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Abstract
In this work we investigate electron transport, transition from an electron avalanche into a
negative streamer, and propagation of negative streamers in liquid xenon. Our standard Monte
Carlo code, initially developed for dilute neutral gases, is generalized and extended to consider
the transport processes of electrons in liquids by accounting for the coherent and other liquid
scattering effects. The code is validated through a series of benchmark calculations for the
Percus–Yevick model, and the results of the simulations agree very well with those predicted by
a multi term solution of Boltzmann’s equation and other Monte Carlo simulations. Electron
transport coefficients, including mean energy, drift velocity, diffusion tensor, and the first
Townsend coefficient, are calculated for liquid xenon and compared to the available
measurements. It is found that our Monte Carlo method reproduces both the experimental and
theoretical drift velocities and characteristic energies very well. In particular, we discuss the
occurrence of negative differential conductivity in the E/n0 profile of the drift velocity by
considering the spatially-resolved swarm data and energy distribution functions. Calculated
transport coefficients are then used as an input in fluid simulations of negative streamers, which
are realized in a 1.5 dimensional setup. Various scenarios of representing the inelastic energy
losses in liquid xenon, ranging from the case where the energy losses to electronic excitations are
neglected, to the case where some particular excitations are taken into account, and to the case
where all electronic excitations are included, are discussed in light of the available spectroscopy
and photoconductivity experiments. We focus on the way in which electron transport coefficients
and streamer properties are influenced by representation of the inelastic energy losses,
highlighting the need for the correct representation of the elementary scattering processes in the
modeling of liquid discharges.

Keywords: liquid xenon, electron transport, Monte Carlo, inelastic collisions, negative streamers

1. Introduction

Transport of charged particles in liquids, plasma-liquid
interactions and streamer discharges in the liquid phase con-
stitute a growing field of research, which has many important
applications [1, 2]. These applications include plasma medi-
cine [3, 4], plasma water purification [5–9], transformer oils
[10, 11] and particle detectors [12, 13]. In particular, there is a
rich variety of liquid xenon particle detectors [14]. The wide
range of existing and potential applications of these detectors

includes gamma ray astrophysics [13], particle physics [15]
and medical imaging [16], as well as direct dark matter
detection [17, 18]. Liquid xenon is a very good detection
medium, due to its physical properties [14]. Its high values of
density and atomic number make liquid xenon very efficient
in stopping penetrating radiation, while a significant abun-
dance of many isotopes, with different values of nuclear spin,
enables the study of both spin dependent and spin indepen-
dent interactions [14]. Further optimization and understanding
of such applications is dependent on an accurate knowledge
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of the charged particle transport coefficients, streamer prop-
erties and the physical processes involved.

In addition to many useful applications, further theor-
etical and experimental investigation of transport phenomena
in liquids would help in the development of insight into
various effects, which are relevant for the interaction of
charged particles with dense and disordered media [19].
These effects include multiple scattering effects and structure
effects, trapping of charged particles in density fluctuations
and the solvation of charged particles in polar liquids [19, 20].
As liquid rare gases are the simplest liquids, they are a good
starting point for the development of theoretical models of
transport and breakdown phenomena in the liquid phase [19].

1.1. A brief overview of electron transport in liquid rare gases

In recent years the modeling of charged particle transport
processes in neutral gases has matured and a number of
methods to treat this problem have been developed, e.g.
various techniques for solving the Boltzmann equation [21],
the Monte Carlo method [22] and semi-quantitative momen-
tum transfer theory [21, 23]. For the more general case of the
dense gases and liquids, there has been comparatively less
investigation. Most investigations in liquid phase have been
performed for electron transport in the sub-excitation energy
region [19]. Lekner developed an ab initio method for
determining the effective potential and the corresponding
effective cross section for electron scattering on a focus atom
in the liquid phase [24]. This effective potential is determined
by using the potential of a single atom and the pair correlation
function of the liquid. In addition, Cohen and Lekner have
shown that the coherent elastic scattering can be represented
in the Boltzmann equation by combining the effective cross
section for the liquid phase and the static structure factor [25].
By simplifying the arguments of Lekner, Atrazhev and co-
workers have shown that the effective cross section for elastic
scattering in liquid argon, krypton and xenon are constant in
the limit of lower electron energies [26, 27]. This work was
extended by using the partial wave method for determining
the effective cross sections for electron scattering in liquid
argon and liquid xenon [28–31]. Based on these results, they
have calculated mobility, mean energy, and characteristic
energy of electrons in liquid argon and liquid xenon, in the
framework of the Cohen–Lekner theory [30, 31]. The Cohen–
Lekner theory was also used in the study of Sakai and co-
workers, who have investigated the electron transport in
liquid argon, krypton and xenon [32, 33]. In order to improve
the agreement between the calculated and measured drift
velocities, they have modified the cross section for elastic
scattering empirically. In addition, they have demonstrated
that the saturation of drift velocity at higher electric fields,
which was previously observed in experiments, can be ade-
quately described by including an effective inelastic cross
section for vibrational modes. It was argued that these
vibrational modes correspond to the change of the transla-
tional states of the clusters of atoms. More recently, Boyle
et al [19, 34] have evaluated the differential cross sections for
electron scattering in liquid argon and liquid xenon by solving

the Dirac–Fock scattering equations. In these works, Boyle
et al [19, 34] extended Lekner’s theory by considering mul-
tipole polarizabilities and non-local treatment of exchange
[19, 34]. Transport coefficients have been calculated for
electrons using these cross sections as an input into the multi
term Boltzmann equation solution, for the lower values of the
reduced electric field. It is also worth noting that in order to
thermalize electrons to low energies in rare gases (especially
those with Ramsauer–Townsend minimum) in the most effi-
cient way and with a small experimental error, it was neces-
sary to perform swarm experiments at higher pressures, where
high density effects became observable [35–37]. One of the
alternatives to avoid such effects and obtain low-energy cross
sections and scattering lengths was to use molecular hydrogen
in the mixture at low reduced electric fields, where the unique
solution for the rotational energy loss cross sections for
hydrogen exists [38].

Theoretical studies of electron transport processes in
liquid rare gases, at higher electric fields, have been per-
formed by several authors. In 1976, Atrazhev and co-workers
studied the influence of density dependent scattering effects
on the Townsend ionization coefficient [39]. The results of
this work are two estimates of the first Townsend ionization
coefficient, which have been made by considering the two
distinctively different representations of energy losses in the
electronic excitations. Jones and Kunhardt also studied elec-
tron transport in liquid xenon by using Monte Carlo simula-
tions [40]. The semiclassical model used, was previously
applied by Kunhardt for studying electron transport in liquid
argon [41]. In this work, the interaction of electrons with the
liquid is described in the framework of Van Hove’s theory
[42]. The group at Hokkaido University has also studied
ionization in liquid xenon, as well as the electron attachment
in the mixtures of liquid argon and electronegative impurities,
including O2, SF6 and N2O, using previously developed cross
sections [32]. Considerable contributions in this field have
been made by Boyle and co-workers who developed the fluid
equation based model for electrons and positrons in liquids by
utilizing dilute gas phase cross sections together with a
structure factor for the medium [43–46].

1.2. Streamers in liquid rare gases

In comparison to gas phase modeling, there are only a few
modeling studies of streamer propagation in liquids. Simu-
lations of positive streamers in hydrocarbon liquids using
1.5D classical streamer model have been performed by Naidis
and co-workers [10, 47]. Simulations are performed both
without formation of expanding gaseous filaments and in
conditions when such filaments due to vaporization are
formed. Contemporary studies include both the experimental
and numerical studies of propagating streamers inside bubbles
elongated along the external electric field and compressed
bubbles immersed in water [48, 49]. The salient feature of
these studies is that transport coefficients of electrons in
liquids required for streamer simulations are evaluated
approximately, e.g. without taking into account more serious
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perturbations to the transport due to the formation of bubbles
and clusters.

Numerical modeling of streamer dynamics, in liquid
argon and liquid xenon, has been performed by Babaeva and
Naidis [50–52]. They have investigated the formation of a
positive streamer in a strong non-uniform field and its sub-
sequent propagation in a weak uniform field, by employing a
two dimensional fluid model [50, 51]. Among many impor-
tant points in these papers, it has been shown that the nature
of the streamer propagation in the liquid phase is significantly
influenced by the electron-ion recombination [50, 51]. In
addition, they found that the calculated streamer velocities are
of the same order of magnitude as the measured velocity of
the breakdown wave in liquid argon [50, 51].

1.3. Motivational factors for this study

One of the most important conclusions from the previous
studies of electron transport in atomic liquids is the fact that
still there is no consensus on the importance of excitations in
the liquid phase. For example, Atrazhev et al [39] have shown
that if the portion of energy losses due to excitations is
assumed to be just the same as in the gas phase, the first
Townsend coefficient is underestimated. On the other hand, if
the inelastic energy losses are completely neglected then the
first Townsend coefficient is overestimated [39]. Along
similar lines, Nakamura and co-workers also disregarded the
explicit influence of energy losses associated with the elec-
tronic excitations in their calculations of transport properties
of electrons in the liquid phase [20, 53]. Instead, they have
represented the inelastic energy losses by using an effective
inelastic cross section, which corresponds to vibrational
modes [20, 32, 53]. In 1993, Jones and Kunhardt carried out
Monte Carlo simulations in which the inelastic energy losses
due to electronic excitations were included [40]. However, in
this work it has not been specified which electronic excita-
tions are included in the set of cross sections [40]. Atrazhev
et al [39] have shown that a different representation of the
inelastic energy losses leads to a significant difference in the
calculated values of the ionization rate in liquid xenon. Thus,
it is clear that a rigorous analysis of the inelastic energy losses
in studies of electron transport in liquid rare gases is long
overdue and the present study takes the first steps in this
direction. We believe that this is of key importance for
numerical studies of streamer propagation, since ionization
controls the development of a discharge and occurs in both
the streamer head and in the streamer channel.

In this work, we investigate how various representations
of the inelastic energy losses affect transport properties of
electrons and streamer dynamics in liquid xenon. Cross
sections for electronic excitations are taken from the set for
electron scattering in the gas phase compiled by Hayashi [54].
This set of cross sections yields swarm parameters in good
agreement with the available measurements [55]. We identify
and consider the following three global scenarios: (i) no
electronic excitations, (ii) some electronic excitations are
included and some of them are neglected, and (iii) all

electronic excitations are included in the modeling. Various
representations of inelastic energy losses are first discussed
in light of previous spectroscopy and photoconductivity
experiments and then are used in Monte Carlo simulations.
The calculated values of the first Townsend coefficient in
these various cases are compared with respect to the exper-
imental results of Derenzo et al [56]. These calculations are
augmented by those in which gaseous xenon is scaled up to
the liquid density. In addition to the study of transport pro-
cesses, in this work we investigate the propagation of nega-
tive streamers in liquid xenon. The axial profiles of electric
field and number density of electrons are calculated in the
absence of vaporization and the occurrence of bubbles.

1.4. Organization of the paper

In section 2 we give the details of cross sections for elastic
and inelastic scattering of electrons in liquid xenon. We
identify and review the four different cases in three global
scenarios for representing the inelastic energy losses. In
section 3.1 we briefly outline the Monte Carlo method used in
the present work and present the results of benchmark cal-
culations for the Percus–Yevick model in section 3.2. In
section 3.3 we present the basic elements of a fluid theory
used to simulate negative streamers in liquid xenon. In
section 4 we present the electron transport coefficients in
liquid xenon with particular emphasis on the structure
induced negative differential conductivity (NDC). In the same
section, we discuss the transition from an avalanche into a
streamer and propagation of negative streamers. In section 5
we present our conclusions and recommendations for
future work.

2. Cross sections for electron scattering in liquid
xenon

In the gas phase, the electron transport can be represented as a
series of individual collisions, which are separated by free
flights [19]. However, this picture is no longer valid in the
liquid phase. Since no particular volume is owned by a single
atom, due to small interparticle spacings in liquids, as com-
pared to the range of interaction between electrons and the
targets, the potential in which an excess electron is scattered is
determined by many surrounding atoms [19, 24]. Namely, it
has been shown that the polarization potential of a single
atom is significantly screened by polarization potentials of
neighboring atoms [19, 24]. Due to this effect, at low ener-
gies, the effective potential changes from an attractive long
range potential, which corresponds to scattering on an iso-
lated xenon atom, to a repulsive short range potential, which
corresponds to scattering in the liquid phase [24, 28]. In
addition, electron scattering on a focus atom will be influ-
enced by electrostatic terms and non-local exchange terms of
all neighboring atoms [19]. Moreover, the de Broglie wave-
lengths of excess electrons at thermal energies are larger than
the interatomic spacing by several orders of magnitude [19].
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This leads to significant coherent scattering effects, for low
energy electrons, which make the electron scattering structure
dependent and strongly anisotropic [19, 24]. The anisotropy
of coherent scattering leads to a difference between the
effective mean free paths for the transfer of energy and
momentum [24, 57]. It has been shown that the effective
mean free path for the transfer of energy is independent of
the liquid structure, while the effective mean free path for the
transfer of momentum is structure dependent [24, 57]. The
coherent scattering effects and the modification of the scat-
tering potential strongly influence the elastic scattering of the
lower energy electrons. However, these effects are reduced
with an increasing energy becoming negligible for electron
energies higher than approximately 10 eV [39, 57]. This is
demonstrated by the density independence of the measured
drift velocity for swarms of electrons in compressed gases
under high electric fields [58, 59].

Excitations in liquid xenon have been investigated in
spectroscopy experiments [60–65]. It has been shown that the
reflection spectrum of liquid xenon is very similar to the
reflection spectrum of solid xenon [60, 61]. In this spectrum,

intermediate n=1 G⎡⎣ ⎤⎦( )3

2
and ¢ =n 1 G⎡⎣ ⎤⎦( )1

2
excitons have

been observed at 8.2 eV and 9.45 eV, respectively [61–63].
The former has parentage in the excited atomic [ ]s6 3 2 1 state,
while the latter has parentage in the ¢[ ]s6 1 2 1 state [63]. In
addition, a spectral line, which has developed from the two
neighboring [ ]d5 3 2 1 and [ ]s7 3 2 1 states, has been observed
at about 10.32 eV [63, 66]. Another spectral line has been
observed at 9 eV [61–63]. This line belongs to the n=2

G⎡⎣ ⎤⎦( )3

2
Wannier exciton, which does not originate from the

states of an isolated atom [61–63]. Since excitons are closely
related to the electron band structure, the presence of exci-
tonic lines in the reflection spectrum indicates the existence of
the valence band and the conduction band in liquid xenon

[66]. In addition, the value of G( )3

2
band gap has been

determined from the corresponding Wannier series [67]. The
obtained value of the band gap is 9.22 eV, and it is in
excellent agreement with the prediction on the change of the
corresponding band gap in the solid phase [66, 67]. This
value has been further verified by using the measured pho-
toconductivity threshold in liquid xenon (9.202 eV) and the
known difference between the photoconductivity threshold

and the G( )3

2
band gap in the solid xenon (0.013 eV) [67].

Thus, a cross section set for electron scattering in liquid
xenon has to include the cross sections for elastic scattering,
inelastic energy losses and the interband transitions [40, 41].
We employ four different cases for representing the inelastic
energy losses in order to study the influence of the inelastic
collisions on the transport properties of electron swarms and
the dynamics of negative streamers in liquid xenon. Each of
these cases is discussed in light of previous spectroscopy
and photoconductivity experiments. Elastic scattering and the
interband transitions are represented in the same way in all
cases considered.

2.1. Elastic scattering and interband transitions

The elastic scattering of low energy electrons is strongly
influenced by the changes in the scattering potential and the
coherent scattering effects [19, 24, 26, 34]. Moreover, the
effective mean free paths for the transfer of momentum and
energy in liquids are different due to a strong anisotropy
of coherent scattering [24, 57]. These mean free paths are
given by

ò

s

p c c c s c
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= -
p

-

-( )
( )

( ) ( ) ( )
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where n0 is the liquid number density, σsp(ò, χ) is the diff-
erential cross section for elastic scattering of an electron on a
focus atom in the liquid phase, ò is the relative energy in the
center of mass frame, χ is the angle through which the rela-
tive velocity is changed and S(Δk) is the static structure
factor, as a function of the transferred momentum. In these
equations s̃m and σm represent the momentum transfer cross
sections with and without the structure modification, respec-
tively [57].

As proposed by Tattersall and co-workers, the ratio

g = L
L

( ) 0

1
represents the measure of the anisotropy of

coherent scattering [57]. The coherent scattering is modeled
as a combination of three distinct effective scattering pro-
cesses, which give a good representation of the average
transfer of momentum and energy [57]. In the first of these
processes, represented by the σboth cross section, both energy
and momentum are transferred as in an ordinary binary col-
lision [57]. In the second process, represented by the
σmomentum cross section, the electron is scattered in a random
direction, but the speed of the electron remains unchanged.
This leads to a transfer of momentum, without a concomitant
transfer of energy [57]. In the third process represented by the
σenergy cross section the energy of the electron is reduced as in
an ordinary binary collision, but the electron does not change
the direction of its motion. This leads to a transfer of energy,
which is accompanied by a minimal transfer of momentum
[57]. It is important to emphasize that these effective scat-
tering processes do not represent individual microscopic
collisions, but rather provide a good representation of the
average rates of momentum transfer and energy transfer in
structured media [57].

The cross sections for the corresponding effective pro-
cesses are determined from γ(ò) and the momentum transfer
cross section, for electron scattering on a focus atom in the
liquid phase, σm(ò) [57]. The values of σm(ò) and γ(ò), which
are used in the present work, have been determined by Boyle
et al [34].
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For γ(ò)<1 these cross sections are calculated as [57]:
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For γ(ò)>1, these cross sections are given by [57]
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We model the elastic scattering by using these effective
cross sections, for energies up to approximately 10 eV. At
higher energies both σmomentum and σenergy are taken to be
negligible, while σboth is approximated by the elastic cross
section for electron scattering in the gas phase [68]. This is a
good approximation, since both modifications of the scatter-
ing potential and the coherent scattering effects are small for
high energy electrons [39, 57].

The cross section for interband transitions is approxi-
mated by the cross section for the electron impact ionization,
from the Hayashi’s cross section set, which is shifted towards
lower energies. Specifically, the cross section for ionization is
shifted by 2.91 eV, so that its threshold is moved to 9.22 eV.

This value corresponds to the G( )3

2
band gap in liquid xenon,

which is the energy difference between the uppermost valence
band and the bottom of the conduction band [67]. The use of
this cross section gives a good energy balance for the inter-
band transitions, since the energy levels of excess electrons in
the conduction band can be represented by a continuous
energy spectrum, due to a high density of states in the con-
duction band [41].

We should note that the energy of the bottom of the
conduction band in liquid xenon = - ( )V 0.66 0.050 eV
[69, 70] is not explicitly included in our calculations. This is
justified since the system is homogeneous and the inclusion of
V0 would be equivalent to introducing a constant electric
potential of the entire system, which would not influence the
electron dynamics due to the constant value of this potential.
It should also be noted that V0 is implicitly included in the
formula for the difference between the value of the ionization
potential of an isolated atom and the value of the band gap in
the liquid phase [40]. The inclusion of V0 in calculations is
necessary in the case of the gas-liquid interface (and other
situations in which the number density of the background
atoms is inhomogeneous) since the change of V0 across the
interface produces an effective electric field as shown in the
recent study of Garland and co-workers [71]. Thus, in our
calculations we can effectively represent discrete energy
levels of quasi free electrons in the conduction band which
have a minimum of V0 with a continuous energy spectrum of
free electrons which have a minimum of 0 eV.

2.2. Case 1: No electronic excitations

In the first case, the inelastic energy losses are completely
neglected. It was shown by Atrazhev et al that this approach

overestimates the first Townsend coefficient in liquid xenon
[39]. However, this case is considered in our study with the
aim of establishing the influence of electronic excitations on
the first Townsend coefficient. This case will be referred to as
case 1.

2.3. Case 2: Only excitations 6s½3 2�2= and 6s½3 2�1= are
included

In our remaining cases inelastic energy losses are taken into
account, since it has been shown in experiments that both
excitons and perturbed atomic excitations exits in liquid
xenon [62, 63]. Moreover, it has been determined that the
excitation of these electronic states is the main channel of
energy loss of excess electrons in liquid argon, krypton and
xenon under the moderate electric fields [72–74]. However,
no cross sections for the excitation of these discrete states can
be found in the literature. Since intermediate excitons have
unique parentage in the excited states of the atom [62, 63, 75],
we approximate the cross sections for both intermediate
excitons and the perturbed atomic excitations by the cross
sections for the corresponding excitations of an isolated atom.
The cross sections for excitations, which are used in our
work, are those from the Hayashi cross section set for elec-
trons in gaseous xenon [54, 68].

We do not change the values of the thresholds for exci-
tations, since only thresholds for optically allowed excitons
are present in the literature [75], while the optically forbidden
states have to be included in our model as well. Therefore, it
would be somewhat inconsistent to modify the thresholds for
the optically allowed transitions, while leaving the thresholds
for the optically forbidden transitions unchanged. Moreover,
it has been shown that in the reflection spectrum of liquid
xenon, there exists an additional line, next to the n=1

G⎡⎣ ⎤⎦( )3

2
exciton line [62, 63]. This line corresponds to the

perturbed atomic [ ]s6 3 2 1 state [62, 63]. It was determined by
Laporte et al that about 10% of atomic clusters in liquid
xenon, near the triple point, will give rise to the perturbed
atomic line, instead of the corresponding exciton line [62].
This is caused by the fact that these clusters do not have a
sufficient number of atoms for the formation of the exciton
inside a volume which corresponds to the exciton radius
[62, 63]. Therefore, if one was to construct a model which
distinguishes intermediate excitons from the corresponding
perturbed atomic states, one would have to know which
percentage of atomic clusters give rise to the perturbed atomic
lines, instead of the corresponding excitonic lines, for each
atomic excitation. In addition, one would have to know the
thresholds for all excitons and all perturbed atomic excita-
tions, including the optically forbidden states. This is beyond
the scope of our paper, and we model both the intermediate
excitons and the perturbed atomic excitations with the
corresponding excitations of an isolated atom. However, the
difference between these thresholds is less than 5% for all
observed excitons [62, 63, 75]. Thus, we anticipate a small
error is made by using the thresholds from the gas phase.
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We neglect the observed n=2 G( )3

2
Wannier exciton, in

all of our cases, since it does not correspond to any individual
atomic state. No other Wannier exciton, for n>1, has been
identified in the reflection spectra of liquid xenon [61–63, 75].
For simplicity, in the rest of this work the interband transition
and the inelastic collisions will be sometimes referred to as
ionization and excitations, respectively. Comparing to binary
inelastic collisions, these processes are not the same, as every
xenon atom is located in a cluster of the surrounding atoms.
Thus, atomic excitations are replaced either by excitons or by
perturbed atomic excitations, depending on the size of the
atomic cluster [62, 63]. Likewise, binary ionization is
replaced by the excitation of an electron from the valence
band to a quasi free state in the conduction band [66, 67].

In the second case, only excitations with thresholds,
which are lower than the threshold of the interband transition,
are included in the cross section set. This includes [ ]s6 3 2 2

and [ ]s6 3 2 1 atomic states. These two excitations correspond
to the first two inelastic collisions in the Hayashi’s cross
section set [54]. The former of this state is optically for-
bidden, while the latter is optically allowed. Both the n=1

G⎡⎣ ⎤⎦( )3

2
exciton, and the corresponding perturbed atomic

state, which have been observed in experiment [61–63], have
parentage in the second of these excitations.

2.4. Case 3: The first four excitations from the Hayashi’s set of
cross sections are included

In the previous experimental investigation of photo-
conductivity in liquid xenon it has been shown that other
discrete states should also be included in the set of cross
sections. Specifically, a dip has been observed in the photo-
conductivity spectra of liquid xenon at 9.45 eV [67]. This dip
is induced by the competition between continuous band to

band transitions and the discrete ¢ =n 1 G⎡⎣ ⎤⎦( )1

2
exciton [67].

The observed dip in the photoconductivity spectra of liquid
xenon indicates that the corresponding discrete state has
decay channels alternative to dissociation like luminescence
[66]. This indicates that the inelastic energy losses due to this
discrete state should be included in the modeling of electron
transport in liquid xenon. The ¢ =n 1 G( )1

2
exciton has par-

entage in the ¢[ ]s6 1 2 1 atomic state [62, 63]. Another atomic
excitation exists between [ ]s6 3 2 1 and ¢[ ]s6 1 2 1 states [54].
This is the optically forbidden ¢[ ]s6 1 2 0 state. In this case it is
important to take into account both ¢[ ]s6 1 2 0 and ¢[ ]s6 1 2 1

states, in addition to the excitations which are included in the
second case. The ¢[ ]s6 1 2 0 state corresponds to the third
electronic excitation in the set of cross sections developed by
Hayashi [54]. The fourth electronic excitation in the Haya-
shi’s cross section set corresponds to a combination of
¢[ ]s6 1 2 1 and [ ]p6 1 2 1 states [54]. Thus, we include the first

four excitations from the Hayashi’s cross section set in our
third case. This case will be referred to as case 3.

2.5. Case 4: All electronic excitations from Hayashi’s cross
section set are included

In the experimental investigation of the photoconductivity
spectra of liquid xenon near the triple point, no further
structure could be ascertained above 9.45 eV [67], and the
photoconductivity spectra has only been shown for energies
lower than 10eV [67]. However, in a latter experimental
investigation of the density dependence of the photo-
conductivity spectra in fluid xenon by Reininger et al, two
more dips have been observed for densities up to 77.86% of
the triple point density [66]. This is the highest density for
which results are reported in their study. The first of these
dips is at 10.32eV corresponding to the discrete transition,
which is formed from the two neighboring [ ]d5 3 2 1 and

[ ]s7 3 2 1 states [66]. The second dip is caused by the per-
turbed ¢[ ]d5 3 2 1 atomic state and it is observed at
11.6eV [66].

Thus, it is clear that the discrete states with energies
above 10 eV exist in liquid xenon, since a line at 10.32 eV has
been observed in the reflectivity spectra [60, 62, 63]. It is also
clear that they cause dips in the photoconductivity in fluid
xenon up to densities close to the triple point density [66].
This indicates that these states should be included in the
calculation of inelastic energy losses of electrons in fluid
xenon. However, we are not certain if these discrete states
should be included in the representation of the inelastic
energy losses in liquid xenon, or if they dissociate into a
quasi-free electron in the conduction band and a quasi-free
positive hole in the valence band. The presence of the line at
10.32eV in the reflection spectrum of liquid xenon [60, 63]
seems to indicate that these states have alternative decay
channels to dissociation due to luminescence. This means that
they also contribute to inelastic energy losses of excess
electrons. We are not certain which percentage of these dis-
crete states dissociates into a quasi-free electron and a quasi-
free positive hole. This case for representing the inelastic
energy losses in liquid xenon is based on the assumption that
these discrete states always decay through luminescence, or
some other non-dissociative process. Thus, the corresponding
excitations fully contribute to the inelastic energy losses of
excess electrons.

The atomic [ ]d5 3 2 1 state corresponds to the 11th exci-
tation of Hayashi’s cross section set, while the [ ]s7 3 2 1 state
is included in the 12th Hayashi’s excitation [54]. The

¢[ ]d5 3 2 1 atomic excitation, which causes a dip in the pho-
toconductivity at 11.6eV, is not included in Hayashi’s cross
section set. However, the 14th Hayashi’s excitation, which
corresponds to [ ]s9 3 2 2 state, has a threshold of 11.58 eV,
and it gives the effective energy loss for all excitations in this
energy range in the gas phase. All other effective excitations,
from the Hayashi’s set, include contributions from the opti-
cally forbidden states. Therefore, we should include these
excitations in our model, since the absence of the optically
forbidden states in the reflection spectrum does not mean that
these states do not contribute to the energy losses of excess
electrons. Thus, our fourth case for representing the inelastic
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energy losses in liquid xenon includes all excitations from
Hayashi’s cross section set. This case will be referred to as
case 4. The cross sections for electron scattering in liquid
xenon included in all four cases considered in this work are
shown in figure 1.

3. Methods of calculation

3.1. Monte Carlo method

In this work we use the Monte Carlo method to simulate a
swarm of electrons in an infinite space, which is filled with a
homogeneous background liquid, under the action of a static
and uniform electric field. For this purpose, we have modified
our existing Monte Carlo code, which has been developed for
the study of electron transport in the gas phase [76–78]. Since
the dispersion relation for electrons in liquid xenon can be
taken to be parabolic and isotropic [40], the influence of the
liquid on the electron motion is restricted to scattering events.
Thus, the appropriate modification of the scattering dynamics
is sufficient to make our Monte Carlo code applicable to the
study of electron transport in liquid xenon. This modification
has been done by including three effective scattering pro-
cesses, which represent the coherent scattering of low energy
electrons [57]. These scattering processes are described in
section 2.1. Our study of the electron transport is performed
under the assumption that the density of charged particles is
very low (the swarm limit). Thus, we neglect the electron–
electron interactions, the space charge effects and collisions
with the results of previous collisions (holes and excited
states). Therefore, the dynamics of each electron can be fol-
lowed independently.

The dynamics of an individual electron is determined by
the action of the electric field and by collisions between the
electron and the atoms of the background liquid. The integral
equation for the collisional probability is solved numerically
by generating the random numbers from the uniform dis-
tribution on the interval (0,1) [76–78].

The type of the next collision is determined by using an
additional random number, while taking into account the
relative probabilities of all scattering processes for the
corresponding value of the electron energy [76–78]. The
change of direction of the electron motion after a collision is
represented by a pair of angles, i.e. the scattering angle and
the azimuthal angle. Isotropic scattering is assumed for all
scattering processes, except for the effective scattering pro-
cess which corresponds to the σenergy cross section. In this
process the direction of the electron motion is unchanged by
the collision.

After the collision which is represented by the σboth cross
section the electron energy is reduced by the factor
 c-( )1 cosm

M

2 , where m is the electron mass, M is the mass
of a background atom, ò is the initial energy of the electron
and χ is the scattering angle. The same amount of energy is
lost by a low energy electron in the effective scattering pro-
cess, which is represented by σenergy cross section. When an
inelastic collision, or interband transition takes place, the
energy of the incident electron is reduced by the energy loss
(i.e. the threshold energy) of the corresponding process. After
the interband transition, the remaining energy is redistributed
between the primary electron and the secondary electron. The
fraction of the postcollisional energy, which is obtained by
each of these two electrons, is determined by using an addi-
tional random number.

In our Monte Carlo code, monomials of coordinates and
velocity components of each individual electron are sampled
and averaged, over the entire electron ensemble, at discrete
sampling times [76–78]. These expressions are used to cal-
culate both bulk and flux transport coefficients of the swarm,
with explicit formulas given elsewhere [76–78].

As a large number of electrons must be followed, in order
to reduce the statistical fluctuations of the output data, our
Monte Carlo simulations are very time consuming. The
computational time is particularly large for lower values of
reduced electric field, where few inelastic collisions take
place. Under these conditions due to a small rate of energy
transfer in elastic collisions, the relaxation of energy is inef-
ficient. In order to optimize the computational time and speed
of our simulations in the limit of low reduced electric fields,
the simulations are performed with a lower number of elec-
trons until the swarm reaches the steady state. After relaxation
the swarm is multiplied several times, by cloning each elec-
tron, until the desired number of electrons is obtained. When
the multiplication is finished all transport properties are cal-
culated from average monomials of both velocities and
coordinates. For a more detailed description of our Monte
Carlo code, we refer readers to our reviews [76–78].

Figure 1. Cross sections for electron scattering in liquid xenon:
(1) σboth, (2) σmomentum, (3) σenergy, (4) ionization (the interband
transition), effective electronic excitations: (5) [ ]s6 3 2 2, (6)

[ ]s6 3 2 1, (7) ¢[ ]s6 1 2 0, (8) ¢[ ]s6 1 2 1 and [ ]p6 1 2 1, (9) [ ]p6 5 2 2 and
[ ]p6 5 2 3, (10) [ ]p6 3 2 1 and [ ]p6 3 2 2, (11) [ ]d5 1 2 0, [ ]d5 1 2 1,
[ ]p6 1 2 0, [ ]d5 7 2 4 and [ ]d5 3 2 2, (12) [ ]d5 7 2 3, (13) [ ]d5 5 2 2,

(14) [ ]d5 5 2 3, (15) [ ]d5 3 2 1, (16) [ ]s7 3 2 2, [ ]s7 3 2 1, [ ]p7 1 2 1,
[ ]p7 5 2 2, ¢[ ]p6 3 2 1, [ ]p7 5 2 3, [ ]d6 1 2 0, [ ]d6 1 2 1, [ ]p7 3 2 2
[ ]d6 3 2 2, [ ]p7 3 2 1, [ ]p7 1 2 0, [ ]d6 7 2 4, [ ]d6 7 2 3, ¢[ ]p6 3 2 2,
[ ]d6 5 2 2, [ ]p6 1 2 1, [ ]d6 5 2 3, ¢[ ]p6 1 2 0 and [ ]d6 3 2 1, (17)
[ ]s8 3 2 2 and (18) [ ]s9 3 2 2.
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3.2. Benchmark calculations

We present our benchmark calculations for the Percus Yevick
model liquid, in order to test the implementation of the
coherent scattering effects in our Monte Carlo code. The
radial pair correlation function, which corresponds to this
model, is obtained by applying the Percus Yevick approx-
imation as a closure to the Ornstein–Zernike equation and by
representing the interaction between the background mole-
cules by the hard sphere potential [57, 79]. The corresponding
static structure factor is obtained as a Fourier transform of this
pair correlation function [57]. The modified Verlet and Weis
structure factor for the Percus Yevick liquid [80] is used in
this work, as in the study of Tattersall et al [57]. This structure
factor is given by
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[57]. The packing ratio f determines the percentage of space
which is occupied by the hard spheres. This ratio can be

written as f p= r n4

3
3

0, where r and n0 are the hard sphere
radius and the neutral number density respectively [57].

In figure 2 we show our benchmark results for mean
energy, drift velocity and components of the diffusion tensor
for electrons in the Percus Yevick liquid, for several values of
the packing ratio f. For comparison, the benchmark results of
Tattersall et al [57] are included in the same figure. Our
results are represented by lines, while the results of Tattersall
and co-workers are represented by symbols. From a com-
parison between our results and those predicted by Tattersall
et al [57], it is evident that the results are consistent for all
E/n0 and f and for all transport coefficients. This suggests
that the representation of the coherent scattering effects has
been included properly in our Monte Carlo code [81].

In figure 2 we see that all transport properties are dis-
tinctively dependent on f for the lower values of E/n0. Due to
coherent scattering effects, all transport properties increase
with the increase of f. At the higher values of E/n0 , how-
ever, the strong dependence of transport properties on f is
firstly reduced and then entirely removed as the influence of
the coherent scattering is negligible for the high energy
electrons. On the other hand, the behavior of the longitudinal
diffusion coefficient DL is more complex. We see that DL

increases with the increase of f at low electric fields, but this
dependence is inverted for E/n0 between approximately 2 and
10 Td. The mean energy monotonically increases with the
increase of E/n0 for all values of f. The drift velocity exhibits
structure induced NDC, i.e. for E/n0 approximately between

Figure 2. Comparison of our results for mean energy, drift velocity W, longitudinal diffusion coefficient n DL0 and transverse diffusion
coefficient n DT0 of an electron swarm in the Percus–Yevick model liquid, with those of Tattersall et al [57]. Transport properties are
presented as a function of the reduced electric field E/n0 and the Percus–Yevick packing ratio f. The present calculations are represented by
lines, while the results of Tattersall et al [57] are represented by symbols.

8

Plasma Sources Sci. Technol. 28 (2019) 015006 I Simonović et al



0.5 and 6 Td and for f�0.3, values of drift velocity decrease
as the driving field is increased. The quantitative criterion for
the occurrence of the structure induced NDC has been dis-
cussed by White and Robson [82]. The decrease of the drift
velocity with increasing field can be attributed to the reduc-
tion of the coherent scattering effects, which in turn enhance
the directional motion of low energy electrons. The reduction
of both DL and DT with an increasing E/n0 is also clearly
evident. In the limit of the highest E/n0 considered, all pro-
files approach to that for f=0. It is interesting to note that
the values of E/n0 for this transition decrease with increas-
ing f.

3.3. Fluid model of negative streamers

Our simulations of negative streamers in liquid xenon are
performed by using a 1.5 dimensional fluid model [83, 84]. In
this model, we assume that the space charge is contained
inside a cylinder with radius R0 and that the charge density
varies along the axial direction only. The electron dynamics is
described by the continuity equation for the electron number
density

n b

¶
¶

=
¶
¶

¶
¶

+

+ -

⎜ ⎟⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )

( ( )) ( ) ( )

n x t

t x
D

n x t

x
Wn x t E

n x t n x t

, ,
, sgn

, , , 6

e
L

e
e

i p e

where ne(x, t) and np(x, t) are the number densities of elec-
trons and positive holes, respectively, which are functions of
the coordinate x and time t. In this equation DL and W are the
longitudinal diffusion and the drift velocity respectively,

( )Esgn is the sign function of the electric field E which is
oriented along the x-axis, while νi and β are the ionization rate
and the recombination coefficient, respectively.

Since the hole mobility in liquid xenon is much smaller
than the mobility of electrons [85, 86], the positive holes are
assumed to be stationary, on the time scales relevant for this
study. Thus, the time evolution of the number density of
positive holes is described by the number balance equation
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The total electric field in the system is represented as the
sum of the uniform external field and the electric field due to
space charge effects [83, 84]
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where E0 is the external field, e is the elementary charge, ε0
and εr are the vacuum permittivity and the relative permit-
tivity, respectively, and l is the length of the system. The
recombination coefficient is given by the scaled Debye

formula [50–52]
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where βD is the Debye recombination coefficient, μe is the
electron mobility, while ξ is the scaling factor which is taken
to be 0.1 [10, 50, 51].

The above fluid equations are closed assuming the local
field approximation—all transport properties of electrons at a
given value of the coordinate x and time t are determined by
the local instantaneous electric field, E(x, t) and are evaluated
from data computed in Monte Carlo simulations. In the
numerical implementation of our fluid model, the spatial
discretization is performed by using the second order central
finite difference, while the fourth order Runge–Kutta method
is used for the integration in time. In fluid simulations we
follow the transition of an electron avalanche into a negative
streamer and its subsequent propagation in liquid medium.

4. Results and discussion

4.1. Transport coefficients for electrons in liquid xenon

In our study of the transport properties of electrons in liquid
xenon we cover a range of reduced electric fields between
1×10−3 and 2× 103 Td. The number density of xenon
atoms is 1.4×1028 m−3, while the temperature of the
background liquid is 163K. For E/n0 higher than 10 Td, we
follow 106 electrons during the entire simulation. However, at
lower fields our simulations begin with 104 electrons and after
the relaxation to the steady state the electron swarm is gra-
dually scaled up to 106 electrons by cloning each electron at
fixed time intervals. The initial velocities of electrons are
randomly selected from a Maxwell–Boltzmann velocity dis-
tribution which corresponds to a mean energy of 1 eV. All
electrons start their trajectories from the same point in space.
This point is chosen as the origin of our coordinate system.
The cross sections for electron scattering employed in this
work are shown in figure 1. The mean energy, drift velocity
and diffusion coefficients are shown for cases 1 and 4, as
differences between individual cases are too small to be
clearly distinguished on logarithmic scale.

4.1.1. Mean swarm energy. The comparison of the mean
energies of electron swarms in liquid and gaseous xenon is
shown in figure 3. For the lower values of electric fields up
to approximately 0.6 Td, the mean energy is higher in liquid
xenon than in gaseous xenon due to a significant reduction
of the cross section for elastic scattering of the lower energy
electrons in the liquid phase. Such behavior is different at
higher fields as the mean energy of electrons approaches
1 eV, owing to the fact that the electron scattering in atomic
liquids is similar to the scattering in dilute gases for the
electron energies higher than 1 eV [19, 34]. The mean
energy is lower in the liquid phase than in the gas phase for
E/n0 between approximately 0.6 and 350 Td. At the lower
edge of this field region, the difference between the mean
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energies in gaseous and liquid xenon can be attributed to the
greater amount of energy losses in elastic collisions in the
liquid phase in the energy region between approximately
0.4 and 10 eV [34]. This is represented by the combined
effect of the scattering processes which correspond to σboth
and σenergy cross sections. For E/n0 between approximately
3 and 350 Td this energy difference is caused by the
intensive ionization cooling in the liquid phase. Ionization

cooling of an electron swarm in gases has been discussed by
Robson and Ness [87]. At higher fields the mean energy in
the first case for representing excitations in liquid xenon is
slightly higher, while the mean energy in the fourth case is
slightly lower, than the mean energy in the gas phase.

In figure 4 we show the percentage difference between
the calculated mean energy, assuming the first and the
remaining three cases. This difference is negligible for E/n0
less than 2 Td as electrons undergo elastic collisions only. For
E/n0 higher than 2 Td the mean energy reaches the highest
value in the first case due to the absence of inelastic energy
losses. The percentage differences between the values of
mean energy in the first case and the remaining three cases
reach two local maximums at about 5 and 1000 Td, and a
local minimum around 27 Td. The first local maximum occurs
due to the absence of inelastic energy losses, lower than the
threshold energy for ionization, in the first case. The local
minimum appears in the field region in which the energy
losses due to ionization become comparable to the inelastic
energy losses. For E/n0 higher than 50 Td, the mean energy
decreases with the increase of the number of excitations
which are included in the model. This is a consequence of a
significant competition between ionization and excitations
with thresholds higher than 9.22 eV in this field region. The
percentage difference between the mean energy in the first
case and the remaining cases never exceeds 3%, 6% and 16%
for the second, third and fourth cases respectively. Even
though the percentage difference between the values of mean
energy in various cases decreases for E/n0 greater than
1000 Td, the absolute difference continues to rise mono-
tonically in the entire field region covered in this study. For
the values of E/n0 lower than 50 Td, these differences are

Figure 3. Comparison of the mean energies of electrons in gaseous
and liquid xenon. The values of mean energy in liquid xenon,
determined by employing two different methods for representing the
inelastic energy losses, are shown. In the first case all excitations are
neglected, while in the fourth case all excitations from Hayashi’s
cross section set for electron scattering in gaseous xenon [54, 68] are
included.

Figure 4. Percentage difference between the values of mean energy,
for electrons in liquid xenon, which are determined by using
different representations of the inelastic energy losses. All excita-
tions are neglected in the first case. In the second and the third cases
only the first two ( [ ]s6 3 2 2 and [ ]s6 3 2 1) and the first four
( [ ]s6 3 2 2, [ ]s6 3 2 1, ¢[ ]s6 1 2 0 and an effective excitation which
represents both ¢[ ]s6 1 2 1 and [ ]p6 1 2 1) excitations from the cross
section set of Hayashi [54, 68] are included. All excitations from the
cross section set of Hayashi are included in the fourth case.

Figure 5. Comparison of the measured drift velocities in liquid
xenon (Miller et al [88] and Huang and Freeman [89]) with the
theoretical calculations. The theoretically determined drift velocities
in liquid xenon include those of Boyle et al [34] as well as the bulk
drift velocities calculated in this study by employing two different
methods for representing the inelastic energy losses. The bulk drift
velocity of electrons in gaseous xenon is also shown in this figure for
comparison.
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very small and are close to the statistical uncertainty of the
Monte Carlo simulations.

4.1.2. Drift velocity and NDC. In figure 5 we show bulk drift
velocities assuming the first and the fourth cases for
representing the inelastic energy losses as a function of
E/n0. For comparison, the theoretical [34] and experimental
[88, 89] drift velocities in liquid xenon determined by
previous authors are displayed in the same figure, along with
the bulk velocity in gaseous xenon. For the values of E/n0
lower than 1 Td, the drift velocity in the liquid phase exceeds
the drift velocity in the gas phase. This is a consequence of
the significant reduction of the rate for momentum transfer of
the lower energy electrons in liquid xenon due to the
modifications of the scattering potential and the coherent
scattering effects. The lowering of the rate for momentum
transfer enables the electric field to accelerate electrons more
efficiently in liquid xenon than in the gas phase, which leads
to a significant enhancement of the drift velocity compared to
the gaseous xenon. However, this effect is reduced at higher
fields as the scattering of a high energy electron on a xenon
atom is weakly perturbed by the surrounding liquid. Thus, for
the values of E/n0 between approximately 0.02 and 2 Td the
drift velocity in liquid xenon decreases with increasing field,
until it reaches the values that are close to the drift velocity in
gaseous xenon. The reduction of the drift velocity with
increasing E/n0 is a phenomenon that is well known as NDC
[90–92]. While this phenomenon is caused by inelastic and
non-conservative collisions in various gases [90, 92], the
NDC observed in liquid argon and liquid xenon is entirely
structure induced phenomenon [19, 34, 82]. The quantitative

criterion for the occurrence of the structure induced NDC has
been discussed by White and Robson [82]. At the end of the
field region, which corresponds to NDC, the drift velocity in
gaseous xenon slightly exceeds the drift velocity in liquid
xenon. For the values of E/n0 higher than 10 Td the bulk drift
velocity in the first case exceeds the bulk drift velocities in all
other cases as well as the bulk drift velocity in the gas phase
due to the strongest explicit effects of ionization in this case.

In order to understand the occurrence of NDC in liquid
xenon at low electric fields, in figure 6 we show the energy
distribution functions for a few values of E/n0. Results are
presented for the case two only, as the rate coefficients for
those inelastic processes excluded in this case are negligible
over the range of reduced electric fields considered. At low
electric fields, up to approximately 0.008 Td, the majority of
electrons have energies below approximately 0.7 eV. The
cross section for momentum transfer is very small over the
range of energies less than 0.7 eV and hence the drift velocity
in liquid xenon is much greater than in the gas phase.
However, for E/n0 greater than approximately 0.02 Td (at this
particular value of E/n0 NDC begins to develop) a large
fraction of electrons have energies between approximately 0.7
and 2 eV. There is a rapid rise in both σboth and σenergy with
increasing energy in this region. As a consequence, these two
cross sections quickly approach the cross section for elastic
collisions in the gas phase. For E/n0 between 0.2 and 1 Td the
majority of the high energy electrons have energies between
1.5 and 3 eV where the cross sections σboth and σmomentum

increase rapidly and approach their maximal values. The rapid
rise of both σboth and σmomentum leads to a decrease of the drift
velocity with increasing E/n0. For E/n0 higher than
approximately 5 Td a large fraction of electrons have energies

Figure 6. Energy distribution function of the electrons for various E/n0 as indicated on the graph. Calculations are performed assuming the
case 2 where excitations [ ]s6 3 2 2 and [ ]s6 3 2 1 from the set of cross sections developed by Hayashi are included.
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higher than approximately 4 eV, and at these energies the
cross section for elastic scattering rapidly drops off with an
increase of electron energy. In this range of fields, the drift
velocity monotonically increases with E/n0.

We may also observe that over the range of E/n0, where
the structure induced NDC occurs, the high-energy tail of the
distribution function quickly drops off with increasing
energy. This is caused due to rapid increase of energy
transfer associated with the σboth and σenergy. For E/n0 lower
than approximately 0.008 Td and higher than approximately
4 Td, the high-energy tail of the distribution function drops
off more slowly.

In figure 7 we show the spatially-resolved rate coefficient
for the σboth. In order to sample spatially-resolved rate
coefficients we have divided the real space into cells. The
space is divided uniformly into 100 cells in such a way that
cells indexed by - +( )50, 50 correspond to the real
coordinates s( )x 3cm , where xcm is the coordinate of the
center of mass of the swarm, and the σ is the standard
deviation of the x-coordinate of the electrons [93]. Comparing
the leading and trailing edges of the swarm, this property is
higher at the leading edge where the average energy of the
electrons is always greater than at the trailing edge. The slope
of the spatially-resolved rate coefficient is the largest over the
range of E/n0 where NDC occurs. Moreover, we observe that
the maximal values of this property at the leading edge of the
swarm are higher for 0.59 and 0.77 Td than for a higher value
of 5.9 Td. A similar behavior is observed for the spatially-
resolved rate coefficient for the σmomentum.

The drift velocity calculated in our study is in an
excellent agreement with the theoretical results of Boyle et al
[34]. Our values of the drift velocity are close to those
predicted in the experiments of Miller et al and Huang and
Freeman [88, 89]. However, while most theoretical calcula-
tions of the drift velocity predict a structure induced NDC,
this effect has not been observed in the experiments. In the

field region which corresponds to the onset of the structure
induced NDC of the theoretically determined drift velocity,
the experimental drift velocity saturates with increasing field.
At higher fields, no experimental results are available.

This discrepancy between theoretical and experimental
results has been attributed by Sakai et al [32] to the presence
of additional channels of energy loss in liquids, which are not
included in the existing theoretical models. These energy
losses correspond to the changes in the translational states of
pairs and triplets of xenon atoms upon the electron impact,
and they occur for energies much lower than the first
threshold for excitations [20, 32]. Sakai and co-workers have
empirically derived the sets of cross sections for electron
scattering in liquid argon, krypton and xenon [32] which
include effective cross sections for representing these
additional energy losses. However, an alternative explanation
for this discrepancy between theory and experiment could be
the presence of molecular impurities in the liquid rare gases
used in the experiments. Indeed, it has been shown by Sakai
et al [32] that even a small amount of molecular impurities in
liquefied rare gases leads to a significant enhancement of the
electron drift velocity. It might also be the case that the
structure induced NDC would be observed in the profiles of
the experimentally determined drift velocity at higher electric
fields. Further experimental and theoretical investigations are
required for the resolving this discrepancy. Thus, the
measurement of the drift velocity of electrons in liquid xenon
at higher electric fields is of a great importance. In any case,
we do not include the effective cross section developed by
Sakai et al [32] in our model, as it is not adjusted to our cross
section for elastic scattering.

In figure 8 we show the percentage difference between
the calculated drift velocity assuming the first and the
remaining three cases. The flux drift velocity increases with
the decrease of the number of excitations, which are

Figure 7. Spatially-resolved rate coefficient for the σboth. Calcula-
tions are performed assuming the case 2 where excitations [ ]s6 3 2 2
and [ ]s6 3 2 1 from the set of cross sections developed by Hayashi are
included.

Figure 8. Percentege difference between the values of drift
velocities, for electrons in liquid xenon, which are determined by
using different methods for representing the inelastic energy losses.
These methods are described in the caption of figure 4. Flux and bulk
results are represented by solid lines and dashed lines, respectively.
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considered in the model. This is caused by the lowering of the
chaotic component of the electron velocity due to the increase
of the ionization cooling with the reduction of the inelastic
energy losses [87]. In the case of the bulk drift velocity, this
increase is even more pronounced due to the explicit effects
of ionization. The percentage difference between drift
velocities determined in the first case and the remaining
three cases has a local maximum at about 8 Td, as the relative
difference between rates for ionization has the highest values
at low electric fields. This local maximum has a value of
about 8% and 24% for flux and bulk drift velocity,
respectively. For E/n0 higher than 100 Td, the percentage
difference between flux drift velocities in the first case and the
last two cases rises due to increasing rates for inelastic
collisions with thresholds higher than 9.22 eV in this field
region. The percentage difference between the corresponding
bulk drift velocities reaches another local maximum at about
200 Td and 400 Td for the third and the fourth cases
respectively. Although the percentage difference between
bulk drift velocities in different cases decreases after the last
local maximum, the absolute difference monotonically
increases in the entire field region below 2000 Td.

4.1.3. First Townsend coefficient. The first Townsend
coefficient expresses the number of ion pairs generated by
an electron per unit length. It is equal to the ionization
collision frequency divided by the electron drift velocity. Our
calculations of the first Townsend coefficient α determined by
using different representations of the inelastic energy losses in
liquid xenon are shown in figure 9. The first Townsend
coefficient in gaseous xenon is scaled up to the liquid density
and displayed in the same figure for comparison. It can be
seen that α monotonically increases with increasing field in
all four cases for representing the inelastic energy losses. We
also observe that α is reduced with increasing number of

included excitations. In the first case, where all excitations are
neglected, the coefficient α overestimates those calculated in
the remaining three cases over the range of E/n0 considered.
While the absolute difference between the first Townsend
coefficient in the first case and the remaining cases increases
over the entire E/n0 range covered in this study, the relative
difference has the highest values at E/n0 lower than
approximately 20 Td. For E/n0 greater than 20 Td the
ionization rate coefficient in the fourth case, where all
excitations are included, becomes significantly lower than the
corresponding rate coefficients in the other three cases. This is
a consequence of the increasing inelastic energy losses which
have thresholds higher than 9.22 eV in this case.

The first Townsend coefficient in liquid xenon is much
higher than the rescaled coefficient in gaseous xenon for E/n0
lower than 100 Td. In the limit of the highest E/n0 considered
in the present work, however, we observe that the deviations
between the ionization coefficients in liquid and rescaled gas
are significantly reduced. One of the main reasons for the
significant difference between the rate coefficients for
ionization in the scaled gaseous xenon and liquid xenon is
the reduction of the threshold for ionization in the liquid
phase. An electron in gaseous xenon can undergo ionization
only at energies higher than 12.13 eV. Moreover, it can lose a
significant amount of energy in a wide range of inelastic
scattering processes at energies lower than the threshold
energy for ionization. However, in liquid xenon any electron
with the energy higher than 9.22 eV can excite an electron
from the valence band to the conduction band. Furthermore,
there is a far lower number of inelastic scattering processes
with thresholds which are lower than the threshold for
ionization in the liquid phase compared to the gas phase.

In figure 10 we show the first Townsend coefficient
measured by Derenzo et al [56] along with the theoretical
results obtained by previous authors [39, 40, 53]. The values

Figure 9. Variation of the first Townsend coefficient with E/n0 for
electrons in liquid xenon. Calculations are performed by assuming
all four different methods for representing the inelastic energy losses.
These methods are described in the caption of figure 4. The first
Townsend coefficient for gaseous xenon, which is scaled up to liquid
density is also shown, for comparison.

Figure 10. Comparison between the theoretical calculations of the
first Townsend coefficient α determined in this study and the results
of previous authors. These results include the measurements of
Derenzo et al [56] and calculations of Atrazhev et al [39], Jones and
Kunhardt [40] and Nakamura et al [53].
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of the first Townsend coefficient determined in this study by
assuming the first and the fourth cases for representing the
inelastic collisions are displayed in the same figure for
comparison. The experimental results of Derenzo et al [56]
are significantly higher than the values of α for electrons in
gaseous xenon which are scaled to liquid density. An unusual
feature of the first Townsend coefficient measured by
Derenzo and co-workers is a non-monotonous behavior with
the increase of the reduced electric field. However, this non-
monotonicity is not outside the range of experimental
uncertainty.

The two sets of results determined by Atrazhev et al [39]
are calculated by assuming two different methods for
representing the inelastic energy losses. The values of α

represented by curve II are determined under the assumption
that the percentage of inelastic energy losses in the liquid
phase are just the same as in the gas phase [39]. This curve is
significantly below all other curves presented in this figure.
The underestimation of α in curve II demonstrates the
significant reduction of the inelastic energy losses in liquid
xenon compared to gaseous xenon as discussed by Atrazhev
et al [39]. The values of α represented by curve III are
determined by completely neglecting the inelastic energy
losses in liquid xenon. This curve is in the best agreement
with the first two experimental points of Derenzo et al [56]
and with our case 1. The first Townsend coefficient
determined by Jones and Kunhardt [40] is the only present
theoretical result which predicts the non-monotonic behavior
of α and it is in a good agreement with the first four
experimental points of Derenzo et al [56]. However the
values of α at higher fields are not shown in their work. The
results of Nakamura et al [53] agree very well with the last
segment of experimental points of Derenzo et al [56], while
the values at lower fields are not displayed in their paper.

While our case 1 for representing the inelastic energy
losses is in the best agreement with the first two experimental
points of Derenzo et al [56], all other experimental points are
in an excellent agreement with our remaining three cases. No
experimental data are present in the field range in which there
is a significant difference between our last three cases for
representing the inelastic collisions in liquid xenon. However,
the last two experimental points of Derenzo et al [56] are in a
slightly better agreement with our fourth case than with the
remaining cases.

A possible explanation for the high values of the first two
experimental points determined by Derenzo et al [56] is the
presence of another mechanism for populating the conduction
band in liquid xenon, which is more significant than electron
impact ionization at low electric fields. One example of such a
mechanism is the dissociation of high order Wannier excitons
(n>1) due to scattering on the walls of the system, or under
the influence of some other perturbation. Another possible
explanation is the reduction of the inelastic energy losses at
energies lower than 9.22 eV due to some other effects, which
are not included in our model.

4.1.4. Longitudinal and transverse diffusion coefficients. In
figure 11 we show the variation of DL/μ and DT/μ with E/n0
assuming the first and the fourth cases for representing the
inelastic collisions in liquid xenon. The calculated values of
these quantities obtained by Boyle et al [34] are also
displayed in the same figure for comparison, along with the
characteristic energy measured by Shibamura et al [94]. Here
DL and DT denote the longitudinal and the transverse
components of the bulk diffusion tensor, while μ is the
bulk mobility of electrons. The characteristic energy DT/μ
initially increases with increasing E/n0, reaching a local peak
around 2 Td, and then starts to decrease with E/n0. For E/n0
higher than approximately 300 Td, we see that DT/μ again
increases with E/n0. The E/n0 dependence of DL/μ is more
complicated. First, there is a region of slow rise of DL/μ with
increasing E/n0 due to a reduction of the momentum transfer
of the lower energy electrons in liquid xenon. Second, there is
a region of slow decrease for E/n0 between approximately
0.05 and 0.4 Td, and then for E/n0 up to approximately 6 Td
there is again a region of rapid rise. Between approximately
6 and 30 Td DL/μ is reduced as the inelastic collisions start to
exert their influence on the swarm. Finally, DL/μ rises again
as the electrons start to rapidly gain energy from the electric
field. The complex behavior of DL/μ in liquid xenon reflects
the high sensitivity of this property with respect to the details
of cross sections.

We also observe that DL/μ agree very well with the results
of Boyle et al [34] for E/n0 lower than 0.7 Td. However, our
results are lower than those of Boyle and co-workers at higher
electric fields. The discrepancy can be attributed to the
difference in the employed cross sections for the electron
scattering, as Boyle and coworkers have neglected the inelastic
collisions in their study. As the mean energy of electrons is
around 1.8 eV at 1 Td, the most energetic electrons have enough
energy to undergo inelastic collisions. The present calculations

Figure 11. Comparison between the present calculations and those
predicted by a multi term solution of the Boltzmann equation (Boyle
et al [34]) and experimental measurements (Shibamura et al [94]) for
the bulk values of DL/μ and DT/μ. Our results are evaluated by
assuming the cases 1 and 4.
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of DT/μ are in a good agreement with those predicted by Boyle
et al [34] and Shibamura et al [94].

In figure 12 we show the ratio DL/DT for electrons in
liquid xenon assuming the first and the fourth cases for
representing the inelastic energy losses. The values of DL/DT

for electrons in gaseous xenon are shown in the same figure
for comparison. For electrons in liquid xenon this ratio is
decreasing with increasing field up to approximately 1 Td,
due to the rising rates for elastic scattering in this field region.
However, this ratio is increasing at higher fields due to the
reduction of the rate for elastic scattering of high energy
electrons. The E/n0 dependence of this ratio is different for
electrons in gases at low electric fields. For the values of E/n0
lower than 10−2 Td this ratio is constant in the gas phase as
the mean energy of electrons is very close to the thermal
values. There is a narrow range of the reduced electric field
between approximately 10−2 and 2× 10−2 Td in which this
ratio is rising with increasing field, due to the influence of the
Ramsauer–Townsend minimum. At higher fields the qualita-
tive trend of behavior of DL/DT is the same for electrons in
liquid and gaseous xenon though the minimum is more
pronounced in the liquid phase.

4.2. Streamer calculations

In our fluid simulations, we follow the transition of an elec-
tron avalanche into a negative streamer as well as the sub-
sequent propagation of this streamer. The initial condition for
both electrons and positive holes is a Gaussian distribution
which is given by
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This Gaussian is positioned near the cathode. It should be
noted that the initial number densities of electrons and posi-
tive holes are selected so that the space charge effects are

negligible. The values of l and R0 are set to 5×10−5 m and
1×10−5 m respectively. The particular value of R0 is chosen
as an educated guess taking into account the initial distribu-
tion width and the spreading due to transverse diffusion.
This value is in a good agreement with the values evaluated
by the other authors [50, 51]. The length of the system l is
determined by the requirement that the streamer velocity
relaxes to a stationary value. The number of spatial cells used
in our fluid simulations is 25000.

In figures 13 and 14 we show the formation and propa-
gation of a negative streamer, assuming cases 1 and 4 for
representing the inelastic energy losses, under the influence of
the externally applied electric fields of 59 Td and 100 Td,
respectively. For E/n0=59 Td the difference between the
ionization coefficients for liquid phase and rescaled gas is
much higher than for E/n0=100 Td. The simulations in the
liquid phase are augmented by the simulation in which the
transport data for electrons in the gas phase are for the gas
phase scaled to the liquid density. The general features of the
streamer profiles in the liquid xenon are the same as those of
the streamers in gases [95, 96]. However, the space and time
scales of the streamer formation are reduced by about three
orders of magnitude due to a much greater number density of
the background atoms in the liquid phase. The electron
number density has a sharp peak in the streamer head where
the electric field is significantly enhanced by the space charge
effects. However, the number density is greatly reduced in the
streamer channel where the external electric field is sig-
nificantly screened. The further reduction of the number
density of electrons in the streamer channel with increasing
distance from the streamer head is clearly evident in the
streamer profiles. This reduction can be attributed to the
recombination of electrons and positive holes [50, 51]. A
similar decrease of the electron number density in the strea-
mer channel is observed for streamers in electronegative
gases [50, 51].

We observe that the streamer formation as well as
streamer propagation are greatly reduced with an increase of
the number of excitations which are included in the model.
The number density of electrons in both the streamer head
and the streamer channel is also reduced. It can also be seen
that the transition from an electron avalanche into a streamer
is much slower in the case of the rescaled gas than in the first
and the fourth cases of the liquid phase. Comparing figures 13
and 14, we see that this difference is much more pronounced
at 59 Td than at 100 Td. To be specific, at 59 Td the dis-
tribution of electrons modeled in the case of the rescaled gas
is still in the avalanche phase at the time instant when the
streamer in the liquid phase, assuming the first case of
representing inelastic energy losses, crosses the entire length
l. On the other hand, at 100 Td the streamer modeled in the
case of the rescaled gas is almost completely formed by
the time when the streamer modeled in the first case reaches
the boundary of the system. However, the streamer velocity
and the number density of electrons calculated in the rescaled
gas case are well below those in the liquid phase, assuming
both cases 1 and 4, even at 100 Td. The observed streamer
properties may be understood by considering the differences

Figure 12. Comparison of the ratios between the bulk longitudinal
diffusion and the bulk transversal diffusion in liquid xenon assuming
cases 1 and 4 and the same ratio in gaseous xenon. These cases are
described in the caption of figure 3.
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between the ionization coefficients in liquid and gaseous
xenon. These differences are the most dominant at lower
electric fields and gradually decrease with increasing field.

In figure 15 we show the profiles of negative streamers in
liquid xenon for the applied reduced electric fields of 35 Td,
59 Td and 100 Td, respectively, at time 73 ps. The time
instant of 73 ps has been carefully chosen since the fastest
streamer in our simulations reaches the boundary of the sys-
tem exactly at this time. The results are evaluated by con-
sidering all four cases for representing the inelastic energy
losses. We observe that the number density of electrons in the
streamer head and behind the ionization front in the streamer
channel are decreased with the increase of the number of
excitations in the model, independently of the applied electric

field. It can also be seen that the number density of electrons
and the streamer velocity increase with increasing E0/n0.

The streamer velocities determined by employing all four
cases for representing the inelastic energy losses, are shown in
figure 16 along with the streamer velocity calculated by using
the gas phase transport properties which are scaled to liquid
density. For comparison, the bulk drift velocity obtained in
the first case, is shown in the same figure. It can be seen that
the streamer velocity greatly exceeds the bulk drift velocity.
This is expected, as the velocity of a negative streamer is
determined by the combination of the electron velocity and
the rate of the electron impact ionization in the streamer head,
where the electric field is significantly enhanced, as well as by
the strong diffusive fluxes in the streamer front. It can also be

Figure 13. The formation and propagation of a negative streamer in liquid xenon for E0/n0=59 Td. The presented results are determined by
assuming the first and the fourth cases for representing the inelastic energy losses. The results of streamer simulations obtained by using the
gas phase transport properties which are scaled to liquid density are shown in the same figure for comparison. Here ne refers to the electron
number density, while E/n0 refers to the reduced resultant electric field. The direction of the external electric field


E0 is also shown in this

figure.

Figure 14. The formation and propagation of a negative streamer in liquid xenon for E0/n0=100 Td.
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seen that the intensity of the streamer velocity determined in
our fluid simulations strongly depends on the employed case
for representing the inelastic energy losses in the liquid phase.
The difference between the values of streamer velocities,
which are obtained by assuming the first and the fourth cases,
is about 40% at high electric fields. In addition, for the values
of E0/n0 around 100 Td the streamer velocity determined by
using the gas phase transport properties, which are scaled to
liquid density, is about 2.5 times lower than the streamer
velocity obtained in the first case for representing the inelastic
energy losses. This difference is even more pronounced at
lower electric fields. The differences between the calculated
velocities of negative streamers are reflections of the

corresponding differences between the first Townsend coef-
ficient (see figure 9).

5. Conclusion

We have investigated the influence of the inelastic energy
losses in liquid xenon on the transport properties of electrons
and the dynamics of negative streamers, by using Monte
Carlo simulations and the 1.5 dimensional fluid model. Four
cases for representing the inelastic energy losses in liquid
xenon are discussed in light of previous spectroscopy and
photoconductivity experiments. These cases are employed for
determining the transport properties of electrons by using
Monte Carlo simulations. Our Monte Carlo code has been
modified by including three effective scattering processes,
which give a good representation of the coherent scattering of
low energy electrons in non-polar liquids. The validity of our
Monte Carlo code has been tested by calculating the mean
energy, the drift velocity and the components of the diffusion
tensor for electrons in the Percus Yevick model liquid. Our
benchmark results for the Percus Yevick model are in an
excellent agreement with those calculated by Tattersall et al
[57]. We have determined the values of mean energy, drift
velocity, diffusion tensor and the first Townsend coefficient
for electrons in liquid xenon. Our results are in a good
agreement with those of Boyle et al [34], as well as with the
available experiments [56, 88, 89, 94]. However, since our
calculations of transport properties span a range of the
reduced electric field much wider than that investigated in
experiments, one should be cautious to trust the calculated
data outside the range covered in the experiments. This
should be noted since we have approximated the cross
sections for inelastic scattering and interband transitions of
electrons in liquid xenon by using the cross sections for

Figure 15. The spatial profiles of the electron number density ne and the reduced electric field E/n0 for three different values of the external
electric field E0. The displayed spatial profiles are determined by assuming all representations of the inelastic energy losses considered in the
present work. All profiles are shown at 73 ps.

Figure 16. The streamer velocities calculated by assuming all
representations of the inelastic energy losses considered in the
present work. The streamer velocity obtained by using the gas phase
transport data which is scaled to liquid density is displayed for
comparison, as well as the bulk drift velocity of electrons, which is
determined for the first case of representing the inelastic energy
losses.
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electron scattering on an isolated xenon atom. In addition, we
have neglected the electron phonon scattering, and we did not
take into account the structure of the conduction band since
we have approximated each electron by a free particle moving
between individual collisions. It has been shown that there is
a significant difference between the values of the first
Townsend coefficient determined by employing different
representations of the inelastic energy losses. The transport
properties of electrons obtained in our Monte Carlo simula-
tions, are used as input data in our simulations of the streamer
dynamics. These simulations are based on the first order fluid
model, and they follow the transition of an electron avalanche
into a negative streamer and the subsequent streamer propa-
gation. The results of these simulations strongly depend on
the number of excitations which are included in the model.
The intensity of the streamer velocity in the case in which all
excitations are neglected exceeds the corresponding intensity
in the case in which all excitations are included by about 40%,
at high electric fields. This difference is in agreement with
the difference in rates for ionization in these cases. Moreover,
the value of the streamer velocity determined by using the
transport properties from the gas phase, which are scaled to
liquid density, is over 2.5 times lower than the streamer
velocity calculated in the case in which all excitations are
neglected. Furthermore, the speed of transition of an electron
avalanche into a streamer in the rescaled gas phase is sig-
nificantly lower than in the other cases investigated in our
study. This difference is especially pronounced for the
reduced electric fields lower than 100 Td. These results
indicate that the correct representation of the elementary
scattering processes in liquids is of crucial importance for the
modeling of the electron transport and the electrical dis-
charges in the liquid phase.

Our work concerning the modeling of electron transport
in liquid xenon can be extended by employing ab initio cross
sections for inelastic scattering and interband transitions in the
liquid phase after these cross sections are determined. Further
improvement of the model would be achieved by taking into
account electron phonon scattering and trapping of electrons
in density fluctuations as well as by going beyond the free
electron approximation by considering the structure of the
conduction band.

The extension of our streamer calculations by investi-
gating the propagation of positive and negative streamers in
a point to plane geometry and by taking into account non-
locality of the electron mean energy will be covered in
future work. These calculations can be further generalized
by considering the formation of gaseous filaments due to
heating of the liquid, which is important on the nanosecond
time scale.
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