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Third-order transport coefficient tensor of charged-particle swarms in neutral gases in the presence of spatially
uniform electric and magnetic fields is considered using a multiterm solution of Boltzmann’s equation and Monte
Carlo simulation technique. The structure of the third-order transport coefficient tensor and symmetries along
its individual components in varying configurations of electric and magnetic fields are addressed using a group
projector technique and through symmetry considerations of the Boltzmann equation. In addition, we focus upon
the physical interpretation of the third-order transport coefficient tensor by considering the extended diffusion
equation which incorporates the contribution of the third-order transport coefficients to the density profile of
charged particles. Numerical calculations are carried out for electron and ion swarms for a range of model
gases with the aim of establishing accurate benchmarks for third-order transport coefficients. The effects of
ion to neutral-particle mass ratio are also examined. The errors of the two-term approximation for solving the
Boltzmann equation and limitations of previous treatments of the high-order charged-particle transport properties
are also highlighted.
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I. INTRODUCTION

Studies of charged-particle swarms in neutral gases under
the influence of electric and magnetic fields have applica-
tions in diverse areas of science and technology ranging
from swarm experiments used to determine electron- and
ion-neutral cross sections [1–5] to plasma processing tech-
nology [6–9], particle detectors used in high-energy physics
[10,11], high-voltage technology [12], and positron physics
[13,14]. These applications often require knowledge of swarm
transport coefficients in the presence of the reduced electric
and magnetic fields, E/n0 and B/n0, where E and B are the
strengths of electric and magnetic fields, respectively, while
n0 is the neutral number density.

There is a large and growing literature dealing with the
low-order transport coefficients, in which the variation of the
reaction rate, drift velocity and diffusion tensor with E/n0
(and B/n0) for both the electrons and ions [15,16], and since
recently even for positrons [14,17], are reported. In contrast,
little is known about high-order transport coefficients, and
limited data can be found in the literature, particularly for
light charged particles such as electrons or positrons. The
most obvious reason for this situation is the fact that the
transport coefficients of higher-order have been difficult to
measure, difficult to treat theoretically, and even more dif-
ficult to include in plasma models and thus were system-
atically ignored in the traditional interpretation of swarm
experiments [1,3,4,16]. It was usually anticipated that swarm
experiments are performed under conditions in which the
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effects induced by transport coefficients of higher-order are
negligible [18,19]. On the other hand, in the early 1970s, it
was shown that some arrival-time spectra of ions in drift tubes
significantly deviate from the ideal Gaussian pulses which are
represented in terms of the lower-order transport coefficients
only [20]. To our knowledge, there have been only a few
attempts to measure the third-order transport coefficients, or
to be more accurate to interpret the observed data in terms of
the effects of higher order transport [21–24].

In spite of low interest in higher-order transport coeffi-
cients, it was pointed out by several specialists and research
groups that the third-order transport coefficients for electrons
are very sensitive to the rapid variations with the energy of the
momentum transfer cross section as a function of the energy.
For example, it was pointed out by Penetrante and Bardsley
[18] almost 25 years ago that the third-order transport co-
efficients are at least as sensitive to the depth and position
of the Ramsauer-Townsend minimum for elastic scattering
of the electrons in noble gases as the lower-order transport
coefficients, including the drift velocity and the characteristic
energy. Along similar lines, it was pointed out by Vrhovac
et al. [19] that the third-order transport coefficients would be
very useful for a fine tuning of cross sections for inelastic
collisions in the close vicinity of their thresholds. This implies
that in principle one could use the higher-order transport
coefficients as an additional input for enhancing the reliability
of swarm-derived cross sections.

Early work on the higher-order transport coefficients of
charged-particle swarms in electric fields has been presented
by Whealton and Mason [25]. Using the analytical solution
of Boltzmann’s equation for the Maxwell model of inter-
action, they found that the third-order transport coefficient
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tensor has seven nonzero elements of which three are in-
dependent. It was also shown that when the electric field
is absent, all components of the third-order transport coef-
ficient tensor vanish. Early studies of the third-order trans-
port coefficients for ion swarms have been performed by
Robson [26] and Larsen et al. [27] using Boltzmann’s equa-
tion solutions.

In 1994, Penetrante and Bardsley [18] carried out the
numerical solution of Boltzmann’s equation for electrons
in noble gases. Among many important points, they found
that the third-order transport coefficients could be detected
and resolved from the arrival time spectra of an electron
swarm. A similar procedure for the determination of the
transport coefficients of both the low and higher order was
earlier proposed by Kondo and Tagashira [28]. Koutselos
used molecular dynamics simulations and a three-temperature
treatment of Boltzmann’s equation with the aim of calculating
the third-order transport coefficients for K+ and Li+ ions in
noble gases [29–32].

Within the framework of the semiquantitative momentum
transfer theory [2,33,34], Vrhovac et al. [19] have developed
the method of calculations of the third-order transport co-
efficients for charged-particle swarms in the presence of an
electric field only. The theory and the associated numerical
code, were used to evaluate the third-order transport coeffi-
cients in noble gases, but only in the limit of the lower values
of E/n0 where electrons undergo elastic collisions only. The
presented results were found to confirm the structure of the
third-order transport coefficient tensor previously determined
by Whealton and Mason [25].

Using the theory of arrival time spectra of an electron
swarm initially developed by Kondo and Tagashira [28] and
a Monte Carlo simulation technique, Kawaguchi and co-
workers derived the relation between the longitudinal third-
order transport coefficient and the α parameters (arrival-time
spectra transport coefficients) [35,36]. Arrival-time spectra
can be measured by a double-shutter drift tube clearly indi-
cating that the longitudinal third-order transport coefficient
can be obtained experimentally from the knowledge of the α

parameters. Along similar lines, it was pointed out by Dujko
et al. [37] that the conversion of hydrodynamic transport
coefficients to those found in the steady-state Townsend ex-
periment requires the knowledge of the third-order transport
coefficients. Petrović and co-workers [38] have also used a
Monte Carlo simulation technique to derive the longitudinal
and transverse third-order transport coefficients in CH4 over
a broad range of the applied reduced electric fields. Among
many important points, it was shown that the transverse third-
order transport coefficient becomes negative in the same range
of the applied electric fields where the negative differential
conductivity occurs. The negativity of the third-order trans-
port coefficients has also been observed for charged-particle
transport in the presence of trapped (localized) states [39].

The signatures of the higher order transport processes have
been observed in the numerical modeling of plasma dis-
charges. For example, in the avalanche phase of the streamer
development, the particle-in-cell Monte Carlo simulations
have shown that a spatial profile of electrons may significantly
deviate from an ideal Gaussian as predicted by fluid models
based on the equation of continuity [40,41]. The clear signs

of high-order transport have been observed in the studies
of the spatiotemporal development of the electron swarms
[42,43]. The pronounced asymmetry in the spatial profiles of
the electron swarm is particularly evident during the transient
phase of relaxation, in the presence of strong nonconservative
interactions [44,45], as well as for electron transport in no-
ble gases with a Ramsauer-Townsend minimum under the
influence of E/n0’s for which the mean electron energies are
well below the first inelastic threshold. It is worth noting
that a similar effect of nonconservative collisions is observed
for positrons in gases where spatially dependent positronium
formation skews the profile of the ensemble to the point that a
Gaussian cannot be recognized and analyzed [46,47].

Furthermore, the transport coefficients of the third and
higher orders are very often used to characterize fractional
transport in a variety of situations, ranging from the trapping
of charge carriers in local imperfections in semiconductors
[48–51] to electron [52–54] and positronium [13,55,56] trap-
ping in bubble states within liquids, and to transport in biolog-
ical cells [57–60].

The above examples clearly show that a rigorous analysis
of the third-order transport coefficients in the context of the
contemporary kinetic theory of charged-particle swarms is a
long overdue, and the present paper takes a few important
steps in this direction. Besides being of intrinsic interest, we
are also motivated by the following questions: What is the
structure of the third-order transport coefficient tensor, and
how can symmetries be identified in varying configurations
of electric and magnetic fields? What is the physical interpre-
tation of third-order transport coefficients, and what is their
contribution to the spatial profile of the swarm in a typical
time-of-flight experiment? Is this contribution more signif-
icant for light charged particles or for more massive ions?
How does the magnetic field affect the third-order transport
coefficients, and how large are the errors of the two-term
approximation for solving the Boltzmann equation? In the
present paper, we will try to address these issues.

This paper is organized as follows. In Sec. II we discuss the
basic elements of the theory, the structure and physical inter-
pretation of the third-order transport coefficient tensor, as well
as our methods of calculations. In Sec. III we present results
of calculations for a range of model gases. Where possible, the
results of the Boltzmann equation analysis are compared with
those calculated by the Monte Carlo method with the goal
of establishing accurate benchmarks for third-order transport
coefficients. As an example of our calculations in real gases,
in Sec. III we discuss the behavior of the third-order transport
coefficients for electron swarms in neon. Last, in Sec. IV we
present our conclusions and future work recommendations.

II. THEORY: DEFINITIONS, SYMMETRIES,
INTERPRETATIONS, AND METHODS

OF CALCULATION

The main physical object of our study is a swarm of
charged particles which moves through a background of
neutral molecules in external electric and magnetic fields
crossed at arbitrary angles. The density of charged parti-
cles is assumed to be sufficiently low so that the following
properties apply: (1) charged-particle–charged-particle inter-
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actions and space charge effects can be neglected, collisions of
transported charged particles and excited or dissociated
species are unlikely, (2) the motion of charged particles
between collisions can be treated classically, and (3) the
presence of charged particles does not perturb the background
particles from thermal equilibrium.

All information on the drift, diffusion, and transport prop-
erties of higher order of charged particles is contained in the
charged-particle phase-space distribution function f (r, c, t ),
where r represents the spatial coordinate of a charged particle
at time t , and c denotes its velocity. In the present work,
the distribution function f (r, c, t ) is determined by solving
Boltzmann’s equation:

∂ f

∂t
+ c · ∂ f

∂r
+ q

m
(E + c×B) · ∂ f

∂c
= −J ( f , f0), (1)

where q and m are the charge and mass of charged parti-
cles, respectively, while the electric and magnetic fields are
assumed to be spatially homogeneous and of magnitudes E
and B. In the present work we employ a coordinate system
in which the z axis is defined by E while B lies in the y-z
plane, making an angle ψ with respect to E. The right-hand
side of (1) denotes the linear charged-particle–neutral-particle
collision operator, accounting for elastic and various types
of inelastic collisions, including nonconservative collisions
(the charged-particle number changing processes, such as
ionization and attachment for electron swarms or positronium
(Ps) formation and annihilation for positron swarms). The
velocity distribution function of the background particles is
denoted by f0, and in the present study it is taken to be a
stationary Maxwellian at fixed temperature. The explicit form
of the collision operator can be found in Refs. [61,62].

A. Definition of the third-order transport coefficient tensor

The continuity of charged particles in the configuration
space requires the following balance equation:

∂n(r, t )

∂t
+ ∇ · �(r, t ) = S(r, t ), (2)

where

n(r, t ) =
∫

f (r, c, t ) dc (3)

is the number density of charged particles while �(r, t ) = n〈c〉
is the charged-particle flux given by

�(r, t ) =
∫

c f (r, c, t ) dc. (4)

The quantity S(r, t ) is the production rate per unit volume
per unit time arising from nonconservative processes. If the
electron-impact ionization and electron attachment are the
only nonconservative processes, then this property for elec-
tron swarms is given as

S(r, t ) =
∫

n0c[σi(ε) − σa(ε)] f (r, c, t ) dc, (5)

where σi(ε) is the cross section for electron impact ionization
while σa is the cross section for electron attachment. The
equation of continuity (2) provides a direct link between ex-
periment and theory, as in the majority of swarm experiments

the experimentally measurable quantities are usually charged-
particle currents or charged-particle densities.

In the present work we follow the conventional definitions
of transport coefficients and assume that the hydrodynamic
conditions prevail, so that all space-time dependence is ex-
pressible through linear functionals of n(r, t ). The hydrody-
namic conditions are not satisfied near the boundaries of the
system or in the vicinity of sources and/or sinks of charged
particles, as well as under conditions in which electric and/or
magnetic fields are not spatially homogeneous. The func-
tional representation of the hydrodynamic approximation is
the well-known density gradient expansion of the phase-space
distribution function [63]:

f (r, c, t ) =
∞∑

k=0

f (k)(c, t ) � (−∇ )kn(r, t ), (6)

where f (k)(c, t ) are time-dependent tensors of rank k and
� denotes a k-fold scalar product. Performing equivalent
representation of the flux �(r, t ) and source term S(r, t ), we
have

�(r, t ) =
∞∑

k=0

�(k+1)(t ) � (−∇)kn(r, t ), (7)

S(r, t ) =
∞∑

k=0

S(k)(t ) � (−∇)kn(r, t ), (8)

where the superscripts (k) and (k + 1) denote the ranks of the
tensors. Equation (7) represents the flux-gradient relation and
truncation of the expansion at k = 2 gives

�(r, t ) = W n(r, t ) − D � ∇n(r, t ) + Q � (∇ ⊗ ∇)n(r, t ),

(9)

where ⊗ is the tensor product, W and D are lower-order
transport coefficients, the flux drift velocity and flux diffu-
sion tensor, respectively, and Q defines the flux third-order
transport coefficient tensor. The flux transport coefficients are
given by

W = �(1) =
∫

c f (1)(c, t ) dc, (10)

D = �(2) =
∫

c f (2)(c, t ) dc, (11)

Q = �(3) =
∫

c f (3)(c, t ) dc, (12)

where f (1)(c, t ), f (2)(c, t ), and f (3)(c, t ) are the expansion
coefficients in the density-gradient expansion of the phase-
space distribution function (6).

Substitution of expansions (7) and (8) into the continuity
equation (2) yields the extended diffusion equation which
incorporates the contribution of the third-order transport co-
efficient tensor,

∂n(r, t )

∂t
+ W (b) � ∇n(r, t ) − D(b) � (∇ ⊗ ∇)n(r, t )

+ Q(b) � (∇ ⊗ ∇ ⊗ ∇)n(r, t ) = −Rnetn(r, t ), (13)
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where Rnet is the net particle loss rate. For electron swarms,
this quantity is given by

Rnet = −S(0) = −
∫∫

n0c[σi(ε) − σa(ε)] f (r, c, t ) dc dr.

(14)
W (b) and D(b) are the bulk drift velocity and bulk diffusion
tensor, respectively, and Q(b) is the bulk third-order transport
coefficient tensor. The connection between the bulk and flux
transport coefficients is given by

W(b) = W + S(1), D(b) = D + S(2), Q(b) = Q + S(3),

(15)

where S(1), S(2), and S(3) are the expansion coefficients in the
hydrodynamic expansion of the source term (8).

The third-order transport coefficient tensor is referred to
as the skewness coefficient by some authors [18], while other
authors use the term skewness to denote just the diagonal
component of this tensor along the direction of the electric
field [19]. For brevity, in the rest of this work we will some-
times refer to the third-order transport coefficient tensor as the
skewness tensor.

In the absence of nonconservative processes (or when the
collision frequencies of these processes are independent of the
energy) the bulk and the flux transport coefficients are equal
[64]. In the presence of nonconservative collisions these two
families of transport coefficients can vary quite substantially
from each other. The physical interpretation, the origin of
differences and the application of the bulk and flux low-order
transport coefficients as well as their application in the model-
ing of plasma discharges have been thoroughly discussed and
illustrated in our previous publications [6,16,41,62]. We defer
a full discussion of the differences between the bulk and flux
third-order tensor coefficients to a future publication.

In order to show the rank of the tensor explicitly, the third-
order transport coefficient tensor in (9) can be rewritten

[Q � (∇ ⊗ ∇)n]i ≡
∑

jk

Qi jk
∂2n(r, t )

∂x j∂xk
, (16)

where the indices i, j, k each run over the space coordinates
x, y, z. We note that there are 27 components in the tensor
Q without considering any symmetry of the system under
permutation operations. However, since the order of differen-
tiation of n is irrelevant, some components of a tensor must be
equal to each other. For example, for the magnetic-field-free
case the maximal number of independent components is three,
while when both the electric and magnetic fields are present
and crossed at an arbitrary angle the maximal number of
independent components is 18. It is clear that the structure of
a tensor and symmetries along individual components depend
on the field configuration.

B. Structure and symmetry considerations of the third-order
transport coefficient tensor

One of the most important tasks in analysis of higher-
order transport coefficients is to identify the symmetries along
individual elements of the tensors. In this section we apply
the group projector method [65] to determine the structure

of the skewness tensor. The group projector method is briefly
discussed in Appendix A.

We first consider a magnetic-field-free case. The symmetry
group of the system in the magnetic-field-free configuration is
C∞V (see Appendix A). This group has two connected com-
ponents. The first component corresponds to rotations Rz(α)
about the z axis through an arbitrary angle α. The second
component corresponds to the composition of a rotation Rz(α)
and a reflection in the symmetry plane σv . Polar vector (PV)
representations of the group elements from the first and the
second connected components are

DPV (Rz(α)) =
⎛⎝cos α − sin α 0

sin α cos α 0
0 0 1

⎞⎠, (17)

DPV (σvRz(α)) =
⎛⎝ cos α − sin α 0

− sin α − cos α 0
0 0 1

⎞⎠, (18)

where α is the angle of rotation around the z axis. Thus,
for the magnetic-field-free case the following structure of the
skewness tensor is derived:

Qxab =
⎛⎝ 0 0 Qxxz

0 0 0
Qxxz 0 0

⎞⎠, Qyab =
⎛⎝0 0 0

0 0 Qxxz

0 Qxxz 0

⎞⎠,

Qzab =
⎛⎝Qzxx 0 0

0 Qzxx 0
0 0 Qzzz

⎞⎠, (19)

where a, b ∈ {x, y, z}. For the magnetic-field-free case the
skewness tensor has seven nonzero elements and only
three independent elements, including Qzzz, Qzxx, and Qxxz

[19,25,31,32]. Furthermore, the following symmetry proper-
ties along the individual elements of the tensor hold:

Qxxz = Qxzx = Qyyz = Qyzy, Qzxx = Qzyy. (20)

For parallel electric and magnetic fields the symmetry
group of the system is C∞ (see Appendix A). This group has
only a single component consisting of rotations Rz(α):

DPV (Rz(α)) =
⎛⎝cos α − sin α 0

sin α cos α 0
0 0 1

⎞⎠. (21)

In this case the structure of the skewness tensor is more
complicated. For instance, the presence of the element Qxyz

is due to the explicit effects of the magnetic field on the
trajectories of the charged particles. It is interesting to note
that this component has exactly the opposite contribution to
the third-order diffusive flux along the x and y directions.
This is analogous to the Dxy component of the diffusion
tensor. Likewise, the third-order flux along the magnetic field
direction is the same as for the magnetic-field-free case. Thus,
for parallel electric and magnetic fields the skewness tensor
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has the following structure:

Qxab =
⎛⎝ 0 0 Qxxz

0 0 Qxyz

Qxxz Qxyz 0

⎞⎠,

Qyab =
⎛⎝ 0 0 −Qxyz

0 0 Qxxz

−Qxyz Qxxz 0

⎞⎠, (22)

Qzab =
⎛⎝Qzxx 0 0

0 Qzxx 0
0 0 Qzzz

⎞⎠.

For parallel electric and magnetic fields the skewness tensor
has 11 nonzero elements and only four independent elements,
including Qzzz, Qzxx, Qxxz, and Qxyz. Furthermore, the follow-
ing symmetry properties along the individual elements of the
tensor may be identified:

Qxxz = Qxzx = Qyyz = Qyzy, Qzxx = Qzyy,

Qxyz = Qxzy = −Qyxz = −Qyzx. (23)

For orthogonal electric and magnetic fields the symmetry
group of the system is C1V . This group has only two elements,
the unity element e and a reflection in the symmetry plane σv ,
which is orthogonal to the direction of the magnetic field. The
PV representations of these two elements are given by

DPV (e) =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠, DPV (σv ) =
⎛⎝1 0 0

0 −1 0
0 0 1

⎞⎠. (24)

Thus, for orthogonal electric and magnetic fields the skewness
tensor has the following structure:

Qxab =
⎛⎝Qxxx 0 Qxxz

0 Qxyy 0
Qxxz 0 Qxzz

⎞⎠,

Qyab =
⎛⎝ 0 Qyyx 0

Qyyx 0 Qyyz

0 Qyyz 0

⎞⎠, (25)

Qzab =
⎛⎝Qzxx 0 Qzzx

0 Qzyy 0
Qzzx 0 Qzzz

⎞⎠.

We observe that for orthogonal fields the skewness tensor has
14 nonzero elements among which 10 are independent. The
following symmetry properties along the individual elements
of the tensor are clearly evident:

Qxxz = Qxzx, Qyyz = Qyzy, Qyyx = Qyxy, Qzzx = Qzxz.

(26)

When electric and magnetic fields are crossed at arbitrary
angles, the symmetry group of the system is the trivial group,
which has only the unity element, e.g.,

DPV (e) =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠. (27)

For this general configuration, the skewness tensor is full,
and it has 27 nonzero elements. However, there are only

18 independent components as the last two indices of the
skewness tensor commute. Thus, the skewness tensor has the
following structure:

Qxab =
⎛⎝Qxxx Qxxy Qxxz

Qxxy Qxyy Qxyz

Qxxz Qxyz Qxzz

⎞⎠,

Qyab =
⎛⎝Qyxx Qyyx Qyxz

Qyyx Qyyy Qyyz

Qyxz Qyyz Qyzz

⎞⎠, (28)

Qzab =
⎛⎝Qzxx Qzxy Qzzx

Qzxy Qzyy Qzzy

Qzzx Qzzy Qzzz

⎞⎠.

For this general configuration, one may identify the follow-
ing symmetry properties along the individual elements:

Qxxy = Qxyx, Qyyx = Qyxy, Qzzx = Qzxz,

Qxxz = Qxzx, Qyyz = Qyzy, Qzzy = Qzyz, (29)

Qxyz = Qxzy, Qyzx = Qyxz, Qzxy = Qzyx.

These symmetry arguments can be extended to any of the
higher-order transport coefficients.

C. Physical interpretation of the third-order
transport coefficients

In this section we discuss the physical meaning of the
third-order transport coefficients. Let us assume that the con-
tribution of the third-order transport coefficients to the density
profile of charged particles is negligibly small. This reduces
the extended diffusion equation (13) to the well-known form

∂n(r, t )

∂t
+ W (b) � ∇n(r, t ) − D(b) � (∇ ⊗ ∇)n(r, t )

= −Rnetn(r, t ). (30)

Swarm experiments are traditionally analyzed by solving the
the diffusion equation (30), which gives the density of charged
particles throughout the bulk of medium. For example, in an
idealized time-of-flight experiment, in which a pulse of N0

particles is released from a plane source at z = 0 at time
t = 0 into an unbounded medium, the initial and boundary
conditions are

n(r, 0) = N0δ(r),

n(r, t ) = 0 (‖r‖ → ∞, t > 0), (31)

respectively, and the solution is

n(0)(r, t ) = N0e−Rnett e
− (z−W (b)t)2

4D(b)
L t

− x2+y2

4D(b)
T t(

4πD(b)
T t

)√
4πD(b)

L t
, (32)

where D(b)
L and D(b)

T are the bulk longitudinal and bulk trans-
verse diffusion coefficients, respectively, while x, y, and z are
the Cartesian coordinates [62]. The solution (32) represents a
Gaussian pulse, the peak of which drifts with the velocity W (b)

and diffuses about the center of mass according to the diffu-
sion coefficients D(b)

L and D(b)
T . For brevity, in what follows
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we omit explicit reference to the type of transport coefficients,
e.g., the superscripting for all transport coefficients.

Assuming the above initial conditions (31), the extended
diffusion equation (13), which incorporates the effects of
the third-order transport coefficient tensor, cannot be solved
analytically. Thus, we have applied the following procedure.
First, the Fourier transform of the charged-particle density
is expanded in terms of the longitudinal QL and transverse
QT components of the third-order transport coefficient tensor.
Using the inverse Fourier transformation of the expansion
coefficients, we have derived the density of charged particles
in which the corrections due to the third-order transport coef-
ficients are included. In the first approximation, in which only
the first-order corrections are assumed, the density of charged
particles is given by

n(1)(r, t ) =
[

1 + QL
t (z − W t )3 − 6DLt2(z − W t )

8(DLt )3

+ QT
3t (z − W t )(x2 + y2 − 4DT t )

8DLt (DT t )2

]
n(0)(r, t ).

(33)

The first-order correction along the longitudinal direction
shown in Eq. (33) has been previously published by Pene-
trante and Bardsley [18]. This equation has a simpler form
in relative coordinates that are defined as

χz = z − W (b)t√
2D(b)

L t
, χx = x√

2D(b)
T t

, χy = y√
2D(b)

T t
. (34)

In these coordinates the approximate solution (32) may be
written as

n(1)(r, t ) = n(0)(r, t )

[
1 + tQ(b)

L

σ 3
z

χz
(
χ2

z − 3
)

+ 3tQ(b)
T

σ 2
x σz

χz
(
χ2

x + χ2
y − 2

)]
. (35)

It can be seen from Eq. (35) that the third-order transport
coefficients describe elongation and compression of the num-
ber density of charged particles along different parts of the
swarm. The detailed physical interpretation of the individual
components of the third-order transport tensor is given in
Appendix B.

D. Multiterm solutions of Boltzmann’s equation

In this section we briefly describe the basic elements of
a multiterm theory for solving the Boltzmann equation that
has been used to calculate the components of the third-order
transport coefficient tensor. The method is by now standard,
and for details the reader is referred to our previous publi-
cations [66–68]. In brief, the dependence of the phase-space
distribution function on the velocity coordinates is represented
by its expansion in terms of spherical harmonics (angular
dependence) and Sonine polynomials (speed dependence).
Likewise, under hydrodynamic conditions a sufficient repre-
sentation of the space dependence is an expansion in terms
of the powers of the density gradient operator. After trun-
cation and discretizing in time, the above expansions allow

a decomposition of the Boltzmann equation into a set of
matrix equations in terms of the expansion coefficients which
represent the moments of the distribution function. This set
of matrix equations can be solved numerically by using the
matrix inversion. Transport properties including mean energy,
drift velocity, and components of the diffusion tensor can then
be calculated directly from the moments of the phase-space
distribution function.

In order to find the explicit expressions for the individual
elements of the third-order transport coefficient tensor we use
the definition of the spherical vector [69]:

c[1]
m =

√
4π

3
cY [1]

m (ĉ). (36)

The connection between Cartesian and spherical components
of the velocity vector is given by

cx = i√
2

(
c[1]

1 − c[1]
−1

)
, cy = 1√

2

(
c[1]

1 + c[1]
−1

)
,

cz = −ic[1]
0 . (37)

Likewise, the flux of charged particles in irreducible tensor
notation is given by

�[1]
m = n

〈
c[1]

m

〉
, (38)

while its connection with the Cartesian components is ex-
pressed by

�x = i√
2

(
�

[1]
1 − �

[1]
−1

)
, �y = 1√

2

(
�

[1]
1 + �

[1]
−1

)
, (39)

�z = −i�[1]
0 .

Using the orthogonality relations for spherical harmonics and
modified Sonnine polynomials [61,69] and relation

cl =
(√

2

α

)
R0l (αc)

N0l
, (40)

after some algebra we get the following expression for the flux
of charged particles in the basis of Sonine polynomials:

�(1)
m = 1

α

∞∑
s=0

s∑
λ=0

λ∑
μ=−λ

F (01m|sλμ)G(sλ)
μ n(r, t ). (41)

Using the explicit expressions for the irreducible gradient ten-
sor operator in the spherical form of the flux-gradient relation
(41) [61], the relationship between the spherical quantities
�(1)

m (where m = −1, 0, 1) and their Cartesian counterparts in
(9) can be established. The explicit expressions for the indi-
vidual elements of the flux third-order transport coefficient
tensor in the absence of a magnetic field are given by

Qxxz = 1√
2α

[Im(F (011|221; α)) − Im(F (01 − 1|221; α))],

(42)

Qzxx = − 1

α

[
1√
3

Im(F (010|200; α))+ 1√
6

Im(F (010|220; α))
]

+ 1

α
Im(F (010|222; α)), (43)
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Qzzz = 1

α

[√
2

3
Im(F (010|220; α)) − 1√

3
Im(F (010|200; α))

]
,

(44)

where Re(·) and Im(·), respectively, represent the real and
imaginary parts of the moments. The explicit expressions for
the individual elements of the flux skewness tensor in varying
configurations of electric and magnetic fields are given in
Appendix C. Expressions for the lower-order transport coeffi-
cients in terms of the moments of the distribution function can
be found in our previous work [66–68,70].

E. Monte Carlo simulation method

The Monte Carlo simulation technique is used in this work
as an independent tool to confirm the numerical accuracy and
integrity of a multiterm solution of Boltzmann’s equation. The
Monte Carlo code applied in this work has been systematically
tested for a range of model and real gases under both the
hydrodynamic and nonhydrodynamic conditions in the
presence of the electric and magnetic fields [67,68,71,72]. The
subject of testing were the lower-order transport coefficients
usually in the presence of nonconservative collisions. In the
present work, we follow a large number of particles (∼107)
moving in an infinite gas under the influence of spatially
homogeneous electric and magnetic fields. Such a large
number of charged particles is followed with the aim of
reducing the statistical fluctuations of the output data required
for the evaluation of the individual elements of the third-order
transport coefficient tensor. The charged-particle trajectories
between collisions are determined by solving the collisionless
equation of motion of a charged particle. The position and
velocity of each charged particle are updated after the time
step �t , which is obtained by solving the equation for
collision probability. The numerical solution of this equation
requires the extensive use of random numbers. The type of
collision is also determined using random numbers as well as
relative probabilities for individual collisional processes. The
details of our Monte Carlo method are given in our several
previous publications [67,71–73].

The third-order transport coefficients are determined after
relaxation to the steady state. The flux third-order transport
coefficient tensor is defined by

Qabc = 1

3!

〈
d

dt

(
r∗

ar∗
br∗

c

)〉
, (45)

where (a, b, c) take values from the set {x, y, z} while the
angular brackets 〈〉 denote ensemble averages in phase space,
and r∗ = r − 〈r〉.

It is important to note that although the third-order trans-
port coefficient tensor has the three independent elements
when the swarm is acted on solely by the electric field, we
are able to identify only two independent elements in our
Monte Carlo simulations. This follows from the fact that the
expressions for sampling the third-order transport coefficients
are derived from the generalized diffusion equation in which
all tensor components are contracted with the corresponding
partial derivatives of charged-particle density with respect
to the coordinates. Thus, the expressions for evaluation the
skewness coefficients represent the sum of all skewness tensor

components Qabc which have the same combination of indi-
cies a, b, c where (a, b, c) take values from the set {x, y, z}.
Therefore, the expressions for skewness coefficients in our
Monte Carlo simulations are symmetric with respect to the
permutation of any two indices. The analogy with the deter-
mination of the off-diagonal elements of the diffusion tensor
is clearly evident. For example, for perpendicular electric and
magnetic fields, we are not able to isolate and evaluate the
individual off-diagonal elements of the diffusion tensor [67].
However, it is possible to determine the sum of the individual
off-diagonal elements which is the well-known Hall diffusion
coefficient. To calculate the individual elements of the third-
order transport coefficient tensor and diffusion tensor, one
must integrate the velocity over the corresponding hydro-
dynamic component of the distribution function in velocity
space. This is beyond the scope of this work, and we defer
this procedure to a future paper.

Due to inability to isolate the individual elements of the
third-order transport coefficient tensor in our Monte Carlo
simulations, we define the following third-order transport
coefficients:

Qzzz ≡ QL, Qπ (xxz) ≡ QT , (46)

where

Qπ (xxz) = 1
3 (Qxxz + Qxzx + Qzxx ), (47)

and π (abc) denote all possible permutations of (a, b, c).
The explicit form of the flux longitudinal and flux trans-

verse third-order coefficients are calculated from

QL = 1
6 (3〈z2cz〉 − 3〈cz〉〈z2〉 − 6〈z〉〈zcz〉 + 6〈z〉〈z〉〈cz〉), (48)

QT = 1
6 (〈x2cz〉 + 2〈zxcx〉 − 〈cz〉〈x2〉 − 2〈z〉〈xcx〉), (49)

where cx, cy, and cz are velocity components. Explicit formu-
las for the elements of the flux third-order transport coefficient
tensor which can be isolated and determined individually in
our Monte Carlo simulations in various configurations of the
electric and magnetic fields are given in the Appendix C.

III. RESULTS

A. Preliminaries

The aim of the present section is to highlight the general
features of the third-order transport coefficients associated
with the light charged-particle swarms in gases when both
the electric and magnetic fields are present. Benchmark cal-
culations are performed for a range of model gases, including
the Maxwell (constant collision frequency) model, the hard-
sphere model and the Reid ramp inelastic model. For the
present study we consider conservative collisions only. We de-
fer the investigation of the explicit effects of nonconservative
collisions on the third-order transport coefficient tensor to a
future study. The utility of model gases lies in the fact that
through the use of simple analytically given cross sections we
can isolate and elucidate physical processes which govern and
control the specific behavior of a charged-particle swarm. This
is particularly important for higher-order transport coefficients
due to complexity of factors which contribute to, or influence,
the corresponding tensors. However, the present theory and
associated codes have been applied to a number of gases
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and mixtures and preliminary results are available elsewhere
[74–76]. Here we present some results for neon and compare
them with the results of calculations that have been presented
elsewhere. We employ the set of cross sections for electron
scattering in neon developed by Hayashi [77] (see Fig. 2 in
Ref. [78]).

In the Boltzmann equation analysis of the third-order
transport coefficients the elastic collisions are treated us-
ing the original Boltzmann collision operator [79], while its
semiclassical generalization is applied for inelastic processes
[80]. All scattering is assumed isotropic and hence for elastic
scattering we use the elastic momentum transfer cross section.
Calculations are performed assuming that the internal states
are governed by a Maxwell-Boltzmann distribution which
essentially places all neutral particles in the ground state for
systems considered. The thermal motion of background par-
ticles is carefully considered in both the Boltzmann equation
analysis and Monte Carlo simulations [81].

The Monte Carlo results are presented with error bars.
These error bars are required since the third-order transport
coefficients are derived from the third-order monomials of
coordinates and velocities which usually have high standard
deviations. The statistical error of the third-order transport
coefficients that are evaluated in our Monte Carlo simulations
is estimated as the standard error. The standard error is equal
to the standard deviation of the third-order transport coeffi-
cients divided by the square root of the number of electrons
followed in the simulation. Thus, it is necessary to follow a
large number of electrons (at least 107) in our Monte Carlo
simulations in order to sufficiently reduce the standard error
of the final results.

When the magnetic field is applied, the results and dis-
cussion are restricted to a crossed field configuration, al-
though the theory and associated codes are valid for arbi-
trary field configurations. We use the unit of the Townsend
(1 Td = 10−21 Vm2) for the reduced electric field and the unit
of the Huxley (1 Hx = 10−27 Tm3) for the reduced magnetic
field.

B. The Maxwell model

In this section we present benchmark results for the third-
order transport coefficients assuming the Maxwell model of
interaction. In this model the electrons undergo elastic colli-
sions only and the collision frequency is independent of the
energy. The details of the model used here are as follows:

σm(ε) = Aε−1/2 Å2 (elastic cross section),

m0 = 4 amu, m = 5.486×10−4 amu, T0 = 293 K,

(50)

where ε is in eV, m is the electron mass and m0 is the neutral
mass. While the magnitude of potential for elastic scattering
A in previous works was usually fixed to a single value of 6
[70,82,83], in the present work its value is varied in order to
investigate the influence of elastic collisions on the third-order
transport coefficients. We consider the reduced electric field
range: 0.1–10 Td.

The results are obtained from the numerical solution of
Boltzmann’s equation and are presented in Table I. The three

TABLE I. Third-order transport coefficients for the Maxwell
model. The results are presented as a function of the reduced electric
field E/n0 and the magnitude of potential for elastic scattering A.

E/n0 n2
0Qxzx n2

0Qzxx n2
0Qzzz

A (Td) (m−3 s−1) (m−3 s−1) (m−3 s−1)

1.0 0.1 5.2930×1045 2.1761×1042 1.0588×1046

1.0 4.3919×1048 1.8055×1045 8.7856×1048

10.0 4.3829×1051 1.8017×1048 8.7676×1051

3.0 0.1 5.1740×1043 2.1279×1040 1.0351×1044

1.0 1.8373×1046 7.5531×1042 3.6754×1046

10.0 1.8039×1049 7.4158×1045 3.6087×1049

6.0 0.1 4.7768×1042 1.9648×1039 9.5557×1042

1.0 6.0575×1044 2.4903×1041 1.2118×1045

10.0 5.6405×1047 2.3187×1044 1.1283×1048

12.0 0.1 5.4425×1041 2.2388×1038 1.0888×1042

1.0 2.2880×1043 9.4070×1039 4.5769×1043

10.0 1.7665×1046 7.2623×1042 3.5340×1046

independent elements of the third-order transport coefficient
tensor are given as a function of the reduced electric field
E/n0 and the magnitude of potential for elastic scattering A.
We observe that n2

0Qxzx, n2
0Qzxx, and n2

0Qzzz are positive and
monotonically increasing functions of E/n0. For brevity, in
what follows we omit n2

0, and n2
0Qabc will be written as Qabc,

where a, b, c ∈ {x, y, z}. In the logarithmic plot, the E/n0

dependence of Qxzx, Qzxx, and Qzzz is linear both for the higher
values of E/n0, where the diffusion deviates significantly
from the thermal values, and for the lower values of E/n0,
where the diffusion is essentially thermal. However, the slope
of these two linear dependencies is not the same. The slope is
greater for those values of E/n0 for which the diffusion is no
longer thermal.

We observe that the Qzxx is less than the remaining el-
ements, Qxzx and Qzzz for all E/n0 and A considered. The
coefficient Qzxx represents the difference in the flux of charged
particles along the z direction between the center of the swarm
and the transverse edges (see Appendix B). Since the collision
frequency for the Maxwell model is independent of energy,
the positive value of Qzxx is a clear sign that the mobility
of the electrons is greater at the transverse edges than at the
center of the swarm, due to a parabolic increase of the mean
energy along the transverse direction. This effect is very small
and hence the coefficient Qzxx is dominated by the coefficients
Qxzx and Qzzz. This physical picture is no more valid for real
gases in which the momentum transfer collision frequency is
usually a complex function of the electron energy.

Comparing Qxzx and Qzzz, we observe that these two co-
efficients are of the same order of magnitude for all E/n0

and A considered. In a certain way this is analogous to
the behavior of the diffusion coefficients. For the Maxwell
model the longitudinal and transverse diffusion coefficients
are equal [82,83]. Likewise, the sum of the coefficients Qxzx

and Qxxz which is proportional to the flux along the transverse
direction, is equal to the coefficient Qzzz which determines
the corresponding flux along the field direction (note that the
coefficient Qzxx is negligible as compared to the coefficients
Qxzx and Qzzz).
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FIG. 1. Influence of the charged-particle to neutral-particle mass
ratio on the variation of the longitudinal third-order transport coef-
ficient n2

0QL with E/n0 for the hard sphere model. Calculations are
performed using a Monte Carlo simulation technique.

C. Effects of the ion to neutral-particle mass ratio

In this section we explore the effects of the ion to neutral
mass ratio on the variation of the third-order transport coef-
ficients with E/n0. Calculations are performed by a Monte
Carlo simulation technique assuming the hard sphere model
[84]. The details of the model are

σm(ε) = 6 Å2 (elastic cross section),

m0 = 4 amu, T0 = 293 K. (51)

We consider the mass ratio range 10−4–1 and the reduced
electric field range 1–100 Td.

In Fig. 1 we show the variation of the coefficient QL as
a function of E/n0 for various charged-particle to neutral-
particle mass ratios, as indicated on the graph. For decreasing
m/m0 the energy transfer in elastic collisions is reduced,
which in turn increases QL. In Monte Carlo simulations, the
reduced energy transfer in elastic collisions for decreasing
m/m0 slows the relaxation of energy. As a consequence,
Monte Carlo simulations require a large computation time
while at the same time the statistical fluctuations deteriorate
the accuracy of the output data. We see in the Fig. 1 that the
error bars are increased for decreasing m/m0.

For a fixed mass ratio we see that QL is increased mono-
tonically with E/n0. In this model, the elastic cross section is
constant rendering collision frequency to be directly propor-
tional to the square root of the charge particle energy. With the
increase of E/n0, the collision frequency also increases, but
not enough to overcome the directed action of the force and
the simultaneous increase of the mobility of charged particles
(see Appendix B). As a consequence, QL rises with rising
E/n0. When it comes to QT , for the entire range of E/n0

considered, it is found that QT > 0 (not shown here). This
indicates that the absolute value of the sum of Qxxz and Qxzx

is greater than the absolute value of the coefficient Qzxx. In
this model, Qzxx < 0 since the collision frequency is directly
proportional to the square root of charged-particle energy. The
negative value of Qzxx due to elastic collisions with a constant
cross section has been observed for the Reid model gas at low

FIG. 2. Variation of the QL to D2
L ratio as a function of E/n0 for

the hard sphere model.

electric fields where the rate for inelastic collisions is negligi-
ble (see Sec. III D). Note that in our Monte Carlo simulations
we are not able to evaluate the individual components Qxxz,
Qxzx and Qzxx, but only their sum [see Eq. (47)].

Figure 1 clearly illustrates that for decreasing m/m0 the
coefficients QL (and QT ) are increased. It should be noted that
for the hard sphere model the third-order transport coefficients
scale with the factor 1√

m0
( m+m0

mA2 )
5/4

[19]. This raises an inter-
esting question: does the spatial profile of the swarm deviate
from a Gaussian distribution more for light charged particles,
including electrons and/or positrons, or for more massive
ions? In order to investigate this issue, in Figs. 2 and 3 we
show the variation of the 1

n0
QL/D3

L and QL/D2
L as a function

of E/n0, respectively, where DL is the longitudinal diffusion
coefficient. Recall that the asymmetric contribution to the spa-
tial profile of the swarm along the field direction is represented
by the two terms; the first term is proportional to QL/D3

L,
while the second one is proportional to QL/D2

L [see Eq. (33)].
We observe that both quantities 1

n0
QL/D3

L and QL/D2
L are

decreased with a decrease of m/m0, which indicates that the
contribution of the third-order transport coefficients to the
spatial profile of the swarm becomes more significant for ions
in comparison with electrons and/or positrons.

FIG. 3. Variation of the QL to D3
L ratio as a function of E/n0 for

the hard sphere model. Calculations are performed assuming the gas
number density n0 = 3.54×1022 m−3.
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FIG. 4. Variation of the third-order transport coefficients with
E/n0 for the Reid ramp model. Calculations are performed via a
multiterm theory for solving the Boltzmann equation.

D. The Reid ramp model

The Reid ramp inelastic model of interaction is given by
[85]

σm(ε) = 6 Å2 (elastic cross section),

σinel(ε) =
⎧⎨⎩10(ε − 0.2) Å2, ε � 0.2 eV

(inelastic cross section)
0, ε < 0.2 eV

,

m0 = 4 amu,

T0 = 0 K, (52)

where m0 and T0 represent the mass and temperature of the
neutral gas particles while ε has the units of eV. Initially,
this particular model was developed with the aim of testing
the validity of the two-term approximation for solving the
Boltzmann equation. Since the early work of Reid [85], the
model has been used extensively as a benchmark for a variety
of numerical techniques for solving the Boltzmann equation
and Monte Carlo codes under steady-state [70–72,82,83] and
time-dependent conditions [17,68]. In the present work we
extend the model to consider the behavior of the individual
elements of the third-order transport coefficient tensor in the
presence of both electric and magnetic fields. Thus, the utility
of the Reid ramp model in the present work is twofold: (1) it
will enable us to determine the influence of an energy depen-
dent collision frequency in addition to the influence of strong
inelastic processes on the behavior of the third-order transport
coefficients, and (2) it is a good test of the accuracy of the
two-term approximation for solving Boltzmann’s equation.

In Fig. 4 we show the variation of the coefficients Qzzz,
Qxxz, and Qzxx with the reduced electric field E/n0. Over
the range of E/n0 considered, we see that Qzzz and Qxxz

are positive while Qzxx is negative. Such behavior of the
third-order transport coefficients can be attributed to the fact
that for the Reid ramp model the total collision frequency is
a monotonically increasing function of the electron energy.
Due to the increase of the total collision frequency over the
entire range of E/n0, Qzxx is negative (see Appendix B).
However, this increase is not significant enough to render
Qzzz and Qxxz negative. In any case, the absolute values of

FIG. 5. Comparison between the multiterm Boltzmann equation
results for longitudinal third-order transport coefficient and those
calculated with a Monte Carlo simulation technique.

the third-order transport coefficients are increasing functions
of E/n0 until reaching the particular value of E/n0 value for
which the inelastic collisions begin to play a significant role.
In this case, their direct effect is to enhance collisions and
thereby reduce diffusion which in turn reduces the third-order
transport coefficients. In the limit of the highest E/n0, the
third-order transport coefficients are significantly reduced and
approach zero values.

In Figs. 5 and 6 we show the comparison between the
Boltzmann equation and Monte Carlo results of QL and QT ,
respectively. The comparison is presented only for relatively
higher values of E/n0 where both QL and QT are monotoni-
cally decreasing functions of E/n0. In the limit of lower values
of E/n0, the relaxation of energy is a very slow process and
Monte Carlo simulations require large computation time. The
results from the Monte Carlo simulations are consistent and
agree very well with those predicted by the Boltzmann equa-
tion analysis, validating the theoretical method for solving the
Boltzmann equation and numerical integrity of both methods
of calculations.

In Fig. 7 the percentage differences in the third-order trans-
port coefficients for the Reid ramp model, calculated using
the two-term and the fully converged multiterm solutions

FIG. 6. Comparison between the multiterm Boltzmann equation
results for transverse third-order transport coefficient and those cal-
culated with a Monte Carlo simulation technique.
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FIG. 7. Percentage difference between the two-term (TT) and
multiterm (MT) results for the third-order transport coefficients for
the Reid ramp model.

of Boltzmann’s equation, are shown. We see that maximum
errors in the two-term approximation, for Qzzz and Qzxx, occur
at about 10 Td where the mean energy of the electrons
is close to the threshold of a cross section for inelastic
collisions. On the other hand, the discrepancy between the
two-term and multiterm solutions of Boltzmann’s equation
for Qxxz increases with E/n0 monotonically over the range
of E/n0 considered in this work. For the lower values of
E/n0, the coefficient Qzxx appears to be the most sensitive
with respect to the number of spherical harmonics used for
solving Boltzmann’s equation while for the higher values of
E/n0 the most sensitive coefficient is Qxzx. We observe that
the errors between the two-term and converged multiterm
results can be as high as 500%. The presence of inelastic
collisions produces asymmetry in velocity space which makes
the two-term approximation inadequate for the analysis of
the third-order transport coefficients. It is also important to
note that the differences between the two-term approximation
and multiterm solution of Boltzmann’s equation for third-
order transport coefficients are much higher than those for the
lower-order transport coefficients, e.g., for the drift velocity
and diffusion coefficients. This suggests that the third-order
transport coefficients are more sensitive with respect to the
way of solving the Boltzmann equation. Thus, it seems that
the use of a multiterm theory for solving the Boltzmann
equation is mandatory in the presence of inelastic collisions
when it comes to calculations of the third-order transport
coefficients.

In Fig. 8 we show the variation of the coefficients Qxxx

and Qzzz as a function of B/n0 at E/n0 = 12 Td. As already
discussed, Qzzz describes the deviation from the Gaussian
along the z axis (see Appendix B). For perpendicular electric
and magnetic fields, Qxxx is a measure of the deviation from
the Gaussian along the E×B direction. For B/n0 greater than
approximately 150 Hx, we observe that both Qxxx and Qzzz

monotonically decrease with increasing B/n0. This is a clear
indication of the magnetic-field-controlled regime in which
the cyclotron frequency dominates the collision frequency and
the electrons are held by the magnetic field lines. For B/n0

less than approximately 150 Hx, the behavior of Qxxx and
Qzzz is less intuitive. For these values of B/n0 the collision

FIG. 8. Variation of n2
0Qzzz and n2

0Qxxx with B/n0 for the Reid
ramp model. Calculations are performed by a multiterm theory for
solving the Boltzmann equation in a crossed field configuration. The
reduced electric field E/n0 is set to 12 Td.

frequency is generally higher than the cyclotron frequency,
but on average, an increasing magnetic field acts to increase
the fraction of the orbit completed between collisions. As a
consequence, the collision frequency begins to fall down with
increasing B/n0 and Qzzz raises.

The behavior of Qxxx for the lower values B/n0 is partic-
ularly interesting. Initially, in the limit of the lowest B/n0,
Qxxx is negative due to the Lorentz force and spatial variation
of the energy (and hence spatial variation of the collision
frequency), which on average induces the spatial variation
of the average velocity of the electrons along the negative
direction of the x axis. In this B/n0 region, the negative sign
of Qxxx corresponds to an elongation of the swarm in the
direction of the x component of the drift velocity (along the
negative x axis in this field configuration). This is analogous
to the elongation of the swarm described by the Qzzz element
along the z component of the drift velocity (the qE direction).
With a further increase of B/n0 the influence of collisions
becomes more and more significant which in turn leads to
the compressing or spreading of the swarm along the negative
or positive direction of the x axis. Due to these effects Qxxx

becomes positive and increases with increasing B/n0.
In Fig. 9 we show the remaining components of the third-

order transport coefficient tensor as a function of B/n0 for
perpendicular electric and magnetic fields. For the higher
values of B/n0 all components decrease with an increasing
B/n0 as more and more electrons are held in their orbits by
the magnetic field. For the lower values of B/n0, however,
the behavior of the third-order transport coefficients is com-
plex due to many individual factors which simultaneously
influence the third-order coefficient tensor. These individual
factors include the thermal anisotropy (the chaotic motion
of charged particles is different along different directions),
magnetic anisotropy (the orientation of charged-particle orbits
is controlled by the magnetic field), and spatial variations of
the average velocity and average energy along the longitudinal
and transverse directions. However, comparing the magnetic-
field-free case and crossed electric and magnetic fields the in-
terpretation of the third-order transport coefficients is similar
(see Appendix B). For example, the coefficient Qzyy describes
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FIG. 9. Variation of the third-order transport coefficients with the repeated indices for the Reid ramp model. Calculations are performed
via a multiterm theory for solving the Boltzmann equation in a crossed field configuration. The reduced electric field E/n0 is set to 12 Td. The
components of the n2

0Q tensor are given in units of 1042 m−3s−1.

the differences in the longitudinal spreading in the central part
of the swarm and along its transverse edges in the y direction.
Likewise, the coefficient Qyyz reflects the differences in the
transverse spreading at the front of the swarm (along the
direction given by the positive z) and at the trailing edge
of the swarm (along the direction given by the negative z).
The similar interpretation may be given for the remaining
third-order transport coefficients shown in Fig. 9.

In Fig. 10 we show the comparison between the individual
components of the third-order transport coefficient tensor,
which could be identified in our Monte Carlo simulations,
and the corresponding results, which are obtained from the
numerical solution of the Boltzmann equation. The two sets

of results agree very well, even over the range of E/n0 where
the values of the coefficients are negative. We see that the
error bars are not identical for different third-order transport
coefficients. This indicates that the statistical fluctuations of
the individual dynamical variables required for the evaluation
of the third-order transport coefficients are not the same.
Nevertheless, we see that the results obtained from the nu-
merical solution of the Boltzmann equation are in very good
agreement with those predicted by Monte Carlo simulations.
This validates the theory and numerical scheme for solving
the Boltzmann equation and Monte Carlo method when both
the electric and magnetic fields are present and crossed at the
right angle.

FIG. 10. Comparison between the multiterm Boltzmann equation results (full line) for various third-order transport coefficients and those
calculated by a Monte Carlo simulation technique (symbols with error bars) in a crossed field configuration. The reduced electric field E/n0 is
set to 12 Td. The components of the n2

0Q tensor are given in units of 1042 m−3s−1.
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FIG. 11. Variation of the longitudinal third-order transport coef-
ficient n2

0QL with E/n0 for electrons in neon. Our multiterm Boltz-
mann equation results (MT BE) are compared with those obtained
by two-term approximation for solving the Boltzmann equation
(TTA BE) [18] and momentum transfer theory (MTT) [19].

E. Third-order transport coefficients for electrons in neon

As an example of our calculations in real gases, in Fig. 11
we display the variation of the QL with E/n0 for electrons
in neon. The results obtained from the multiterm solution of
the Boltzmann equation are compared with those predicted
by the two-term approximation [18] and momentum transfer
theory (MTT) [19]. The agreement between our multiterm
results and those obtained by the two-term approximation is
very good. This is a clear sign that there is no significant
difference between the cross sections for elastic collisions of
the electrons in neon used in the present multiterm calcula-
tions and in the previous two-term calculations performed by
Penetrante and Bardsley [18]. The additional factor which fa-
vors the good agreement is the minimal influence of inelastic
collisions. If inelastic collisions would play a more important
role, then undoubtedly the differences between the multiterm
and two-term results would be much higher. In any case, no
calculations of QL were made by Penetrante and Bardsley for
the higher values of E/n0. On the other hand, the discrepancy
between our results and those predicted by the momentum
transfer theory (MTT) is clearly evident. This can be attributed
to the fact that the momentum transfer theory assumes a
very simple energy distribution function based on an effective
mean energy. MTT produces reasonable results for the lowest-
order transport coefficients such as drift velocity and even
diffusion but it is expected to fail for ionization which depends
on the high energy tail and also for higher-order transport
coefficients that are very sensitive on the cross sections and
correspondingly on the distribution function at all energies.
Limitations of the MTT have been discussed many times
[2,16,33,34,66].

In Fig. 12 we show the variation of the individual elements
of the third-order transport coefficient tensor as a function
of E/n0 for electrons in neon. The same generic features
of the third-order transport coefficients observed previously
for the Reid ramp model are clearly evident. Both Qzzz and
Qxxz are positive while the coefficient Qzxx is negative over
the range of E/n0 considered. The total collision frequency

FIG. 12. Variation of the third-order transport coefficients with
E/n0 for electrons in neon. Calculations are performed using a
multiterm approach for solving the Boltzmann equation.

increases with the increase of E/n0, but not sufficiently fast
to induced negative values of Qzzz and Qxxz (see Appendix B).
The oscillatory behavior in the profiles of Qzzz, Qxxz and Qzzz

occurs for E/n0 approximately less than 1 Td reflecting the
energy variation of the cross section for elastic collisions.
For E/n0 approximately greater than 1 Td, inelastic collisions
begin to play a significant role. As for the Reid ramp model,
it appears that significant inelastic processes are required to
suppress the longitudinal and transverse third-order transport
coefficients.

IV. CONCLUSION

In this paper we have discussed the third-order transport
coefficient tensor of charged-particle swarms moving in an
infinite neutral gas under the influence of spatially homoge-
neous electric and magnetic fields. The third-order transport
coefficient tensor is defined in terms of the extended flux gra-
dient relation and the extended diffusion equation. The group
projector method is then used for identifying the structure
of the tensor and symmetries along its individual elements
when both the electric and magnetic fields are present. For
an electric-field-only situation, we have found that the third-
order transport coefficient tensor has seven nonzero and only
three independent elements. For parallel electric and magnetic
fields, rotational invariance implies the third-order transport
coefficient tensor has 11 nonzero and four independent el-
ements, while for orthogonal electric and magnetic fields
the tensor has 14 nonzero and 10 independent elements.
Finally, when electric and magnetic fields are crossed at
an arbitrary angle, it is found that the third-order transport
coefficient tensor has 27 nonzero elements among which 18
are independent. The proposed methodology based on the
group projector method and symmetry considerations of the
Boltzmann equation can be applied to any of the transport
coefficient of an arbitrary tensorial rank.

The second important issue addressed in the present work
is the physical interpretation of the third-order transport coef-
ficients. In order to resolve this issue, we have expanded the
Fourier transform of the number charged-particle density in
terms of the longitudinal and transverse third-order transport
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coefficients. Using the inverse Fourier transformation of the
expansion coefficients, we have derived the expression for the
number density of charged particles in which the effects of
third-order transport coefficients are explicitly included. It is
found that deviations of the Gaussian distribution along the
specific directions are directly related with the sign of the
individual third-order transport coefficients.

Explicit expressions for the third-order transport coeffi-
cients in terms of the moments of the distribution function and
in the absence of nonconservative collisions are derived in the
framework of a multiterm theory for solving the Boltzmann
equation. Using the symmetry properties of the moments,
we have analyzed the structure of the third-order transport
coefficient tensor. We have also developed the Monte Carlo
method in which the third-order transport coefficients are
defined in terms of the moments of charged-particle density
in configuration space. It is found that only two independent
components of the third-order transport coefficient tensor can
be identified, as all tensor components are contracted with the
corresponding spatial partial derivatives of charged-particle
density. Thus, care must be taken when comparing the Monte
Carlo results with those obtained by other theories.

Numerical calculations are performed using a multiterm
solution of the Boltzmann equation for a range of model gases,
including the Maxwell, hard sphere, and Reid ramp models.
The results obtained are in very good agreement with those
predicted by the Monte Carlo method when possible, over the
range of the applied electric and magnetic fields. An important
observation is that the contribution of the third-order transport
coefficients to the spatial profile of the swarm becomes more
pronounced for increasing the charged-particle to neutral-
particle mass ratio. In this work we have also displayed
and emphasized the need for a multiterm solution technique
of Boltzmann’s equation. It is found that the discrepancy
between the two-term and fully converged multiterm results
are much higher for the third-order transport coefficients than
those for the lower order transport coefficients, e.g., drift
velocity and diffusion coefficients. The theory and associated
computer codes in the present work are equally valid for real
gases. The third-order transport coefficients are calculated for
electrons in neon and the results of calculations are compared
with those evaluated by the two-term approximation for solv-
ing the Boltzmann equation and momentum transfer theory.
Comparison with previous theories have shown surprisingly
good agreement with the two-term solution of the Boltzmann
equation and a significant disagreement with the momentum
transfer theory.

The duality of transport coefficients, e.g., the existence of
two different families of transport coefficients, the bulk and
the flux, is well known in the presence of nonconservative
collisions. Third-order transport coefficients are expected to
be more sensitive to the explicit influence of nonconservative
collisions. In order to investigate the effects of nonconser-
vative collisions on the third-order transport coefficients one
must go to third-order in the density gradient expansion to
account for such effects. This remains the focus of our future
investigation. Likewise, the remaining step to be taken, is
to apply the theory and mathematical machinery developed
in this work to investigate the correlation between the third-
order transport coefficients and those of lower order, e.g., the

drift and diffusion coefficients [19]. Additional issues which
should be considered are the effects of anisotropic scattering
and the behavior of the third-order transport coefficients in
time-dependent electric and magnetic fields. Finally, it would
be very challenging to model strong nonequilibrium systems
such as streamer discharges by suitable coupling of the ex-
tended diffusion equation which incorporates the third-order
transport coefficients for both the electrons and ions, and Pois-
son’s equation for the space charge electric field calculation.

The theory presented here covers the structure, symme-
tries, and method of calculation of the third-order transport
coefficients and the advantages that it may bring should it
be applied. In this paper, we focus on physics of ionized
gases (swarms and low-temperature collisional plasmas), but
approach may be extended to other physical systems if one
accounts for the dominant physical interactions and expected
symmetries. One such example where these results may be
applied directly is modeling of positron thermalization in gas
filled traps [86,87] or thermalization of positrons in gases
[88–90].
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APPENDIX A: THE GROUP PROJECTOR METHOD

The structure of tensorial transport coefficients can be
determined by employing group theory, since their structure
reflects the symmetry of the system. The studied system
consists of a swarm of charged particles, neutral background
gas particles and the applied electric and magnetic fields.
The symmetry group of a system is the group of all trans-
formations under which the system is invariant [91–93]. The
symmetry groups of the electric and magnetic fields are
C∞V and C∞h respectively, since the electric field is a polar
vector, and the magnetic field is an axial vector. These are
the symmetry groups of an immobile cone and of a rotating
cylinder, respectively [91]. If both electric and magnetic fields
are present in the system, the symmetry group of the field
configuration is determined by the angle between the fields.
The symmetry group of the parallel fields configuration is
C∞. This is the symmetry group of a rotating cone [91].
Orthogonal field configuration has the symmetry group C1v .
The symmetry group of the general field configuration is
the trivial group C1. Background gas is invariant under all
transformations from the orthogonal group O(3). This is the
symmetry group of a sphere. Therefore, the symmetry group
of the field configuration is also the symmetry group of the
entire system.

The structure of a tensor can be determined from its
invariance, under operations from the symmetry group of the
system. The action of a group G on vectors, from a vector
space H , is represented by a group homomorphism from
G to the general linear group on H , GL(H ) [92,93]. Polar
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vectors, such as drift velocity, are transformed by the polar
vector representation of the symmetry group of the system
Dpv (G). This representation is reducible [65,93] and, for
finite and compact groups, it decomposes into the irreducible
components D(μ)(G) as

Dpv (G) = ⊕r
μ=1aμD(μ)(G). (A1)

Here aμ is the number of times the irreducible representation
D(μ)(G) appears in the decomposition of Dpv (G), and r is
the number of inequivalent irreducible representations of the
group G. In addition, for decomposable representations there
exists a symmetry-adapted basis [65,93], which satisfies the
condition

Dpv (G)|μtμm〉 =
|μ|∑

n=1

D(μ)
nm (G)|μtμn〉. (A2)

This implies that for every irreducible representation D(μ)(G)
from (A1) there will be a subspace in H which transforms by
D(μ)(G) [65,93]. A very important representation, which ex-
ists for every group G, is the trivial irreducible representation
A0. This representation is defined as D(A0 )(g) = 1, ∀g ∈ G.
This representation is irreducible, since it is one dimensional.

It can be seen from (A2) that a vector is invariant under
the action of D(pv)(G) if it belongs to the subspace of the
trivial irreducible representation. This invariant subspace can
be found by employing group projectors. In the case of the
trivial representation, the group projector is simply

P(A0 )(Dpv, G) = 1

|G|
∑
g∈G

Dpv (g) (A3)

for finite groups, where |G| is the order of the group G [65].
For one-parameter Lie groups the group projector for A0 is

P(A0 )(Dpv, G) =
∑

R

∫
Dpv (R) dR. (A4)

Here the summation goes over distinct connected compo-
nents, and integration is taken over the range of the group
parameter [93]. Any vector, from the invariant subspace of
Dpv (G), including the drift velocity, is a linear combination of
the eigenvectors of the projection operator P(A0 )(Dpv, G).

Diffusion tensor is a linear operator which maps the local
density gradient vector ∇n(r, t ) onto the diffusive flux vec-
tor. Therefore diffusion tensor belongs to the range of the
projector P(A0 )(Dpv⊗2

, G) where Dpv⊗2
(G) represents Dpv ⊗

Dpv (G) = Dpv (G) ⊗ Dpv (G). Similarly the skewness tensor
maps the tensor square of the gradient vector, which acts
upon the local density ∇ ⊗ ∇n(r, t ), onto the vector of the
third-order diffusive flux. Thus the skewness tensor belongs
to the range of the projection operator P(A0 )(Dpv ⊗ [Dpv]2, G),
where [Dpv]2 represents the symmetrized tensor square of the
polar vector representation. This symmetrization is a result of
the commutativity of the gradient operators.

Strictly speaking, the action of the group on operators, such
as diffusion tensor and skewness tensor, is represented by

employing superoperators [94]. They are defined as ̂̂D(g)Â =
Dpv (g)ÂDpv (g−1). Therefore, the most straightforward ap-
plication of group theory would require the use of group
superoperators. However, this is not necessary, since every

second rank basis operator |i〉 ⊗ 〈 j| acting on a vector space
H is uniquely paired with a basis vector |i〉 ⊗ | j〉 from the
vector space H ⊗ H . The same applies for the basis op-
erators of the third rank |i〉 ⊗ [〈 j| ⊗ 〈k|] and basis vectors
|i〉 ⊗ [| j〉 ⊗ |k〉] from the vector space H ⊗ [H ⊗ H]. Here
square brackets represent symmetrization of the tensor prod-
uct. Thus, the group projector method can be applied for
representations Dpv (G) ⊗ Dpv (G) and Dpv ⊗ [Dpv]2 in the
corresponding vector spaces. Then eigenvectors of the group
projectors can be mapped into the corresponding basis tensors.
Therefore diffusion tensor and skewness tensor are linear
combinations of the basis tensors, which are obtained from
eigenvectors of the projection operators P(A0 )(Dpv ⊗ Dpv, G)
and P(A0 )(Dpv ⊗ [Dpv]2, G), respectively. Moreover, it is not
necessary to use Dpv ⊗ [Dpv]2 for determining the structure
of the skewness tensor. One can instead use Dpv ⊗ Dpv ⊗ Dpv

and symmetrize the resulting tensors by the last two indices.

APPENDIX B: PHYSICAL INTERPRETATION OF THE
INDIVIDUAL COMPONENTS OF THE THIRD-ORDER
TRANSPORT COEFFICIENT TENSOR AND ANALYSIS

OF THEIR SIGN

Using the flux gradient relation (7), the fluxes of charged
particles induced exclusively by the third-order transport co-
efficient tensor are given by

�Q,z = Qzzz
∂2n(r, t )

∂z2
+ Qzxx

[
∂2n(r, t )

∂x2
+ ∂2n(r, t )

∂y2

]
,

�Q,x = 2Qxxz
∂2n(r, t )

∂x∂z
, (B1)

where Qzzz, Qzxx, and Qxxz are independent components of
the third-order transport coefficient tensor (see Sec. II B).
The leading term in the expansion of the density of charged
particles (33) is of key importance in considering the sign
of the derivative of the charged-particle density. Therefore, in
what follows we consider only this term in the analysis of the
fluxes of charged particles (B1). The second-order derivatives
of the Gaussian (32) are given by

∂2n(0)(r, t )

(∂z)2 = (
z2 − σ 2

z

)n(0)(r, t )

σ 4
z

, (B2)

∂2n(0)(r, t )

(∂x)2 = (
x2 − σ 2

x

)n(0)(r, t )

σ 4
x

, (B3)

∂2n(0)(r, t )

(∂x∂z)
= xz

n(0)(r, t )

σ 2
x σ 2

z

, (B4)

where

σ 2
x = 2DT t, σ 2

z = 2DLt . (B5)

For simplicity, the above derivatives correspond to the co-
ordinate system whose origin is placed at the center of the
Gaussian distribution. Thus, the term z − W t is replaced by
the term z in (B2) and (B4).

In order to visualize these second-order derivatives in the
most efficient way for arbitrarily values of σz, we introduce the
set of new coordinates x/σx = χx, y/σy = χy, and z/σz = χz.
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FIG. 13. The normalized derivative �zz of the density of charged
particles as a function of the relative coordinate χz. The arrows
denote the direction of motion represented by Qzzz if this component
is positive. The field force is oriented along the positive χz direction.

Using the new coordinates, Eqs. (B2)–(B4) become

∂2n(0)

∂χ2
z

= (
χ2

z − 1
)
n(0), (B6)

∂2n(0)

∂χ2
x

= (
χ2

x − 1
)
n(0), (B7)

∂2n(0)

∂χx∂χz
= χxχzn

(0), (B8)

where

n(0)(χ, t ) = Cχ exp
[− 1

2

(
χ2

z + χ2
x + χ2

y

)]
(B9)

and

Cχ = N0e−Rnett

(2π )3/2σ 2
x σz

. (B10)

By combining equations (B6)–(B10) the normalized second-
order derivatives of the density of charged particles can be
written as follows:

�zz ≡ 1

Cχ

∂2n(0)

∂χ2
z

= (
χ2

z − 1
)
e− 1

2 (χ2
z +χ2

x +χ2
y ), (B11)

�xx ≡ 1

Cχ

∂2n(0)

∂χ2
x

= (
χ2

x − 1
)
e− 1

2 (χ2
z +χ2

x +χ2
y ), (B12)

�xz ≡ 1

Cχ

∂2n(0)

∂χx∂χz
= χxχze

− 1
2 (χ2

z +χ2
x +χ2

y ). (B13)

In Fig. 13 we show the quantity �zz as a function of χz.
We see that the representing curve is symmetric with respect
to the origin in which it has a minimum. If Qzzz is positive the
direction of motion represented by this component depends on
the sign of �zz in the following way. When �zz is positive, the
motion described by Qzzz is also directed along the positive
z axis, which is indicated by arrows that are oriented to the
right. Conversely, when �zz is negative, the motion described
by Qzzz is directed along the negative z axis, which is indicated
in this case by arrows that are oriented to the left. Therefore,
when Qzzz > 0 the leading edge of the Gaussian is elongated
while the training edge is compressed to a certain extent. It is

FIG. 14. The normalized derivative �xx of the density of charged
particles as a function of the relative coordinate χx . The arrows de-
note the direction of motion represented by Qzxx if this component is
positive: the arrows directed upwards (downwards) represent motion
in the positive (negative) z direction.

clear that when Qzzz < 0, then the opposite situation holds: the
leading edge of the Gaussian is compressed while the trailing
edge is elongated.

Figure 14 shows the graph of the function �xx. This
function is identical to the one illustrated in Fig. 13. When
Qzxx is positive, the motion described by Qzxx is directed along
the positive z axis at the swarm edges, which is indicated
by arrows that are oriented upwards. However, the motion
represented by Qzxx at the swarm center is directed along the
negative z axis in this case, which is indicated by arrows that
are oriented downwards. Likewise, if Qzxx is negative, then the
motion described by Qzxx is directed along the negative z axis
at the edges of the swarm, and along the positive z axis at the
swarm center.

In Fig. 15 we show the contour plot of the function �xz as a
function of χx and χz. This function is positive in the first and

FIG. 15. The normalized derivative �xz of the density of charged
particles as a function of the relative coordinates χx and χz. The
arrows denote the direction of motion represented by Qxxz if this
component is positive.
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third quadrant and negative in the second and fourth quadrant.
If Qxxz is positive the direction of motion represented by this
component depends on the sign of �xz in the following way.
When �xz is positive the motion described by Qxxz is directed
along the positive x axis which is indicated by arrows that
are oriented to the right. Conversely, when �xz is negative the
motion described by Qxxz is directed along the negative x axis
which is indicated by arrows that are oriented to the left. It is
clear that when Qxxz < 0 the direction of motion represented
by this component is reversed. It should be noted that the joint
contribution of Qzxx and Qxxz leads to a pear-shaped Gaussian
distribution.

In what follows we investigate the effects of the gas pres-
sure on the third-order transport coefficients. Using the set of
new coordinates χx, χy and χz, the number density of charged
particles given by Eq. (33) can be written as

n(1)(r, t ) = n(0)(r, t )

[
1 + tQL

σ 3
z

χz
(
χ2

z − 3
)

+ 3tQT

σ 2
x σz

χz
(
χ2

x + χ2
y − 2

)]
. (B14)

From Eq. (B14) we see that the contribution of the third-
order transport coefficients to the spatial profile of the swarm
is reduced with increasing number density of the neutral
particles n0. This is due to the fact that QL and QT scale as
1/n2

0 while σx and σz scale as 1/
√

n0 with the variation of n0.
From this, it follows that the terms tQL/σ 3

z and 3tQT /σ 2
x σz

scale as 1/
√

n0 with with the variation of n0. In addition, from
Eq. (B14) we can also see that the influence of the third-
order transport coefficients on the spatial profile of charged
particles is reduced as 1/

√
t with increasing t due to the time

dependence of the terms tQL/σ 3
z and 3tQT /σ 2

x σz. Thus, from
the scalings of the third-order transport coefficients and asso-
ciated properties it can be concluded that their experimental
determination would be the most efficient at low pressures.
On the other hand, measurements at low pressures in drift
tubes require optimal gaps and volumes in order to reach the
conditions where hydrodynamic approximation is applicable
(negligible length or relaxation distances as compared to the
overall gap). Special care should be taken in order to avoid
kinetic phenomena [16] such as diffusion cooling [95,96] and
other issues associated with an inability of the swarm to be
fully relaxed due to a small number of collisions of charged
particles and neutral gas particles. In any case, the experimen-
tal determination of third-order transport coefficients requires
large gas volumes and low pressures. Similar findings have
been reported in Ref. [18].

In studies of third-order transport coefficients tensor we
often find it necessary to refer to the sign of the third-order
transport coefficients to explain certain phenomena. Let us
assume that the swarm of charged particles is acted on solely
by an electric field. The following elementary considerations
apply.

The motion of charged particles represented by the longitu-
dinal component Qzzz produces differences in the spreading of
the density profile between the front and trailing edges of the
swarm. When Qzzz > 0, the front edge of the density profile is
elongated, while the trailing edge is compressed. The opposite

situation holds when Qzzz < 0: the front edge of the swarm is
compressed while the trailing edge of the profile is elongated.

Charged particles at the front of the swarm have higher
energies on average, than those at the back of the swarm, as
they are accelerated through the larger potential difference. If
the collision frequency is independent of energy, the spread of
charged particles along the field direction is induced by the
action of the force and by the chaotic motion of particles.
If the collision frequency is a decreasing function of the
charged-particle energy, the friction due to collisions along the
field direction is also decreased contributing additionally in
the spreading of the density profile. When collision frequency
increases with the particle energy, however, the friction will
be enhanced along the field direction which in turn reduces
the spreading of the density profile. Thus, the longitudinal
component Qzzz is positive whenever the growth of collision
frequency and associated energy losses in collisions are not
able to affect the spreading of charged particles due to the
electric field force and chaotic motion of charged particles.
This is exactly what happens in most cases considered in our
calculations.

The motion of a swarm represented by Qxzx produces
differences in the transverse spreading of the density profile.
When Qxzx > 0, the density profile is expanded along the
transverse direction at the front of the swarm while at the back
of the swarm the profile is compressed. When Qxzx < 0, the
density profile is compressed along the transverse direction at
the front and extended at the trailing edge of the swarm.

The electric force does not act along the transverse direc-
tion. This suggests that the spreading of the density profile is
entirely controlled by the chaotic motion of charged particles.
If the collision frequency decreases with energy, this will
further enhance the transverse spread at the front of the swarm
as collisions between charged particles and background gas
molecules are less frequent. If the collision frequency in-
creases with energy, the reverse situation occurs. In this case
it is the high energy electrons, which predominantly exist at
the front of the swarm, have more collisions than those at
the back of the swarm. This results in a greater resistance
to the transverse spreading at the front of the swarm. Thus,
the transverse component Qxzx is positive under conditions in
which the growth of the collision frequency and energy losses
in collisions are not intensive enough to exceed the higher
average speed of charged particles at the front of the swarm.

The off-diagonal component Qzxx describes the differences
in the longitudinal spreading in the central part of the swarm
and along its transverse edges. If Qzxx > 0, the longitudinal
spreading is faster at the transverse edges than in the central
part of the swarm. Conversely, if Qzxx < 0, the reverse situa-
tion occurs: the longitudinal spreading is more pronounced in
the central part of the swarm than at the edges. The parabolic
rise in mean energy along the transverse direction favors the
faster longitudinal spreading at the transverse edges of the
swarm. The parabolic rise in mean energy is due to the fact
that the most energetic electrons quickly cross the distance
between the swarm’s center and its edges, if the increase of the
collision frequency is not large enough to compensate for the
high speed of energetic electrons. If the collision frequency
is independent of energy, this is the only contribution to
the difference in the rate of longitudinal expansion along
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TABLE II. Symmetry properties of the individual components of the skewness tensor. The transformation represents A (parity), B (rotation
of π about the z axis), C (parity and rotation of π about the y axis), and D (parity and rotation of π about the x axis).

Transformation

Tensor component E → −E, B → B E → E, B → (−By, Bz ) E → E, B → (By,−Bz ) E → E, B → −B

Qxxz, Qxzx −Qxxz, −Qxzx Qxxz, Qxzx Qxxz, Qxzx Qxxz, Qxzx

Qyyz, Qyzy −Qyyz, −Qyzy Qyyz, Qyzy Qyyz, Qyzy Qyyz, Qyzy

Qzxx −Qzxx Qzxx Qzxx Qzxx

Qzyy −Qzyy Qzyy Qzyy Qzyy

Qzzz −Qzzz Qzzz Qzzz Qzzz

Qxxx −Qxxx −Qxxx Qxxx −Qxxx

Qxyy −Qxyy −Qxyy Qxyy −Qxyy

Qxzz −Qxzz −Qxzz Qxzz −Qxyy

Qyxy, Qyyx −Qyxy, −Qyyx −Qyxy, −Qyyx Qyxy, Qyyx −Qyxy, −Qyyx

Qzxz, Qzzx −Qzxz, −Qzzx −Qzxz, −Qzzx Qzxz, Qzzx −Qzxz, −Qzzx

Qxyz, Qxzy −Qxyz, −Qxzy Qxyz, Qxzy −Qxyz, −Qxzy −Qxyz,−Qxzy

Qyxz, Qyzx −Qyxz, −Qyzx Qyxz, Qyzx −Qyxz, −Qyzx −Qyxz,−Qyzx

Qzxy, Qzyx −Qzxy, −Qzyx Qzxy, Qzyx −Qzxy, −Qzyx −Qzxy,−Qzyx

Qxxy, Qxyx −Qxxy, −Qxyx −Qxxy, −Qxyx −Qxxy, −Qxyx Qxxy, Qxyx

Qyxx −Qyxx −Qyxx −Qyxx Qyxx

Qyyy −Qyyy −Qyyy −Qyyy Qyyy

Qyzz −Qyzz −Qyzz −Qyzz Qyzz

Qzyz, Qzzy −Qzyz, −Qzzy −Qzyz, −Qzzy −Qzyz, −Qzzy Qzyz, Qzzy

the transverse direction. If the collision frequency decreases
with energy, this is an additional factor which contributes to
the rapid longitudinal spread at the transverse edges of the
swarm. If the collision frequency increases with energy, this
contributes to greater resistance to longitudinal expansion at
the transverse edges than in the center of the swarm. For
a constant collision frequency, Qzxx component is positive,
but much less in comparison to Qzzz and Qxzx. If the col-
lision frequency decreases with energy, this component is
positive and greater in magnitude than in the previous case.
If the collision frequency increases with energy and Qxzx is
positive then the Qzxx component is negative. This could be

expected, since the particles at the transverse edges have a
slightly higher energy, and thus higher collision frequency.
Such behavior of Qzxx has been observed in the case of
electron swarms in most atomic and molecular gases. If the
collision frequency increases with energy and Qxzx is negative
then Qzxx is positive. A possible explanation for this effect is
that when Qxzx is negative the energy of the electrons at the
transverse edges of the swarm is, on average, less than in the
center of the swarm. The high-energy electrons undergo more
and more collisions for increasing electron energy which in
turn prevent them from reaching the transverse edges of the
swarm.

APPENDIX C: EXPRESSIONS FOR THE INDIVIDUAL ELEMENTS OF THE THIRD-ORDER TRANSPORT COEFFICIENT
TENSOR IN THE BOLTZMANN EQUATION ANALYSIS AND MONTE CARLO SIMULATIONS

Using symmetry properties of the moments F (νlm|sλμ) discussed in Ref. [70], the corresponding symmetry properties of
the individual elements of the third-order transport coefficient tensor are detailed in Table II. The structure of the tensor may be
determined by applying the symmetries in Table II in combination with the additional physical arguments that concern fluxes
of charged particles induced by magnetic field. These arguments are necessary to identify the zero elements as well as those
elements of the tensor which are equal between each other for a given configuration of the fields. The similar procedure has been
applied for the vectorial and tensorial transport coefficients of the lower order [70].

In this Appendix we present the explicit expressions for the individual elements of the flux third-order transport coefficient
tensor. These expressions have been derived by considering the flux-gradient relation in the spherical form (41) and explicit
expressions for the irreducible gradient tensor operator [33]. In the following expressions α is omitted from the argument of F
for brevity.

For parallel electric and magnetic fields, the individual elements of the flux tensor are given by

Qxxz = 1√
2α

[Im(F (011|221)) − Im(F (01 − 1|221))], (C1)

Qxyz = 1√
2α

[Re(F (01 − 1|221)) − Re(F (011|221))], (C2)

Qzxx = − 1

α

[
1√
3

Im(F (010|200)) + 1√
6

Im(F (010|220))
]

+ 1

α
Im(F (010|222)), (C3)
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Qzzz = 1

α

[√
2

3
Im(F (010|220)) − 1√

3
Im(F (010|200))

]
. (C4)

For perpendicular electric and magnetic fields, the individual elements of the flux tensor are given by

Qxxx =
√

2

α

[
1√
3

Im(F (011|200)) + 1√
6

Im(F (011|220))
]

+ 1√
2α

[−Im(F (011|222)) + Im(F (01 − 1|222))], (C5)

Qxyy =
√

2

α

[
1√
3

Im(F (011|200)) + 1√
6

Im(F (011|220))
]

+ 1√
2α

[Im(F (011|222)) − Im(F (01 − 1|222))], (C6)

Qxzz =
√

2

α

[
1√
3

Im(F (011|200)) −
√

2

3
Im(F (011|220))

]
, (C7)

Qxxz = 1√
2α(t )

[Im(F (011|221)) − Im(F (01 − 1|221))], (C8)

Qyxy = − 1√
2α

[Im(F (011|222))+Im(F (01 − 1|222))], (C9)

Qyyz = 1√
2α

[Im(F (011|221))+Im(F (01 − 1|221))], (C10)

Qzxz = − 1

α
Im(F (010|221)), (C11)

Qzxx = − 1

α

[
1√
3

Im(F (010|200)) + 1√
6

Im(F (010|220))
]

+ 1

α
Im(F (010|222)), (C12)

Qzyy = − 1

α

[
1√
3

Im(F (010|200)) + 1√
6

Im(F (010|220))
]

− 1

α
Im(F (010|222)), (C13)

Qzzz = 1

α

[√
2

3
Im(F (010|220)) − 1√

3
Im(F (010|200)

]
. (C14)

When electric and magnetic fields are crossed at an arbitrary angle, the individual elements of the flux tensor are given by

Qxxy = 1√
2α

[Re(F (011|222)) − Re(F (01 − 1|222))], (C15)

Qyxx =
√

2

α

[
1√
3

Re(F (011|200)) + 1√
6

Re(F (011|220))
]

+ 1√
2α

[−Re(F (011|222))−Re(F (01−1|222))], (C16)

Qyyy =
√

2

α

[
1√
3

Re(F (011|200)) + 1√
6

Re(F (011|220))
]

+ 1√
2α

[Re(F (011|222)) + Re(F (01 − 1|222))], (C17)

Qyzz =
√

2

α

[
1√
3

Re(F (011|200)) −
√

2

3
Re(F (011|220))

]
, (C18)

Qzxy = − 1

α
Re(F (010|222)), (C19)

Qzyz = 1

α
Re(F (010|221)), (C20)

Qxyz = 1√
2α

[Re(F (01 − 1|221))−Re(F (011|221))], (C21)

Qyxz = 1√
2α

[Re(F (011|221))+Re(F (01−1|221))]. (C22)

The elements of the third-order transport coefficients that are independent in a crossed field configuration, are also independent
when the electric and magnetic fields cross at an arbitrary angle. Thus, the corresponding expressions in the Boltzmann equation
analysis are identical.

In what follows, we present the explicit expressions for the flux components of the third-order transport coefficient tensor that
might be identified and computed in our Monte Carlo simulations.
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For parallel electric and magnetic fields, the explicit expressions of the flux longitudinal and flux transverse third-order
transport coefficients are given by Eqs. (48) and (49), respectively. We are not able to isolate the additional elements of the
tensor in the Monte Carlo method used in the present work. As already discussed in this Appendix, the coefficients Qxxz, Qxyz,
Qzxx, and QL ≡ Qzzz could be identified and computed using Boltzmann equation solutions.

For perpendicular electric and magnetic fields, we are able to identify six components of the third-order transport coefficient
tensor in our Monte Carlo simulations. The tensor components are

QL ≡ Qzzz, QE×B ≡ Qxxx (C23)

and

Qπ (xxz) ≡ 1
3 (Qxxz + Qxzx + Qzxx ), (C24)

Qπ (yyx) ≡ 1
3 (Qyyx + Qyxy + Qxyy) (C25)

Qπ (yyz) ≡ 1
3 (Qyyz + Qyzy + Qzyy), (C26)

Qπ (zzx) ≡ 1
3 (Qzzx + Qzxz + Qxzz ), (C27)

where the cross product E×B defines the x axis while π (abc) denotes all possible permutations of (a, b, c). The explicit
expressions of the flux tensor components are given by

Qzzz = 1
6 (3〈z2cz〉 − 3〈cz〉〈z2〉 − 6〈z〉〈zcz〉 + 6〈z〉〈z〉〈cz〉), (C28)

Qxxx = 1
6 (3〈x2cx〉 − 3〈cx〉〈x2〉 − 6〈x〉〈xcx〉 + 6〈x〉〈x〉〈cx〉), (C29)

Qxzz = 1
6 (〈z2cx〉+ 2〈zxcz〉− 2〈cz〉〈zx〉 − 〈cx〉〈z2〉 − 2〈z〉〈xcz〉 − 2〈z〉〈zcx〉− 2〈x〉〈zcz〉 + 2〈cx〉〈z〉〈z〉+ 4〈x〉〈z〉〈cz〉), (C30)

Qzxx = 1
6 (〈x2cz〉+ 2〈xzcx〉− 2〈cx〉〈xz〉 − 〈cz〉〈x2〉− 2〈x〉〈zcx〉 − 2〈x〉〈xcz〉 − 2〈z〉〈xcx〉 + 2〈cz〉〈x〉〈x〉 + 4〈z〉〈x〉〈cx〉), (C31)

Qzyy = 1
6 (〈y2cz〉 + 2〈yzcy〉 − 〈cz〉〈y2〉 − 2〈z〉〈ycy〉), (C32)

Qxyy = 1
6 (〈y2cx〉 + 2〈yxcy〉 − 〈cx〉〈y2〉 − 2〈x〉〈ycy〉). (C33)

For the most general case when electric and magnetic fields are crossed at an arbitrary angle, we are able to identify 10
components of the third-order transport coefficient tensor in our Monte Carlo simulation code. They include six components
already defined for perpendicular electric and magnetic fields and four additional coefficients, including

QE×(E×B) ≡ Qyyy, (C34)

where the cross product E×(E×B) defines the y axis, and

Qπ (xxy) ≡ 1
3 (Qxxy + Qxyx + Qyxx ), (C35)

Qπ (zzy) ≡ 1
3 (Qzzy + Qzyz + Qyzz ), (C36)

Qπ (xyz) ≡ 1
6 (Qxyz + Qyzx + Qzxy + Qxzy + Qyxz + Qzyx ). (C37)

The remaining explicit expressions for the flux components of the third-order transport coefficient tensor are given by

Qyyy = 1
6 (3〈y2cy〉 − 3〈cy〉〈y2〉 − 6〈y〉〈ycy〉 + 6〈y〉〈y〉〈cy〉), (C38)

Qxyz = 1
6 (〈yzcx〉 + 〈xzcy〉 + 〈xycz〉 − 〈cx〉〈yz〉 − 〈x〉〈zcy〉 − 〈x〉〈ycz〉−〈cy〉〈xz〉 − 〈y〉〈zcx〉 − 〈y〉〈xcz〉−〈cz〉〈xy〉
−〈z〉〈ycx〉 − 〈z〉〈xcy〉 + 2〈cx〉〈y〉〈z〉 + 2〈cy〉〈x〉〈z〉 + 2〈cz〉〈y〉〈x〉), (C39)

Qyxx = 1
6 (〈x2cy〉+ 2〈yxcx〉− 2〈cx〉〈yx〉 − 〈cy〉〈x2〉 − 2〈x〉〈ycx〉 − 2〈x〉〈xcy〉 − 2〈y〉〈xcx〉 + 2〈cy〉〈x〉〈x〉 + 4〈y〉〈x〉〈cx〉),

(C40)

Qyzz = 1
6 (〈z2cy〉 + 2〈yzcz〉 − 2〈cz〉〈yz〉 − 〈cy〉〈z2〉 − 2〈z〉〈ycz〉 − 2〈z〉〈zcy〉 − 2〈y〉〈zcz〉 + 2〈cy〉〈z〉〈z〉 + 4〈y〉〈z〉〈cz〉), (C41)

Qzyy = 1
6 (〈y2cz〉 + 2〈yzcy〉 − 2〈cy〉〈yz〉 − 〈cz〉〈y2〉 − 2〈y〉〈zcy〉 − 2〈y〉〈ycz〉 − 2〈z〉〈ycy〉 + 2〈cz〉〈y〉〈y〉 + 4〈z〉〈y〉〈cy〉), (C42)

Qxyy = 1
6 (〈y2cx〉 + 2〈yxcy〉− 2〈cy〉〈yx〉 − 〈cx〉〈y2〉− 2〈y〉〈xcy〉 − 2〈y〉〈ycx〉− 2〈x〉〈ycy〉 + 2〈cx〉〈y〉〈y〉 + 4〈x〉〈y〉〈cy〉). (C43)
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Malović, J. P. Sullivan, and S. Buckman, in Eighth International
Conference on Atomic and Molecular Data and Their Applica-
tions: ICAMDATA-2012, edited by J. D. Gillaspy, W. L. Wiese,
and Y. A. Podpaly, AIP Conf. Proc. No. 1545 (AIP, New York,
2013).

[15] L. C. Pitchford et al., Plasma Process. Polym. 14, 1600098
(2016).
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[43] S. Dujko, Z. M. Raspopović, R. D. White, T. Makabe, and Z.
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