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Abstract. In sexual population, recombination reshuffles genetic variation and
produces novel combinations of existing alleles, while selection amplifies the
fittest genotypes in the population. If recombination is more rapid than selection,
populations consist of a diverse mixture of many genotypes, as is observed in
many populations. In the opposite regime, which is realized for example in the
facultatively sexual populations that outcross in only a fraction of reproductive
cycles, selection can amplify individual genotypes into large clones. Such clones
emerge when the fitness advantage of some of the genotypes is large enough that
they grow to a significant fraction of the population despite being broken down by
recombination. The occurrence of this ‘clonal condensation’ depends, in addition
to the outcrossing rate, on the heritability of fitness. Clonal condensation leads to
a strong genetic heterogeneity of the population which is not adequately described
by traditional population genetics measures, such as linkage disequilibrium.
Here we point out the similarity between clonal condensation and the freezing
transition in the random energy model of spin glasses. Guided by this analogy
we explicitly calculate the probability, Y , that two individuals are genetically
identical as a function of the key parameters of the model. While Y is the analog
of the spin-glass order parameter, it is also closely related to rate of coalescence
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in population genetics: two individuals that are part of the same clone have a
recent common ancestor.

Keywords: models for evolution (theory), population dynamics (theory)
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Genetic diversity is the fodder for natural selection and the fuel of evolution. It is generated
by mutations and by recombination, which reshuffles genomes and thereby accelerates
the exploration of the space of genotypes. The latter consists of all of the 2L possible
combinations of the genetic variants, a.k.a. alleles, present at L (biallelic) polymorphic
loci. Of course the number of polymorphic loci, L, itself changes as new mutations arise
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forming new polymorphisms while ‘older’ polymorphisms disappear from the population.
The population itself consists of N individuals, which sample only a small fraction of
the possible genotypes, i.e. N � 2L. The dynamics in genotype space is therefore highly
stochastic.

Of particular importance are those genetic polymorphisms that affect the fitness of
individuals, the fitness being defined as the expected number of offspring in the next
generation. Selection on its own would amplify the number of high fitness individuals and
condense the population into a few ‘clones’ comprising a large fraction of the population.
In populations of sexually reproducing organisms, the growth of such clones and the
subsequent decline of genetic diversity are checked by recombination. Two parents, if
chosen from different clones, produce offspring that are distinct from either parent.
In obligate sexually reproducing species, the formation of clones is prevented since
reproduction is coupled to recombination and no parent can produce genetically identical
offspring. Many species, in particular microbial species and plants, can reproduce both by
clonal reproduction (e.g., budding in yeast, selfing or vegetative reproduction in plants)
or by sexual propagation. Such facultatively sexual species display a great variety in their
mode of propagation, the frequency r of outcrossing, and the heritability of fitness. The
latter is very important in sexual populations, as it determines to what extent recombinant
offspring benefit from the same fitness advantages that made their parents successful.

The aim of this paper is to describe quantitatively the competing tendencies of natural
selection and recombination with regard to genetic diversity, focusing on facultatively
sexual organisms. The competition of natural selection with recombination is the dominant
mechanism of evolution on relatively short time scales, on which mutational input is
negligible compared to diversification by recombination. This situation is particularly
relevant to adaptation following a major outcrossing event, or within a so called hybrid
zone, where diverged genotypes have come together to generate a hybrid population. As
this hybrid population continues to breed within itself, it can give rise to a bout of rapid
adaptation, as beneficial alleles from both original populations are combined to form novel
fit genotypes that spread within the hybrid population [34].

We will focus on the probability, Y , that two random individuals sampled from
the population have the same genotype, i.e., are clones of each other. This quantity is
important for population genetics, since it characterizes genetic diversity (its inverse is
a measure of the number of dominant clones) as well as the dynamics of coalescence.
Whenever two individuals are part of the same clone, they share a recent common ancestor,
such that Y is proportional to the rate of pair coalescence. In the canonical theory of
neutral coalescence, this rate is equal to the inverse population size. We will find here
that Y , and with it the rate of coalescence, is determined by the clonal structure rather
than the population size at low outcrossing rates.

Much of our analysis is presented in the context of a facultatively sexual population,
where the evolving entities are individuals and their genotypes. Note, however, that some
of our considerations also hold for contiguous segments of chromosomal DNA that are short
enough to undergo only infrequent recombination even in obligatory sexual reproduction.
In that case, we would be interested in the probability of a given chromosomal segment to
be identical for a random pair of individuals drawn from the population. In this context, Y
is the homozygosity of the population at this extended locus at which many different alleles
segregate (this is of course a much weaker condition than clonal relation of whole genomes).
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A complementary view of this probability relates it to the ‘haplotype diversity’, i.e., the
number and population distribution of distinct genomic sequences for the chromosomal
segment in question. We shall return to this important question in the discussion.

In an earlier publication [29], we have shown that clones are absent in the so called
quasi-linkage equilibrium (QLE) ‘phase’ corresponding to frequent outcrossing limit but
appear in a regime of small outcrossing frequency r < rc, with rc depending on the
complexity of the fitness landscape (i.e. the extent of fitness additivity) and weakly
dependent on N . We will review this finding and present a more detailed analysis of the
time dependence of this condensation phenomenon, as well as its quantitative dependence
on fitness additivity and hence heritability. Furthermore, we also study the extent of
clonal condensation in a steady state where the fitness distribution is moving towards
higher fitness at a constant velocity. We will put these results into the context of the
random energy model (REM) of Statistical Physics, introduced and solved by Bernard
Derrida [8, 13, 23]. In fact, Y is closely related to the Parisi order parameter and the
onset of clonality is closely related to the spin-glass transition observed in simple models
of disordered media such as the REM.

Below, we will first draw the analogy between the dynamics of selection in finite
populations and the REM. This analogy is particularly simple for r = 0. Whereas the
condensation transition in the REM occurs below a certain critical temperature, the
transition to clonal population structure occurs beyond a certain critical time, t > tc(N).
Hence the population genetic analog of temperature will be the inverse time. We shall
then generalize the model in order to include (facultative) recombination and fitness
landscapes with varying degrees of epistasis, i.e., genetic interactions. The results for
mixed epistatic and additive models enables us to set the analysis into the context of the
‘traveling wave’ approximation, which has recently emerged as a powerful representation of
adaptive population dynamics in genetically diverse populations [6, 9, 14, 32, 38, 42]. Our
results therefore provide insight into how recombination and epistasis affect the dynamics
and structure of adapting population waves and define conditions under which genetic
diversity is maintained or lost.

1. Natural selection and the random energy model

In the absence of recombination or mutation, the frequency of any individual genotype
increases if its fitness lies above the population mean and decreases otherwise. Identifying
fitness with relative growth rate and ignoring stochastic effects, the expected number of
individuals ni(t) with genotype gi and fitness Fi obeys:

ṅi(t) = (Fi − 〈F 〉t)ni(t)⇒ ni(t) = eFit−
∫ t
0 dt′〈F 〉t′ , (1)

where ṅi(t) is the time derivative of ni(t) (we assume ni(0) = 1) and the mean fitness 〈F 〉t
is defined by averaging over the whole population. Defining the rate of growth of clones
by differential fitness (relative to the population mean) ensures constant population size:∑

ini(t) = N . Since the mean fitness term is shared by every genotype in the population,
the frequency of a particular genotype is given by

νi(t) =
eFit∑
j eFjt

= Z(t)−1 eFit, (2)

doi:10.1088/1742-5468/2013/01/P01008 4
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where Z(t) is a time dependent normalization constant known as partition function.
Hence the distribution of clones in the population has the Boltzmann form, where inverse
time plays the role of temperature. The dynamics of the population will now depend
on the initial distribution of fitness values Fi. In the generic case where fitness depends
on many loci, each one giving a small contributions to fitness, the density of fitnesses
ρ(F ) = N (0, σ2) is approximately Gaussian (with zero average and variance σ2) and the
statistics of clones in the populations is identical to that of the REM [8]. For small
t population averages are dominated by the vicinity of the peak of ρ(F ), with many
individual genotypes contributing. However, for t > tc, the dominant contribution shifts
all the way to the leading edge Fmax ≈ σ

√
2 logN , which corresponds to the maximum

fitness sampled from the Gaussian ρ(F ) in a population of size N . This means that with
increasing time, i.e., decreasing ‘effective temperature’, the population shifts to fitter and
fitter genotypes and eventually, for t > tc, ‘condenses’ into the fittest. This condensation
phenomenon manifests itself in a non-negligible probability Y that two randomly chosen
individuals from the population have the same genotype. The latter is equal to the average
squared genotype frequency in the population at time t. The average participation ratio
is obtained by averaging over the fitness values {Fi} of the N initial genotypes

〈Yt〉 =

〈∑
i

(
ni(t)∑
j nj

)2〉
{Fi}

= N

∫ ∞
0

dz z

∫
dFi ρ(Fi)n

2
i (t) e−zni(t)

[∫
dFj ρ(Fj) e−znj(t)

]N−1

, (3)

where we have used the integral representation of Ω−2 =
∫∞

0 dz z e−zΩ and the fact that
the Fi are the i.i.d. random variables sampled from ρ(F ). This calculation is carried out
explicitly in [23, 24] and leads to the following quantitative result: in the limit of large
populations, 〈Yt〉 is given by

〈Yt〉 =

O(N−1) t < tc

1− tc
t

t > tc,
(4)

with tc ≈ σ−1
√

2 logN . Figure 1 shows how 〈Yt〉, measured in a computer simulation (see
below), increases in time and compares to the REM prediction. Note that the sharp
transition exhibited in (4) is realized only in the limit of large logN , which is hard
to achieve both in reality and in a numerical simulation. In both cases one expects to
find a crossover rather than a sharp transition. Nevertheless, considering the idealized
N →∞ limit provides a very useful scaffold for the analysis, and the REM also allows
us to compute the 1/ logN corrections and therefore determine the detailed nature of the
crossover.

Recombination and heritability

Sexual reproduction mixes the genetic material from two parents and thereby produces
new genotypes from existing genetic variation. To account for recombination, we modify
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Figure 1. The participation fraction 〈Yt〉 in the absence of recombination as a
function of time. For each N , the time axis is rescaled by tc = σ−1

√
2 logNσ. The

fitness variance σ2 = 0.0025 and is included in the expression for tc to account
for stochastic effects. The solid black line shows the N →∞ asymptotic result
predicted by the REM (equation (4)). The convergence of the numerical results to
this asymptotic result with increasing N is slow because it is governed by logN .
Each curve is averaged over 1000 runs.

the equation describing the evolution of genotypes as follows:

ṅ(g) = (F (g)− 〈F 〉)n(g) + r

N−1
∑
g′,g′′

K(g|g′, g′′)n(g′)n(g′′)− n(g)

 (5)

where n(g) is the number of individuals with genome g, and K(g|g′, g′′) accounts for the
probability that genotype g is assembled by recombination from the parental genotypes g′

and g′′. In the absence of recombination, the only relevant characteristic of a genotype is
its fitness, and we could study the evolution of the population along the fitness coordinate
instead of on the hypercube of possible genotypes. To achieve a similar simplification
with recombination we need to know how the fitness of recombinant offspring relates to
that of the parents to map equation (5). The correlation between parental and offspring
traits is known as heritability and depends on the underlying genetic architecture. If a
trait depends on many loci in the genome in an additive manner, i.e., different loci make
independent contributions to the trait, the trait value of offspring will be approximately
Gaussian distributed around the parental mean. Such traits are called highly heritable
since the correlation between trait values of parents and offspring is high. Conversely,
if a trait depends on specific combinations of alleles at many loci (epistasis), these
combinations will be disrupted with high probability in sexual reproduction. Such traits
have a low heritability in sexual reproduction since the correlation between parents and
offspring is low.

The trait we are mainly interested in here is fitness, which in general involves many
phenotypes and depends on the environment. We shall set aside the issues associated
with fluctuating environment and possible time dependence of selection, and focus
on how fitness depends on the genotype. As already noted, the genotype space is a

doi:10.1088/1742-5468/2013/01/P01008 6
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Figure 2. Heritable and non-heritable contributions to fitness. Left: the two
panels illustrate heritable and non-heritable fitness functions. The black Gaussian
represents the density of states over all 2L possible genotypes, while the arrows
indicate the fitness of parents P1,2 sampled from this density of states. For additive
fitness functions (top), the fitness distribution of recombinant offspring of parents
P1,2 (red curve) is centered around the mid-parent value, i.e., fitness is heritable.
For completely epistatic fitness functions (bottom), the offspring fitness is a
random sample from the density of states and therefore not heritable. Right:
fitness is a sum of additive (heritable) and epistatic (non-heritable) components
and selection amplifies individuals with large F = A+E. In sexual reproduction,
only the additive component of fitness is heritable, so only the additive fitness
increases in time with rate v.

high dimensional hypercube, g = (s1, . . . , sL), and for present purposes, the fitness is a
complicated (but fixed) function of the genotype parameterized as

F (g) = f0 +
∑
i

fisi +
∑
i<j

fijsisj + · · · , (6)

where the terms fisi define the additive contribution of locus i to fitness, while higher
order terms correspond to epistatic interactions. The relation of the fitness of an offspring
relative to that of its parents and the density of states, i.e., the distribution of fitness over
all possible genomes, is illustrated in figure 2.

The higher the order of the interactions, the less likely it is that a particular set
of loci that contributes to one parent is inherited uninterrupted. As a consequence, the
heritability of interaction terms goes down with increasing order. Interaction terms of high
order are essentially independent of the parents. This is reminiscent of high order spin-glass
models, where the energies of any two configurations that differ at a macroscopic number
of spins are uncorrelated. The large p limit of such p-spin glasses is the random energy
model, where the energy of each configuration is an independent draw from a Gaussian
distribution [8, 13].

2. The model

In general the genetic architecture of fitness is expected to be complex, with additive
contributions as well as epistatic contributions of various orders. It is very instructive,

doi:10.1088/1742-5468/2013/01/P01008 7
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though, to consider a simplified model that includes a heritable component and a random
epistatic component. Specifically, let us assume that fitness can be decomposed into an
additive component A and an epistatic component E. If two individuals with fitness
F1 = A1 +E1 and F2 = A2 +E2 produce an offspring, its additive component, A, is drawn
from a Gaussian with variance σ2

A/2 around the parental mean (A1 + A2)/2, while its
epistatic component, E, is independent from that of the parents and is drawn from a
Gaussian centered around 0 with variance σ2

E. Hence the recombination kernel of this
model depends only on the additive fitness of the parents

K(A,E|A1, A2) =
1√

2πσEσA
exp

[
−(A− (A1 + A2)/2)2

σ2
A

− E2

2σ2
E

]
. (7)

For much of the analysis below, we will simplify this model even further and assume that
the additive fitness of recombinant genotypes is independent of that of the parents and
simply drawn from a Gaussian with variance σ2

A centered around the population mean 〈A〉.
This distribution is expected if the distribution of A in the population is approximately
Gaussian. This simplified model is easier to analyze, while displaying the same qualitative
behavior, as has been checked by numerical simulations. The joint distribution of A and
E in the population then evolves according to

Ṗ (A,E) = (F − 〈F 〉 − r)P (A,E) +
r

2πσEσA
exp

[
−(A− 〈A〉)2

2σ2
A

− E2

2σ2
E

]
. (8)

The ratio of σA and σE define the extent of fitness heritability in the process of
recombination. We define ‘heritability’, h, which will be one of the key independent
parameters of the model, as:

h2 = σ2
A/(σ

2
A + σ2

E). (9)

To illustrate the behavior of the model at different recombination rates and different
heritabilities, we implemented it as a computer simulation. The computer program keeps
track of clones with fitness Ai and Ei and population size ni. At each generation, the size
of a clone is updated by a Poisson distributed number with mean ni e

Fi−〈F 〉−r+C , where
C = (1−N/N0) is a density regulating term. A clone is deleted if its size is 0. In addition,
at each generation, Nr new clones of size 1 are seeded, with additive fitness drawn from
a Gaussian N (〈A〉, σA) and epistatic fitness drawn from N (0, σE). Alternatively, we can
impose a ‘velocity” of the additive fitness by drawing its value from N (vt, σA) instead of
N (〈A〉, σA).

Due to the stochastic nature of reproduction, the majority of all initial genotypes
will rapidly die out, even if very fit. Of the N initial genotypes, only a fraction ∼ σ
remains, where σ2 = σ2

A + σ2
E is a measure of the typical strength of selection. Similarly,

of the clones produced by recombination, only a fraction σ ‘establishes’. Those clones
that do establish are on average larger than the deterministic expectation by a factor of
σ−1. We will neglect these factors in most of the formulas below. The dominant effect
of this stochasticity can be accounted for by rescaling N to σN inside logarithms. We
will reinstantiate this correction in comparisons to simulations when necessary. These
stochastic effects are of minor importance for the phenomena we study here since they are
overshadowed by the randomness inherent in the fitness and seeding time of new clones.

doi:10.1088/1742-5468/2013/01/P01008 8
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Figure 3. The distribution and dynamics of additive and epistatic fitness in the
population at moderate recombination rates r = σ. Panel A: additive fitness
dominates (σ2

A = 0.8σ2, σ2
E = 0.2σ2). Panel B: epistatic fitness dominates (σ2

A =
0.2σ2, σ2

E = 0.8σ2). In both panels, σ2 = 0.0025 and N = 105.

3. Results: structure of adapting populations

Depending on the rate of recombination r and the degree of fitness heritability h, the
model formulated above exhibits very different behaviors. Before we present a formal
characterization of the population structure and the dynamics of evolution, it is instructive
to discuss the dynamics of the model as observed in simulations.

Figure 3 shows the distribution of additive and epistatic fitness at two different
times for scenarios where additive (left) or epistatic (right) fitness dominates. If fitness is
predominantly additive, the population adapts and moves towards high additive fitness
as long a new genotypes are generated by recombination. The velocity is given by the
variance of the population along the additive direction. If most of the variance is along
the epistatic direction, as in the right panel, the adaptation of the population is much
slower. In addition, large fractions of the population tend to be condensed into a small
number of clones, as we will discuss at greater length below. As the variance along the
additive direction decreases to zero, so does the velocity.

The population structure and dynamics at different recombination rates are illustrated
in figure 4. The figure shows the composition of the population as a function of time for
different recombination rates and different heritabilities. In each panel, the population was
initialized as a diverse sample from the density of states and was subsequently allowed to
evolve via selection and recombination. Hence each panel shows a transient, which gives
way to a steady state behavior. Each genotype in the population is assigned a specific
color, and individuals are ordered according to fitness in each time slice, with the fittest
individuals at the bottom.

The left column of figure 4 shows evolution governed by an all additive fitness function
(σA = σ, σE = 0) for different recombination rates. In this case, the population moves
steadily to higher fitness since new genotypes, fitter than their parents, are constantly
produced. At low recombination rates, the population consists of a small number of clones
that arise at the high fitness edge (bottom part of the panel), grow as time progresses, and

doi:10.1088/1742-5468/2013/01/P01008 9
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Figure 4. Structure of population for different recombination rates and
heritabilities; see text for discussion. In all panels, σ2 = 0.0025 and N = 104.

shrink again once they fall behind in fitness (i.e., when they move towards the center of
the panel). As the recombination rate is increased to values comparable to σ, large clones
cease to exist. Most of the population is made from nearly unique genotypes that are
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short lived. This pattern becomes even more pronounced at larger recombination rates.
The high recombination limit of this dynamics can be understood in mean field theory
(MFT), described in section 3.1. The low recombination limit is described in greater detail
in section 3.4.

The right column of figure 4 shows the opposite limit, when fitness is not heritable
but completely epistatic, corresponding to a fitness function with random high order
interactions. In this case, we do not expect the population to move towards higher
fitness indefinitely since the epistatic fitness is non-heritable. At low recombination rates,
we expect that the fittest genotype in the population will grow while generating new
recombinants distributed around zero fitness. With the growing genotypes, the mean
epistatic fitness will increase until the selection on the fittest genotype, Emax−〈E〉, equals
the rate at which it produces recombinants. This behavior is clearly seen in all four panels
with h2 = 0 on the right. Since the recombination rate increases from top to bottom,
the size at which the fittest genotype stabilizes decreases, while the ‘dust’-like fraction
of the population that consists of short-lived unfit recombinants increases. Occasionally,
recombination generates exceptionally fit genotypes, which have a chance of replacing the
previous record holder. As time progresses, these records become rarer and rarer according
to the well known results on record dynamics5. The clone structure and its dynamics for
the fully epistatic case will be discussed in section 3.2. The high recombination limit can
again be understood within mean field theory; see section 3.1.

The center column of figure 4 shows the clone structure and dynamics of a case
of intermediate heritability. At low recombination rate, the population is dominated by
clones, and clones exist even when the additive population is only dust. However, unlike the
h2 = 0 case, no clone dominates forever, but new clones are continuously established. The
velocity in this regime will depend critically on how often such new clones are produced
and on how much they advance the additive fitness. We will investigate this case below
in section 3.4.

3.1. Quasi-linkage equilibrium (QLE) and its breakdown

At large r, this model admits a factorized solution P (A,E) = ϑ(A, t)ω(E) with

ϑ(A, t) =
e−(A−σAt)2/2σ2

A√
2πσ2

A

and ω(E) =
r

r − 〈E〉 − E
e−E

2/2σ2
E√

2πσ2
E

(10)

derived in [29]. This solution travels towards higher additive fitness with a velocity
equal to the variance of the additive fitness of recombinant offspring, while the epistatic
fitness has a steady distribution, where 〈E〉 adjusts itself to normalize the distribution.
This factorization is a hallmark of quasi-linkage equilibrium [17, 27, 43], where additive
components evolve independently, while epistatic components are in a quasi-steady
balance between selection and recombination. However, this factorized solution breaks
down as soon as there are individuals with epistatic fitness larger than r + 〈E〉. In that
case this solution is no longer normalizable, and additive and epistatic components cease
to be independent.

5 Note that a slightly different dynamics is observed if recombination of individuals with the same genotype
do not produce a novel genotype. In this case the effective outcrossing rate of large clones goes down and the
population quickly condenses into a unique clone.
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Figure 5. The population consists of mediocre recombinant genotypes (dust) and
leading clones. A sketch of the population structure, indicating the smooth quasi-
static distribution ω(E) at E < 〈E〉+r and the exponentially growing clones with
E > 〈E〉+ r.

Figure 5 illustrates this condensation behavior. The smooth distribution ω(E) is a
deformed Gaussian which diverges at E = r+〈E〉. Beyond r+〈E〉, the population consists
of growing clones whose size depends on when and where they were seeded.

In the following we will characterize the population structure and study how the
velocity in the direction of increasing additive fitness depends on parameters. We will
begin by studying the purely epistatic case with recombination, which extends the REM by
continuous seeding of novel recombinant genotypes. We will then study the condensation
phenomenon in the presence of additive fitness, where the population forms a traveling
pulse in fitness.

3.2. Clonal condensation for zero heritability

Suppose we start with a diverse sample of size N from the distribution of epistatic fitness
and inject new recombinant genotypes with rateNr. After a time t, the population consists
of N initial clones and a Poisson distributed number of new clones. A clone of age τi and
fitness Fi = Ei will have approximately size

ni(t) = e
(Ei−r)τi+

∫ t
t−τi

dt′ 〈E〉t′ , (11)

where the mean fitness 〈E〉t′ can be thought of as a Lagrange parameter that keeps the
overall population size constant. To calculate 〈Yt(r, h)〉 we have to average over the fitness
of the N initial clones and over the fitnesses and seeding times of all subsequently produced
recombinant genotypes:

〈Yt(r, h)〉 =

∫
dz z

[
NB0(z) +

∞∑
k=1

e−Nrt

k!
kBr(z)

]
[1− C0(z)]NCr(z)k−1, (12)

where B0(z) is the average of n2
i (t) e−zni(t) over the Ei of initial genotypes (note that

‘initial’ means that τi = t). Br(z) is the corresponding average over recombinant clones,
which in addition are averaged over their age τi; see appendix A for derivation. Similarly,
C0(z) and Cr(z) are averages of e−zni(t) over the Ei and τi. The sum over k—the number of
recombinants generated in time t—can be performed easily. These integrals are evaluated
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in the appendix B in the limit of large N . One obtains an approximation

〈Yt(r, 0)〉 ≈ exp[−N e−
√

2 logN [1−(r/rc)]tσ] (13)

valid for r ∼ rc, with

rc ≈ σ
√

2 logN. (14)

We observe that the participation ratio substantially deviates from zero only for r < rc

and only upon reaching t > tc(r), where for r ≈ rc

tc(r) = σ−1

√
1
2

logN

1− r
rc

=
tc(0)

2

rc

rc − r
. (15)

This provides us with estimates of the critical time of condensation tc(r) and the critical
rc below which condensation occurs. Condensation is delayed compared to the case of
r = 0 and the critical time (analogous to inverse critical temperature) diverges as the
recombination rate approaches its critical value rc. Of course, this divergence only occurs
in the limit of

√
logN going to infinity. In practice, with realistic population sizes N , one

observes not a transition, but merely a crossover between different regimes of behavior.
More elaborate expressions for tc and rc at finite N can be found in appendix B. Note
that the values of tc and rc themselves scale with the square root of the logarithm of N .
〈Yt(r, 0)〉 is shown in figure 6(A) for different recombination rates. With increasing

recombination rate, the early plateau of 〈Yt(r, 0)〉 is reduced and condensation is delayed.
Each individual run condenses rapidly once the dominant clone is large enough that it often
recombines with itself, which leaves the genotype intact. Also, the lack of condensation
for r > rc is clearly seen. Figure 6(B) shows the inverse time to condensation for different
recombination rates and population sizes, confirming equation (15) for r ≈ rc. This
transition with increasing r was identified in [29]. Intuitively, the divergence of the time
to condensation is due to the fact that the growth rate of best genotypes decreases with
increasing recombination load r. As soon as E − r is smaller than zero for all existing
genotypes, all clones are short lived and no condensation can occur. Similar behavior has
been observed in populations with heterozygote advantage or disadvantage [1, 11].

Population dynamics for r < rc, including t > tc, has the nature of a ‘records
process’ [20, 40]. As time progresses, more and more genotypes are sampled from the
density of states and tested by selection. As a consequence, the population will come
across fitter and fitter genotypes, resulting in a record process with Nrt trials. Even if
initially no genotype with E − r > 0 is present, such a genotype will eventually be found
and result in condensation. On the other hand, any finite population will eventually reach
a final ‘record’ (with fitness Ef), giving rise to the clone that will eventually take over
the whole population. This is because a clone rapidly fixates once it is large enough to
frequently recombine with itself. To prevent its fixation a new record would have to be
created with the fitness advantage ∆E > τ(Ef − r)2/ logN within the time delay of τ ,
which is very unlikely beyond a certain Ef .

3.3. Traveling solutions for additive fitness

In the opposite limit when h2 = 1, the population moves towards higher fitness with a
velocity that is given by the additive variance v = σ2

A for sufficiently large r. It will be
useful to parameterize the ratio between the velocity v and the scale of selection σ2 as
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Figure 6. Panel A shows 〈Yt(r, 0)〉 for different ratios of r/σ for fully epistatic
fitness functions as a function of time relative to the critical time with r = 0. The
curves shown are averages over many runs which exhibit substantial stochasticity.
Recombination delays condensation and reduces 〈Yt(r, 0)〉 early on. The model
used to produce the data in this plot accounts for the fact that recombination
of identical parents does not produce a novel genotype, which results in rapid
condensation once one clone becomes macroscopic. Parameters N = 16 000,
σ2 = 0.005, and h2 = 0. Panel B shows how the condensation time tc(r) diverges as
r approaches rc ≈ Emax ≈ σ

√
2 logNσ. For times and recombination rates below

the lines, the population is condensed into clones; above the lines, no genotype
is populated by a macroscopic fraction of the population. Here, tc(r) is defined
empirically by 〈Ytc(r)〉 = 0.1. The solid black line indicates the prediction of
equation (15) for r ≈ rc.

γ = v/σ2. At high recombination rates, we have γ = h2, while we generally expect γ < h2

at low recombination rates. In contrast to the case h2 = 0, no aging dynamics is observed
for h2 > 0. Instead, old genotypes are constantly replaced, and dominant genotypes in
the population have a finite characteristic age. Hence the initial genotypes are rapidly
forgotten and we can restrict the analysis to recombinant genotypes.

Genotypes seeded at the high fitness nose of the population distribution can grow
large and dominate the participation ratio 〈Y 〉. Since 〈Y 〉 is closely related to the rate of
coalescence, it is instructive to calculate 〈Y 〉 explicitly assuming v = σ2 before considering
the case v < σ2 at low r or h2 < 0.

In the steady state, a clone is specified by its age τj and its initial fitness Aj. Assuming
v = σ2, we then find

nj = exp

[
(Aj − r)τj −

vτ 2
j

2

]
. (16)

To evaluate 〈Y (r, 1)〉, we have to evaluate the integrals Br(z) and Cr(z) that appear in
equation (12) and are defined in the appendix A, see equation (A.9). The integrals involve
averaging over the initial fitness Ai and all possible ages τi. For h2 = γ = 1, one finds
Cr(z) ≈ z because relatively young and small clones dominate. In contrast, Br(z) has a
significant contribution from rare old clones, which dominate because of their large size
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Figure 7. Panel (A): the rescaled average participation fraction 〈NY (r)〉 as a
function of r/

√
2σ2 logNσ. For large r, we find N〈Y (r)〉 ∼ 1, while N〈Y (r)〉 � 1

for small r. The dashed lines indicate the prediction by equation (18), which is
expected to be valid for r < (

√
2 − 1)

√
2σ2 logN . The theory curves are scaled

such that Y = N−1 at the crossover. Panel (B) plots the reduction of velocity
observed in simulations against the numerical solution of equation (19) where
γ = v/σ2.

(through the n2
i factor). The evaluation of the integrals is detailed in appendix C with the

result equation (C.5). We obtain

Br(z) ≈ α + z−1 exp

[
− r
σ

√
2 log z−1 − r2

2σ2

]
Γ

(
− r

σ
√

2 log z−1

)
. (17)

The first term is of order 1 and corresponds to the contribution of young clones. Its exact
value depends on the details of the stochastic dynamics, such as the offspring distribution.
The second term is the contribution from old large clones. The participation ratio therefore
becomes

〈Y (r, 1)〉 ≈ N
∫ ∞

0

dz Br(z) e−Nz

∼


αN−1 r/σ > (

√
2− 1)

√
2 logNσ

exp

[
− r
σ

√
2 logNσ − r2

2σ2

]
r/σ < (

√
2− 1)

√
2 logNσ .

(18)

For small r, 〈Y (r, 1)〉 does not scale as N−1. In other words, the larger the population is,
the larger are the clones it is composed of, and those largest clones dominate 〈Y 〉. This
result is in agreement with arguments made for rapid coalescence in facultatively sexual
populations in [30, 36, 37]. Figure 7(A) shows 〈NY (r)〉 as a function of r/

√
2σ2 logNσ.

As soon as r/
√

2σ2 logNσ < 0.4, Y (r) increases and no longer scales with N , as predicted
by the mean field calculation above. The figure also shows the explicit expression in
equation (18) as dashed lines. Note, however, that the calculation of 〈Y (r, 1)〉 involved
several approximations where

√
2 logN was assumed large. As a result, the accuracy

of the prefactor is low, and we have dropped all non-exponential parts, while enforcing
〈Y (r, 1)〉 = 1/N at the crossover.
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The derivation above is valid for rσ−1
√

2 logNσ > 1. For smaller r, the velocity drops
below the high recombination limit, γ = 1, and the fitness distribution in the population
stops being Gaussian. In this regime, the velocity has to be calculated self-consistently by
matching the rate of production of new extremely fit clones to the overall velocity of the
population. This problem has been studied by Rouzine and Coffin [35, 37] in the context
of HIV evolution.

A simplified version of the arguments of Rouzine and Coffin [35] is given in appendix D.
With γ = v/σ2, we find

1− γ =
log[σ

r

√
2(1− γ)]

log[σ
r

√
2(1− γ)] + log[γ−1rN ]

. (19)

This implicit equation for γ can either be solved numerically or, in the case of very small r,
iteratively. The result is similar to that obtained by Rouzine and Coffin [35]; differences are
due to the difference in the model used. The numerical solution is compared to simulation
data in figure 7(B). Convergence with increasing N is slow and equation (19) has a solution
only for small r, for which we have little data.

The velocity of the traveling wave falls below σ2 as soon as a few large clones
dominate the population. In this case, not only Br(z, h) but also Cr(z, h) are dominated
by those large clones, and 〈Y (r, h)〉 behaves differently. We show in the appendix that
〈Y (r, h)〉 ∼ 1 − γ is of order 1 (see equation (C.7)). This is in agreement with [35], who
found that the typical number of large clones is ∼ log rNσ ∼ Y (r, h)−1.

3.4. Traveling wave solutions at intermediate heritabilities

In the high recombination limit, the population moves towards higher fitness with velocity
v = σ2

A regardless of any epistatic fitness contributions. However, we have seen above that
a clonal structure can emerge even in the absence of epistasis if recombination rates are
low enough. Intuition and the simulation in figure 4 show us that this clonal structure is
more pronounced in the presence of epistasis and persists at high recombination rates.

The reason for this behavior is the fact that the fitness variance of the recombinant
offspring is larger than the velocity v = σ2

A < σ2. In this case, fit genotypes grow above
the traveling Gaussian envelope and generate macroscopic clones.

Figure 4 shows that, at low recombination rate and heritability, the population is
always dominated by a few large clones with high non-heritable fitness components, which
produce a large number of (on average) non-fit offspring. Rarely, such offspring are very
fit, and replace their predecessors. The probability that offspring are fitter than their
parents, and with it the velocity, increases dramatically with h2 and r. Conversely, the
size of the fit clones and the participation fraction decreases with h2 and r. Simulation
results for Y and v in the steady state are shown in figure 8 for different values of h2 and
r. In the following, we will rationalize and quantify the observed behavior. To begin with,
we will assume a constant velocity and calculate Y . Again, these calculations are detailed
in appendix C.

After successful establishment, a clone will grow approximately deterministically
according to

ṅj
nj

= Fj − r − vτj − 〈E〉 (20)
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Figure 8. Clonal condensation as a function of recombination rate and
heritability. Panel (A): ratio of the traveling wave velocity to the total variance.
At low heritability and low recombination rates, the average velocity of the
traveling wave is much lower than the additive variance. The equality of velocity
and additive variance promised by Fisher’s fundamental theorem is recovered in
the high recombination limit. Panel (B) shows the corresponding participation
ratio log〈Y∞(r, h)〉. Low velocity goes along with high 〈Y∞(r, h)〉. Panel (C)
shows the coefficient of variation of the time trace Yt, i.e., std(Yt)/mean(Yt). Yt
fluctuates strongly at intermediate recombination rates between the two critical
lines identified in the main text and indicated by the white lines. In all panels,
N = 106 and σ2 = 0.0025. The additive fitness is drawn from a Gaussian centered
around the current mean additive fitness.

where Fj = Aj + Ej is the sum of the additive fitness Aj, measured relative to vt when
the clone was born, and Ej is the epistatic fitness. The advancing mean additive fitness is
accounted for by vτj, while 〈E〉 is the mean epistatic fitness. The size of the clone peaks
at age τ ∗j = (Fj − r̃)/v (where we have defined r̃ = r + 〈E〉) and then decreases until the

clone disappears. The maximal size of the clone is nmax
j ∼ e−(Fj−r̃)2/2v. Since the fittest

genotypes in the population have a fitness
√

2 logN above the mean, they grow larger
than N if

r̃ < r∗ = σ(1−√γ)
√

2 logNσ , (21)

which gives us a first indication of the breakdown of the mean field solution, where v = σ2
A.

We confirm this again by calculating the integrals Cr(z, v) and Br(z, v) in appendix C;
see equation (C.4).

Furthermore, we calculate 〈Y (r, h2)〉 in appendix C and find that 〈Y (r, h2)〉 starts to
be larger than N−1 as soon as

r̃ < rc = σ(
√

2−√γ)
√

2 logNσ. (22)

These two conditions on r̃ define two critical recombination rates rc and r∗ at which
different features of the mean field solution break down. Note, however, that this expression
is not valid close to v = 0, since we have assumed a traveling wave with clones of finite
lifetime.

Both of these two lines seem to play an important role in the behavior of
the population. Between the two lines, we observe a coexistence between condensed
populations and non-condensed populations, which results in large fluctuations of Y (t).
An example trajectory of Y (t) is shown in figure 9. For a limited amount of time, the
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Figure 9. Panel (A) shows a time trace of Yt(r, h) which exhibits strong
fluctuations. For part of the time, the population is dominated by a single
clone and does not adapt. After a while, this clone is superseded and the
population starts moving again. Panel (B): participation ratio for different
heritabilities and different population sizes at an imposed velocity of v = σ2

A
(the transition is sharper if v is adjusted self-consistently). Note that above
the critical recombination rate, 〈Y 〉 is of order N−1. The analytical predictions
(equation (C.7)), up to the prefactor which was fixed to ensure Y (rc, h

2) = N−1,
are shown as black lines. Dotted lines: N = 104, dashed: N = 105, solid: N = 106,
σ2 = 0.0025.

population is condensed with large Y and does not move in the additive direction. It then
becomes unstuck and adapts for a while before getting stuck again. The time average of
Y is dominated by these intermittent condensates in this meta-stable region and is larger
than N−1 as soon as r < rc = σ(

√
2 − √γ)

√
2 logN . Good simulation evidence for the

different transition lines, however, is difficult to obtain because of substantial sub-leading
corrections.

To investigate the model in the absence of this stick–slip behavior, we simulated a
variant of the model where additive fitness is drawn from a distribution that steadily moves
towards higher fitness with velocity v, as is assumed in the calculations. The time averaged
〈Y (r, h)〉 is shown in figure 9(B) and compared to the predicted onset of condensation by
equation (C.7) (black lines).

4. Discussion

4.1. Summary

Correlations between different parts of the genome are usually referred to as linkage
disequilibrium, suggesting that due to genetic linkage, i.e., a high probability of
coinheritance, the allele frequencies at different loci are not independent. Here, we have
used a different measure to characterize correlations in the population. Instead of looking
at correlations between individual loci, we have characterized the distribution of clone
sizes, or equivalently haplotype frequencies, in adapting populations. Our analysis is not
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restricted to additive fitness functions, but we have also analyzed a simple model where
fitness is partly heritable and partly random.

While macroscopic condensation, 〈Y∞〉 ∼ O(1), sets in only for r < σ/
√

2 logNσ in
the absence of epistasis, we observe condensation of the population at recombination
rates of order σ in presence of epistasis. Here, σ is the standard deviation in fitness and
sets the strength of selection. The reason for this behavior is the fact that the velocity
at which the population adapts is smaller than the fitness variance of the recombinant
offspring. The additional epistatic variance allows the seeding of new clones far ahead of
the population mean, which is only slowly catching up. Hence fit clones can out-grow any
traveling Gaussian. At the same time, condensed clones cause the average epistatic fitness
to be significantly greater than 0. Since this epistatic fitness is lost upon outcrossing, the
population has a tendency to partition into a few fit clones with high epistatic fitness and
a large number of recombinant genotypes with random epistatic fitness. This coexistence
between ‘condensed’ and ‘dust’ phases is seen in figure 4 in the panels on the right. As long
as the heritability, i.e., the fraction of additive variance, is larger than zero, the population
seeds new clones even at low recombination rates and the rate of coalescence will be given
by 〈Y 〉 times the characteristic turn-over rate of clones.

In the absence of any additive variance, the observed behavior is quite different. In
this case, the fitness function is completely random (a.k.a. House-of-cards model [18],
or random epistasis/energy model [8, 29]). The only way the population adapts is by
sampling fitter and fitter individuals from the same distribution. In other words, the
population dynamics amounts to a record process where the total number of samples
taken increases as N(1 + rt). Records establish and grow with the rate E − 〈E〉 − r. One
additional complication that is of particular importance in the case h2 = 0 is the fact that
whenever a clone recombines with itself, it does not generate a novel genotype. This has
the tendency to shut off recombination and stabilize clones as soon as they grow large,
resulting in a rapid loss of genetic diversity. In a previous publication [29], some of us have
studied the onset of condensation in a more descriptive manner. Here, we have extended
this work by explicitly calculating Y , both during an initial transient as well as in a steady
state where variance is maintained.

The model we have used is extremely simplistic, and one might wonder about its
relation to real world populations. Nevertheless, it accounts for a number of features
of real populations such as heritabilities between 0 and 1, outcrossing, and mimics a
large number of loci in the sense of quantitative genetics. These features give rise to
qualitatively different dynamical regimes, which will also be observable in more realistic
models. Some facultatively sexual populations are in fact remarkably close to this simple
‘E and A’ model. Many plants and microbial populations are facultative outcrossers. In the
event of outcrossing, a large number of crossovers on many chromosomes produces many
independently inherited genomic segments. HIV, for example, recombines via template
switching following coinfection at an outcrossing rate of a few per cent [3, 28]. In each
of these outcrossing events, roughly 10 crossovers are observed [21]. If populations are
polymorphic at many loci, the resulting offspring distribution is approximately described
by equation (7). We have made a further simplification by assuming that the fitness of a
recombinant offspring is independent of its parents and simply drawn from a comoving
distribution. This assumption is expected to approximate recombination processes where
the offspring and parent fitness decorrelate rapidly over a few outcrossing events, as for
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example in equation (7) [32]. Note, however, that loci close together on the chromosome
decorrelate only slowly.

The other dramatic simplification made above was the partitioning of fitness into
additive and random components corresponding to high order epistatic interactions. More
generally we expect to find epistatic interactions of various orders, which are heritable
to different extents. However, the ‘E and A’ model should not be thought of as a
parameterization of the genotype fitness map, but rather as a partitioning into variance
that can be explained by the best fitting additive model, and the remaining variance [10,
27]. The best fitting additive model is in general time dependent, and the heritability
can change as the allele frequencies change [44]. We know rather little about the genetic
architecture of fitness, which justifies the use of such simple models. In specific scenarios
where the genotype–phenotype map is known, more detailed modeling should be guided
by the general conclusions drawn from the ‘E and A’ model.

The variation that we assume is always present among the recombinant offspring, it
is ultimately fueled by mutations. The balance between the influx of beneficial mutations
and selection in facultatively sexual populations has been investigated in [7, 32]. Even in
sexual populations, the dynamics of mutation can be strongly affected by the selection
through the clonal structure of the population.

4.2. Why is Y important?

The participation ratio, Y , is exactly the probability for two individuals to be genetically
identical. Therefore, it immediately gives a measure of the clonal structure of the
population. If the two genotypes are identical, they have had a common ancestor in
the recent past. Hence, 〈Y 〉 is proportional to the rate of coalescence, and as soon as
〈Y 〉 is no longer proportional to N−1, coalescence is greatly accelerated relative to a
neutral model. It is well known that selection accelerates coalescence since fit individuals
have more offspring and dominate future generations. Recombination tends to reduce
the effects of linked selection since it decouples different regions of the genome. We
have calculated the rate of coalescence in our model, which is set by a balance between
selection and recombination. We have shown that there is a critical recombination rate,
where recombination is overwhelmed by selection and the population structure changes
qualitatively.

In the case of additive fitness functions, we have found that 〈Y 〉 ∼
exp

[
−(r/σ)

√
2 logNσ − r2/2σ2

]
, which is in agreement with earlier work [30, 37]. In this

case, the population consists of clones apparent as little ‘bubbles” in the representation of
figure 4. Any such bubble originates from a common ancestor ∼ σ−1

√
2 logNσ generations

in the past, and 〈Y 〉 is the probability that two individuals belong to the same ‘bubble’.
This bubble coalescent is similar to ideas developed for structured populations [33] or
the fitness class coalescent [45]. Note, however, that the clone size distribution is very
long tailed and the bubble coalescent is not in the universality class of the Kingman
coalescent [19], but possibly of Bolthausen–Sznitman type [4, 25, 30].

Genetic identity between some of the individuals reduces the effect of outcrossing, since
identical parents produce identical offspring. Since the probability of such an occurrence
is equal to Y , the effective rate of recombination in the partly clonal population is
reff = r(1 − Y (reff , h)). Hence, strictly speaking our calculations of Y (r, h) deep in the
clonal condensation regime must be taken through a self-consistency step, which replaces
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r that was hereto an independent variable by a dependent variable reff . This however
would not change our estimates for rc(h) and tc(r, h), which are defined by the point of
first emergence of clones (when Y rises above O(1/N)). Going beyond the MFT description
of recombination, one may define a participation ratio density Υ(F ) in terms of which
Y =

∫
dF Υ(F ), which picks up the fitness dependence of Y : individuals with relatively

high fitness are much more likely to be clonally related.
The significance of Y is not limited to the case of exact genetic identity within clones.

In particular, mutations would introduce additional polymorphic loci into the ‘clones’ that
were the focus of our study. Yet the genetic structure of the population introduced by
clonal condensation still survives: one only needs to distinguish between high-frequency
polymorphisms, which are being reshuffled by recombination as approximated by our
model, and the low-frequency new polymorphisms due to recent (on the time scale of
clonal growth) mutations. The latter would appear on the background that is clonal
with respect to the high-frequency alleles. Thus the ‘clones’ emerging at low r should be
thought of as haplotypes [22] and the ‘clonal condensation’ is the process that suppresses
the number of haplotypes on small length scales.

The participation ratio can be readily generalized to allow for a degree of genetic
distance within a pair of individuals. As currently defined Y = 〈δ(‖g−g′‖)〉 (where ‖g−g′‖
stands for the genetic distance between g and g′). This is immediately recognizable as a
special case of the Parisi order parameter q(x) = 〈δ(‖g−g′‖−x)〉 [23]. The latter therefore
provides an interesting representation of the haplotypic structure of populations. It would
be interesting to understand whether more realistic models of fitness landscapes (with low
order, rather than random epistasis) would generate a more complex hierarchical structure
of q(x) than the simple ‘dust/clone’ dichotomy found in our simply model. The relation
between the REM and Sherrington–Kirkpatrick models of spin glasses [39] could provide
useful guidance and ultimately yield better understanding of haplotype distributions and
recombinant coalescents [16, 26, 41].

4.3. Future directions

The analysis of ‘clonal condensation’ presented above can and should be extended in
several ways. Within the confines of the model considered, one may want to obtain a
better understanding of the ‘mixed phase’ lying between the two transition lines identified
in figure 8. This phase is characterized by large fluctuations in clone size distribution, and
hence in Y , even in the approximation imposing a fixed traveling wave velocity v. In
reality, the population sets its own instantaneous rate of change of average fitness, which
depends sensitively on the fitness of the leading clones and changes with time as new fitness
‘records’ are established by fresh recombinants. We have already described in figure 9
the ‘stick–slip’ dynamics, which is characteristic of the mixed phase regime. (Needless
to say, the existence of the mixed phase region corresponds to the 1st order nature of
the clonal condensation transition for h 6= 0, 1.) A fully quantitative description of this
behavior would require going beyond MFT. So far, attempts to describe fluctuations in the
dynamics of adaptation have been few and far apart [4, 14, 31]: a quantitative description
of the ‘stick–slip’ progress of adaptation would represent a major step forward.

Another necessary extension of the model involves mutational influx. A non-zero
mutation rate would provide an influx of genetic variation and define true statistically
stationary states corresponding to adaptive traveling waves [6, 9, 32, 38, 42] or, in the
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presence of both deleterious and beneficial mutations, to a dynamic mutation selection
balance [12]. In that case, emergent clones become ‘fuzzy’ as they accumulate mutations,
and the participation ratio should be replaced by a more general Parisi order parameter
as explained above. The result should provide interesting quantitative insight into the
expected genetic structure of facultatively sexual populations.

Perhaps the most interesting and important extension of the present work would
involve a generalization of the model and its analysis to linear genomes and obligatory
sexual populations. In contrast to the current model where recombination freely re-assorts
the loci, a more realistic linear chromosome model would describe recombination in terms
of relatively infrequent crossover. This would naturally tie the frequency of recombination
to the length of the segment considered. We expect that on sufficiently short scales,
where recombination is infrequent, a tendency for haplotype condensation would be
manifest if the population is diverse enough. Whether epistasis plays a significant role
in the condensation process will depend on the distribution of epistatic interactions along
the genome [27]. If there is a strong tendency of mutations to interact with mutations
nearby [5], the heritability decreases as smaller and smaller segments are considered. This
could result in condensation of mutations into ‘super-alleles’. However, the embedding
of the haplotype in question into a larger genome gives rise to complications related to
Hill–Robertson interference [2, 15, 16]. Transient associations with other genomic regions
will either boost (the hitch-hiking process) or suppress (background selection) the spread
of a haplotype in the population. This reduces the efficacy of selection and gives rise to a
stochastic dynamics with rather different properties than genetic drift [30]. Bridging the
different scales and resulting dynamical regimes represent an important challenge for the
future.

4.4. Conclusion

In conclusion, we stress the distinction between the QLE and ‘clonal condensation’
regimes. In the QLE regime, recombination is sufficiently rapid to overwhelm any clonal
amplification due to selection, and correlations between alleles at different loci are
relatively weak. In this regime, the correlations between loci are well described by linkage
disequilibrium, which measures population averaged pair correlation of loci. By contrast,
clonal condensation is a non-perturbative, large deviation from linkage equilibrium (under
which loci are completely uncorrelated), which in particular results in a stratification of
the population depending on its fitness: clones appear predominantly in the upper reaches
of the fitness distribution. Strong heterogeneity among individuals along the fitness axis
is not captured by measuring linkage disequilibrium and other traditional approaches.
Understanding strong interactions in multi-locus systems requires new ideas and tools.
We have found simple models such as the REM to be a very useful source of insight into
these non-trivial aspects of population genetics.
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Appendix A. Participation ratio for clonal condensation

Following its definition for the REM we define the participation ratio for a set of clones
as the sum of squared frequencies

〈Yt〉 =

〈∑
i

(
ni(t)∑
j nj(t)

)2〉
{Fk}

=
∑
i

∫ ∞
0

dz z

〈
n2
i (t) e−zni(t)

∏
j 6=i

e−znj(t)
〉
, (A.1)

where

nFi,τi(t) = e
(Fi−r)τi−

∫ t
t−τi

dτ ′〈F 〉τ ′ (A.2)

describes the size of clone i created a time τi in the past with fitness Fi. Due to stochastic
effects, most clones go extinct early on, and the fraction σ that remains is on average
larger by a factor of σ−1. We will ignore this correction and reinstantiate it later when
comparing to simulations. The rate of growth of the clone is controlled by the ‘replication
rate’: the fitness relative to the time dependent average fitness of the population 〈F 〉(t)
minus the recombination rate. The average over clones 〈· · ·〉 implies averaging over Fi and
τi. It can be decomposed into the average over the initial population (of individuals present
at t = 0 with τi = t) and the average over subsequent recombinants that are generated via
Poisson process with rate Nr. Hence〈∏

j

e−zn(t,Fj ,τj)

〉
=

{∫
dFρ(F ) e−znF,t(t)

}N

×
∞∑
k=0

e−Nrt

k!

{
Nr

∫ t

0

dτ

∫
dF ρ(F ) e−znF,τ (t)

}k
(A.3)

=

{
1−

∫
dF ρ(F )(1− e−znF,t(t))

}N
× exp

[
−Nr

∫ t

0

dτ

∫
dF ρ(F )(1− e−znF,τ (t))

]
(A.4)

≈ exp [−NC0(z, t)−NCr(z, t)] , (A.5)

where we have defined

C0(z, t) =

∫
dF ρ(F )[1− e−znF,t(t)], (A.6)

which expresses the average over the initial population and

Cr(z, t) = r

∫ t

0

dτ

∫
dF ρ(F )[1− e−znF,τ (t)] (A.7)

which gives the contribution of all recombinants. If we further define

B0(z, t) =

∫
dF ρ(F )n2

F,t(t) e−znF,t(t) = − ∂2

∂z2
C0(z, t), (A.8)

Br(z, t) = r

∫ t

0

dτ

∫
dF ρ(F )n2

F,τ (t) e−znF,τ (t) = − ∂2

∂z2
Cr(z, t), (A.9)
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we arrive at the following expression for the participation fraction:

〈Yt〉 = N

∫ ∞
0

dz z[B0(z, t) +Br(z, t)]e
−N(C0(z,t)+Cr(z,t)). (A.10)

At sufficiently long times, rt� 1, the population is dominated by new recombinants so
that B0 and C0 may be neglected in comparison with Br and Cr.

The growth and decay of clones, equation (A.2), depends critically on the dynamics of
the mean fitness, which in turn depends on the heritability of fitness. We have discussed
the different cases (h2 = 0, 1 and intermediate heritabilities) in the main text and will
present the calculations pertaining to them in separate appendices below. To streamline
the calculation, we will rescale all rates with σ (r→ r/σ, A→ A/σ, E → E/σ, F → F/σ)
and multiply times with σ (t → tσ, τ → τσ). Consequently, v now equals γ. We will
reinstantiate σ in the final results to facilitate comparison with formulas in the main text.
In addition, the following integrals will prove useful:∫

dx eax+2bx−ebx =

∫ ∞
0

dξ

b
ξ1−(a/b) e−ξ =

1

b
Γ
(

2− a

b

)
(A.11)∫

dx eax(1− e−ebx) =

∫ ∞
0

dξ

b
ξ−1−(a/b)(1− e−ξ) =

[
−1

a
ξ−a/b(1− e−ξ)

]
+

∫ ∞
0

dξ

a
ξ−a/b e−ξ

=
1

a
Γ
(

1− a

b

)
= −1

b
Γ
(
−a
b

)
(A.12)

where the latter holds only for a < b.

Appendix B. Participation ratio for the fully epistatic h = 0 case

The fully epistatic case with recombination or mutation is the closest relative of the REM
in population genetics, known in the population genetics literature as the ‘house-of-cards’
model [18]. In this model, every new genotype is drawn from the same distribution, which
we will take to be the standard normal distribution, that is, fitness is non-heritable.

Let us consider rt� 1 so that enough recombinants are produced to dominate over
the initial set of genotypes and evaluate Cr(z, t) and Br(z, t). Furthermore, let us assume
that the mean fitness is constant (we will revisit this assumption later). The size of a clone
with age τ is then simply n = exp[(E − r̃)τ ], and Cr(z, t) is given by

Cr,t(z) ≈ r
∫ t

0

dτ

∫ ∞
−∞

dE√
2π

e−E
2/2[1− e−z e(E−r̃)τ

]. (B.1)

Our strategy in approximating this integral will be to identify the region where Φ =
z e(E−r̃)τ < 1 and expand the e−Φ exponential in that region; outside that region we shall
neglect the exponential compared to 1 (in the square bracket). Defining θ = E − r̃, we
have

Cr,t(z) ≈ r

∫ ∞
−∞

dθ

θ
√

2π
e−(θ+r̃)2/2

∫ tθ

0

dτ [1− e−ze
τ

] (B.2)

≈ zr

∫ 0

−∞

dθ

θ
√

2π
e−(θ+r̃)2/2[eθt − 1]

+ zr

∫ t−1 log z−1

0

dθ

θ
√

2π
e−(θ+r̃)2/2

∫ tθ

0

dτ eτ (B.3)
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+ r

∫ ∞
t−1 log z−1

dθ

θ
√

2π
e−(θ+r̃)2/2

∫ tθ

0

dτ [1− e−ze
τ

] (B.4)

≈ z[1− e−r̃t] + zr

∫ t−1 log z−1

0

dθ

θ
√

2π
e−(θ+r)2/2[etθ − 1]

+
r e−E

2
∗/2

(E∗ − r)E∗
√

2π

[
(1− z) +

t

E∗

]
(B.5)

≈ z +
rt e−E

2
∗/2

(E∗ − r̃)E2
∗
√

2π
, (B.6)

where E∗ = t−1 log z−1 + r̃ and we have along the way assumed that t > E∗(t), which
is realized for t > t∗ = r̃

2
[1 +

√
1 + (4/r̃2) log z−1]. As we shall see below, the dominant

contribution to Y comes from the region z−1 ∼ N , so that in the low r regime (r̃ <√
2 logN) we have t∗ ≈

√
logN . At the end of the calculation we shall check that t > t∗

condition is satisfied.
At short times the second term in our expression for Cr,t(z) is clearly smaller than the

first, so that the dz integration in the expression for Y is controlled by the e−Nz factor,
which set the scale for z at z ∼ N−1. Let us next estimate the time for which the second
term in the expression for Cr,t(z) becomes larger than the first provided that z ≈ N−1.
We obtain

exp

[
(t−1 logN + r̃)2

2

]
<

rt2N

(t−1 logN + r̃)2 logN
√

2π
. (B.7)

Let us define t̂ = t/
√

1
2

logN and r̂ = r/
√

2 logN ; then

N−1+(t̂−1+r̂)2 <
r̂t̂2

√
2 logN(t̂−1 + r̂)2

√
2π
. (B.8)

For r̂ > r̂c = 1 this can only be satisfied if t̂2 > t̂2∗ ∼ N r̂2−1
√

logN , which diverges
in the large N limit. Below rc, but still close to it, we can approximate the crossover
t̂∗ � r̂−1, and the crossover condition becomes

t̂−1
∗ ≈

1− r̂2

2r̂
+

log
[
t̂2c/(4r̂

√
π logN)

]
2r̂ logN

, (B.9)

which is an approximation valid for r ∼ rc =
√

2 logN .
It remains to calculate the participation ratio as a function of t asymptotically for

t � tc and for t ≈ tc. To do so, we need to evaluate the B-integral and perform dz
integration in the integral representation for Y (t). The B-integral can be obtained by
differentiating Cr(z, v) twice with respect to z, which evaluates approximately to

B(z, t) = −z−2

[
t−2 d2

dE2
∗

+ t−1 d

dE∗

]{
rt e−E

2
∗/2

(E∗ − r)E2
∗
√

2π

}
≈ z−2 r e−E

2
∗/2

(E∗ − r)E∗
√

2π
. (B.10)
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Hence

〈Y 〉 = N

∫ ∞
0

dz

z

r exp(−E∗2/2)

(E∗ − r)E∗
√

2π
exp

[
−Nz −N rt exp(−E2

∗/2)

(E∗ − r)E2
∗/
√

2π

]

≈
∫ ∞

0

du e−N e−t(u−r) d

du
exp

[
−N rt e−u

2/2

(u− r)u2/
√

2π

]

≈
∫ ∞

0

dφ e−N e−t(u(φ)−r)−φ ≈ e−N e−t(u(1)−r)
,

(B.11)

where

φ =
Nrt e−u

2/2

(u− r)u2
√

2π
(B.12)

and

u(φ) =

√√√√2 log

[
Nrt

φ(u− r)u2
√

2π

]
(B.13)

so that

u(1) ≈
√

2 logN

√[
1 +

log crt

logN

]
, (B.14)

which upon substitution into equation (B.11) yields the final result

〈Y 〉 ≈ exp
[
−Nσ e−

√
2 logNσ(1−(r/rc))tσ

]
. (B.15)

This result deviates from zero for t > tc(r) = rc

√
2 logNσ/2σ(rc− r), consistent with our

expected tc for r ≈ rc. For r > rc the participation ratio stays small for all t.

Appendix C. Participation ratio for the general traveling wave

As before, the participation fraction is given by an integral over clones seeded in the past.
As opposed to the fully epistatic case, however, we now consider a finite velocity, which
limits the lifetime of clones. A clone seeded at time τ in the past at fitness A above the
mean has a size

nj = exp

[
(Fj − r̃)τj −

vτ 2
j

2

]
, (C.1)

where r̃ = r + 〈E〉. New clones get seeded with rate Nr, and to calculate 〈Y 〉, we need
to evaluate the integrals Cr(z, v) and Br(z, v) as defined in equations (A.7) and (A.9). In
contrast to the case discussed above with v = 0, a finite v causes clones to have a limited
lifetime, even if they are initially very fit.

The integral Cr(z, v) over F and τ has one contribution from young (small) clones
with average fitness, in which case znj is small. This young contribution evaluates to

Cy
r (z, v) = zr

∫ ∞
0

dτ

∫
dF√
2π

e−F
2/2+(F−r̃)τ−vτ2/2 ≈ rz

r̃
. (C.2)
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Here we have evaluated only the contribution from young clones and neglected the fact
that there is a growing quadratic term in the exponent. The latter is due to old clones; we
will evaluate this term next. If v < 1, the integrand starts growing again with τ and θ until
it is cutoff at log z−1 = θτ − vτ 2/2. For a given τ , this cutoff is at θ∗ = τ−1 log z−1 + vτ/2,
and the integrand has a peak at θ∗ if (1− v)τ > r̃. In this case, we expand the integrand
around θ∗, i.e., F ∗ = θ∗ + r̃, and find for the old clones

Co
r (z, v) ≈ r

∫ ∞
0

dτ√
2π

e−F
∗2/2

∫
dδ θ√

2π
eF
∗δθ(1− eeτδθ) = −r

∫ ∞
0

dτ√
2πτ

e−F
∗2/2Γ

(
−F

∗

τ

)
.

(C.3)

The remainder can be evaluated by assuming that the non-exponential parts are slowly
varying. The integrand peaks roughly at log z−1/τ ∗2 = v/2 or τ ∗ =

√
2v−1 log z−1. This

translates into F ∗ =
√

2v log z−1 + r̃, and the curvature is 2F ∗ log z−1/τ ∗3 = vF ∗/τ ∗ ≈ v2.
Hence

Co
r (z, v) ≈ −rz

v e−r̃
√

2v log z−1−(r̃2/2)

√
2v log z−1

Γ

(
−v
(

1 +
r̃√

2v log z−1

))
. (C.4)

Br(z, v) can be evaluated by differentiating C twice, which yields

Bo
r (z, v) ≈ rzv−2e−r̃

√
2v log z−1−(r̃2/2)

√
2v log z−1

Γ

(
2− v

(
1 +

r̃√
2v log z−1

))
. (C.5)

Additive fitness functions

In the additive case with v = 1, the cutoff Cr(z, v) is dominated by the young clones for
any recombination rate. Its second derivative, however, is dominated by the contribution
from old clones if r < (

√
2− 1)

√
2 logN . In this regime, we find

〈Y (r, 1)〉 ≈ N
∫ ∞

0

dz
r exp

[
−r
√

2 log z−1 − r2/2
]

√
2 log z−1

Γ

(
1− r√

2 log z−1

)
e−Nz

∼ exp

[
− r
σ

√
2 logNσ − r2

2σ2

]
.

(C.6)

In the last step, we have dropped all preexponential factors and reinstantiated σ. This
correction approximately accounts for the fact that only a fraction σ of the clones that
are seeded are successful.

For larger r, even the Br(z, h) term is dominated by young clones, and Y ∼ N−1. This
behavior holds while the recombination rate is larger than 1/

√
2 logN . For smaller r, the

velocity starts to deviate from 1. In this case, Cr(z, h) is dominated by old clones. For
large enough populations, the powers of z vary much more quickly than all other terms,
which we denote collectively by A(z), and we can approximate the integral as

〈Y (r, h)〉 = −
∫ ∞

0

dz zv−1A(z)Γ

(
2− v(θ∗ + r)

θ∗

)
ez
vA(z)Γ(−v(θ∗+r)/θ∗)

= − v−1 Γ(2− v(θ∗ + r)/θ∗)

Γ(−v(θ∗ + r)/θ∗)
=
θ∗ + r

θ∗

(
1− v(θ∗ + r)

θ∗

)
≈ 1− v = 1− γ,

(C.7)
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where in the last step we reintroduced σ by replacing v with γ = v/σ2. Along the way, we
have assumed r � σ

√
2 logNσ, which is consistent with the assumption of small r made

above.

Epistatic fitness function

In cases with heritabilities 0 < h2 < 1, we generally have v < 1 and can be in a regime
where Cr(z, v) ≈ z, while Br(z, v) is dominated by old clones. In this case, we have

〈Y (r, h)〉 ≈ N

∫ ∞
0

dz zv−1 r e−r
√

2v log z−1−r2/2
√

2v log z−1
e−Nz ∼ N1−γ e−r/σ

√
2v logNσ−r2/2σ2

. (C.8)

This starts to be of order N−1 as soon as r̃ < σ(
√

2 − γ)
√

2 logNσ. This is similar to
the condition identified in [29] based on the factorization of the mean field solution. Note,
however, that this expression does not hold near the v = 0 line, since it is derived assuming
a steady traveling wave.

Appendix D. Velocity in the low recombination limit

With sufficiently frequent recombination, the mean fitness in the population increases with
a rate v given by the variance in additive fitness among recombinant offspring. At lower
recombination rates, however, the fitness variance in the population gets reduced below
that of the distribution of recombinants. With reduced additive variance, v decreases. This
effect has been studied in [35] for a model with only additive fitness, and we reproduce
this argument for our simplified recombination model.

We will again work in units where the variance of the fitness distribution of
recombinant genotypes is 1 and measure fitness a relative to the instantaneous mean
fitness in the population. The invariant fitness distribution P (a) in the comoving frame
a = A− vt is governed by

− v∂aP (a) = (a− r)P (a) +
re−a

2/2

√
2π

, (D.1)

where the last term accounts for the injection of recombinant offspring. This equation has
the solution

P (a) = rv−1 e−(a−r)2/2v
∫ ac

a

da′√
2π

e−a
′2/2+(a′−r)2/2v. (D.2)

Note that this solution becomes negative for a > ac, and only the part a < ac is of interest.
The zero crossing ac marks the position of the most fit individuals in the population, and
its value will depend on the population size.

To determine the velocity of a finite population, Rouzine and Coffin [35] compared
the rate at which new genotypes ahead of ac (records) are created to the speed at which
the bulk of the population moves towards higher fitness.

Within the model, recombinant genotypes are generated with rate rN and drawn from
a Gaussian distribution with unit variance. Hence genotypes with a > ac are produced at
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rate

rN

∫ ∞
ac

da√
2π

e−a
2/2 ≈ rN

ac

√
2π

e−a
2
c/2. (D.3)

Such a genotype seeded ac ahead of the mean has a chance acσ to establish and, if
established, advances the nose by 1/ac. We therefore find for the speed of the nose

vnose ≈
σrN

ac

e−a
2
c/2. (D.4)

To solve for vnose = v and ac, we need an additional relation which can be obtained
from the condition that P (a) is normalized. In the limit of small r, we can approximate
equation (D.2)

P (a) =
r

v
exp

[
−(a− r)2

2v

] ∫ ac

a

da′√
2π

exp

[
(1− v)a′2

2v
− ra′

v
+
r2

2v

]

≈ e−(a−r)2/2v
√

2π

r

(1− v)ac − r
exp

[
(1− v)a2

c

2v
− rac

v
+
r2

2v

]
. (D.5)

The approximation is valid for ac(1 − v)� r; otherwise the population distribution is a
simple Gaussian, and we find v ≈ 1. Note that this condition is the same as the one we
encountered above in the context of whether Cr(z, v) is dominated by young or old clones.
For ac(1− v)� r, Cr(z, v) and equivalently the normalization of P (a) are dominated by
the old clones. The normalization condition on P (a) now requires

r
√
v

(1− v)ac − r
exp

[
(1− v)a2

c

2v
− rac

v
+
r2

2v

]
= 1, (D.6)

which yields

a2
c ≈

2v

(1− v)
log

(1− v)ac

r
√
v
≈ 2v

(1− v)
log

√
2(1− v)

r
. (D.7)

Solving equation (D.4) for a2
c and equating the result with equation (D.7) results in

2v

1− v
log

√
2(1− v)

r
= 2 log

σrN

v
. (D.8)

After rearranging and replacing v by γ = v/σ2, we obtain the expression given in
equation (19).

Appendix E. Mean field solution

Above, we discussed the large r solution to the equation

Ṗ (A,E) = (F − 〈F 〉 − r)P (A,E) +
r√

2πσA
exp

[
−(A− 〈A〉)2

2σ2
A

]
ρ(E), (E.1)
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where we have introduced the symbol ρ(E) for the distribution of epistatic fitness. At
large r, this model admits a factorized solution P (A,E) = ϑ(A, t)ω(E) with

ϑ(A, t) =
e−((A−σAt)2/2σA)√

2πσ2
A

ω(E) =
rρ(E)

r + C − E
. (E.2)

The epistatic part needs both to be normalized, and C needs to equal the mean of the
distribution ω(E). Those two are linked: when one is true, so is the other. Hence∫

dE
rρ(E)

r + C − E
=

∫
dE ρ(E)

∞∑
n=0

(
E − C
r

)n
= 1 +

∫
dE ρ(E)

E − C
r

∞∑
n=0

(
E − C
r

)n
= 1 +

1

r

∫
dE E

rρ(E)

r + C − E
− C

r
= 1 +

〈E〉 − C
r

= 1. (E.3)

Hence the constant C, adjusted to achieve normalization, equals the population mean of
E.
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[23] Mézard M and Montanari A, 2009 Information, Physics, and Computation (Oxford: Oxford University

Press)
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