the basic data from the transport
coefficients affected by Ps formation. The tests involving averaged properties are also a direct
verification of the simulation of tracks that is often performed in radiation diagnostics and
therapy. The codes able to predict benchmark transport coefficients very accurately are also
tested to produce a proper representation of trajectories. The addition of a magnetic field
provides a new method to control transport and also to vary the mean energy. Unlike electric
fields, the magnetic field may be applied to living organisms.

Tests in a gas are important for the modelling of living organisms as well as for energies
beyond a few eV, as the scattering in a liquid is not very different from the scattering in a
gas [25]. Finally, the non-conservative Ps formation with its huge cross-section affects transport
very much and may provide a really difficult test case for the development of non-conservative
transport theories.
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