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a b s t r a c t

Equilibrium systems evolve according to Detailed Balance (DB). This principle guided the development
of Monte Carlo sampling techniques, of which the Metropolis–Hastings (MH) algorithm is the famous
representative. It is also known that DB is sufficient but not necessary. We construct irreversible
deformation of a given reversible algorithm capable of dramatic improvement of sampling from known
distribution. Our transformation modifies transition rates keeping the structure of transitions intact. To
illustrate the general scheme we design an Irreversible version of Metropolis–Hastings (IMH) and test it
on an example of a spin cluster. Standard MH for the model suffers from critical slowdown, while IMH is
free from critical slowdown.

Published by Elsevier B.V.
1. Introduction

Recent decades have been marked by a fruitful interaction
between physics and computer science, with one of themost strik-
ing examples of such an interaction going back to 40s when physi-
cists proposed a Markov Chain Monte Carlo (MCMC) algorithm
[1,2]. MCMC evaluates large sums, or integrals, approximately, in a
sense imitating how nature would do efficient sampling itself. De-
velopment of this idea has became wide spread and proliferated a
great variety of disciplines. (See [3–5] for a sample set of reviews
in physics and computer science.) If one formally follows the let-
ter of the original MCMC suggestion one ought to ensure that the
Detailed Balance (DB) condition is satisfied. This condition reflects
microscopic reversibility of the underlying equilibrium dynamics.
A reader, impressed with indisputable success of the reversible
MCMC techniques, may still wonder if the equilibrium dynamics
is the most efficient strategy for sampling and evaluating the inte-
grals? In this letter we argue that typically the answer is NO. Let us
try to illustrate the ideas on a simple everyday life example. Con-
sider mixing sugar in a cup of coffee, which is similar to sampling,
as long as the sugar particles have to explore the entire interior of
the cup. DB dynamics corresponds to diffusion taking an enormous
mixing time. This is certainly not the best way to mix. Moreover,
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our everyday experience suggests a better solution—enhance mix-
ing with a spoon. Spoon steering generates an out-of-equilibrium
external flowwhich significantly acceleratesmixing, while achiev-
ing the same final result—uniform distribution of sugar concen-
tration over the cup. In this paper we show constructively, with
a practical algorithm suggested, that similar strategy can be used
to decreasemixing time of any known reversibleMCMC algorithm.
The acceleration achieved depends on the physics of the problem
and it can vary from application.

There are two main obstacles which prevent fast mixing by
traditional MCMC methods. First, the effective energy landscape
can have high barriers, separating the energy minima. In this
case mixing time is dominated by rare processes of overcoming
the barriers. Second, slow mixing can originate from the high
entropy of the state basin (toomany comparably important states)
providing major contribution to the system partition function. In
the later case mixing time is determined by the number of steps
it takes for reversible (diffusive) random walk to explore all the
relevant states.

2. MCMC algorithms and reversibility

MCMC algorithms are best described on a discrete example.
Consider a graph with vertices i = 1, . . . , N each labeling a state
of the system and edges (i→ j) corresponding to ‘‘allowed’’ tran-
sitions between the states. For instance, an N-dimensional hyper-
cube corresponds to a system ofN spins (withN = 2N states) with
single-spin flips allowed. An MCMC algorithm can be described in
terms of the transition matrix Tij representing the probability of a
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single MCMC step from state j to state i. Probability of finding the
system in state i at time t, P t

i , evolves according to the following
Master Equation (ME): P t+1

i =
∑

j TijP
t
j . Stationary solution of ME,

P t
i = πi, satisfies the Balance Condition (BC):

N−
j=1


Tijπj − Tjiπi


= 0, ∀i ∈ N . (1)

The object Qij ≡ Tijπj from the lhs of Eq. (1) can interpreted as the
stationary probability flux from state j to state i. Obviously, station-
arity of the probability flow reads as the condition for incoming
and outgoing fluxes at any state to sum up to zero. Note also, that
Eq. (1) is nothing but the incompressibility condition of the station-
ary probability flow. The DB used in traditional MCMC algorithms
is a more stringent condition, as it requires the piecewise balance
of terms in the sum (1): for any pair of states with allowed transi-
tions one requires, Tijπj = Tjiπi. The main reason for DB to be so
often used in practice originates from its tremendous simplicity.
Otherwise, DB-consistent schemes constitute only a small subset
of all other MCMC schemes convergent to the same stationary dis-
tribution π.

3. Breaking reversibility with cycles

From the hydrodynamic point of view reversible MCMC
corresponds to irrotational probability flows, while irreversibility
relates to nonzero rotational part, e.g. correspondent to vortices
contained in the flow. Putting it formally, in the irreversible case
antisymmetric part of the ergodic flow matrix is nonzero. Actually
it allows the following cycle decomposition,Qij−Qji =

∑
α Jα(Cα

ij −

Cα
ji ), where index α enumerates cycles on the graph of states with

the adjacency matrices Cα
ij . Then, the circuit-weight Jα stands for

the magnitude of the probability flux flowing over cycle α. Or
in other words Jα is the mean number of occurrences of α along
almost all the sample paths of the Markov chain. As a side remark,
note that there is a theorem that states that any recurrent Markov
chain can be decomposed into directed cycles [6].

This cycle representation suggests how an irreversible MCMC
algorithm can be constructed. One simply adds cycles to a given
reversible Markov chain, ensuring that the transition probabilities
remain positive. In some simple examples this straightforward
approach can be rather efficient. Consider, for example, the
problem of sampling uniform distribution on a two-dimensional
lattice, with the characteristic size L ≫ 1. Reversible Monte Carlo
algorithmswould require approximately T ∼ L2 steps to converge.
On the other hand, imposing a kind of super-lattice of size l cycles,
where 1 ≪ l ≪ L, one observes that typical mixing time is now
determined by an interplay of usual and ‘‘turbulent’’ diffusion
respectively.

One estimates, T ∼ l2+L2/l, where the two terms correspond to
dynamics on small (sub-vortex-size) and large scales. The minimal
value of T is achieved at l ∼ L2/3, thus resulting in T ∼ L4/3.
Moreover, one can reduce T even further to T ∼ L with the help
of an additional lifting operation; see e.g. [7] for related discussion.
The important lesson we draw from this example is that knowing
the state space and carefully planting irreversible cycles one can
indeed achieve a significant acceleration of mixing.

However promising it looks, the cycle-based procedure has
two serious caveats making it difficult to implement. First, the
number of states in majority of interesting problems is (at least)
exponential in the number of physical degrees of freedom. (For
example an Ising system consisting of N spins has 2N states.)
Thus, one expects that the number of cycles sufficient for essential
mixing improvement is also exponential, i.e. too large of a number
for algorithmically feasible implementation. Second, not all cycles
are equally desirable, making optimization over cycle placements
to be a task of even higher algorithmic complexity.
Fig. 1. Schematic representation of the replication deformation. Dashed lines
represent replica switching transitions, which compensate for compressibility of
the probability flows associated with solid lines.

4. Irreversible MCMC

Therefore, aiming to achieve practical and flexible implemen-
tation, we have to abandon the cycle-based idea and instead fo-
cus on a better alternative—building irreversibleMCMC algorithms
via controlled deformation of an existent reversible MCMC. To be
more specific, in the remainder of this letter we adopt and develop
replication/lifting trick discussed in [8,7]. Themain idea behind our
strategy is as follows. Instead of planting into the system an ir-
reversible probability flux, correspondent to an ‘‘incompressible’’
BC, we add a mixing desirable ‘‘compressible’’ flux, and compen-
sate for its compressibility by building an additional replica with
reversed flux and allowing some inter-replica transitions. To en-
force BC one tunes the replica switching probabilities computed
‘‘on the fly’’ (and locally). The replication idea is illustrated in Fig. 1.
Acknowledging generality of the setting, we focus in this letter on
explaining one relatively simple implementation of this idea. Gen-
eralization andmodifications of the procedurewill be analyzed and
discussed elsewhere.

Consider a reversible MCMC algorithm characterized by the
transition matrix Tij which (a) obeys the DB condition, and (b)
converges to the equilibrium distribution πi. Assume that each
state has duplicates in two replicas, marked by±. Following some
local rule (an example will be provided below) one introduces a
split between the states within each of the replicas, Tij = T (+)

ij +

T (−)
ij , such that all T (±)

ij are positive and satisfy, ∀i ≠ j, T (+)
ij πj =

T (−)
ji πi, to be called the skew DB condition. The total transition

matrix,

T̂ =


T̂ (+) Λ̂(+,−)

Λ̂(−,+) T̂ (−)


, (2)

also contains nonzero and positive (as probabilities) inter-replica
terms, Λ

(±,∓)
ii , allowing transitions only between two replicas

of the same state. One tunes the inter-replica terms to ensure
convergence to the given steady distribution, πi. This is achieved
by choosing

Λ
(±,∓)
ii = max


0,

−
j


T (±)
ji − T (∓)

ji


≥ 0, (3)

and the diagonal terms T (±)
ii are fixed according to the stochasticity

condition:

T (±)
ii = 1−

−
j,j≠i

T (±)
ji −Λ

(∓,±)
ii . (4)

This description completes our construction of an irreversible
MCMC algorithm from a given reversible one. Note that this
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construction is not unique, and in general multiple choices of
Λ

(±,∓)
ii are possible, since the balance condition on T̂ , fixes

only the difference Λ
(+,−)
ii − Λ

(−,+)
ii . The proposed scheme is

illustrated below on an example of a simple spin system, with
the Metropolis–Hastings (MH)–Glauber algorithm chosen as the
respective reversible prototype.

MH [9] is the most popular reversible MCMC algorithm. MH-
transition from a current state i is defined in two steps: (A) A new
state j is selected randomly. (B) The proposed state is acceptedwith
probability pacc = min(1, πj/πi) or rejected with the probability
1 − pacc respectively. Selecting the proposed state i.i.d. randomly
from all possible single-spin flips corresponds to the Glauber
dynamics popular in simulations of spin systems. Let us now ex-
plain how to build an irreversible MCMC algorithm for spin sys-
tems based on the reversible MH–Glauber algorithm. For example,
we choose to switch only+ spins in the (+) replica and vice versa.
Then, our irreversible MH–Glauber scheme works as follows. Sup-
pose we start from in (+) replica. Spin α is selected i.i.d. randomly
from the pool of all other spins of the system having+ values. The
selected spin is flipped with the probability pacc = min(1, πj/πi),
in which case the system stays in the same replica. This is a typical
MH dynamics move. If the flip is not accepted, we switch replicas
with probability Λ

(+,−)
ii /(1−

∑
j T

(+)
ji ). (Such transitions are indi-

cated as dash lines in Fig. 1.) For purposes of clarity we have also
added the pseudocode below. In the pseudocode rand(0, 1) stands
for a random number sampled from a uniform distribution (0, 1).
Note, that in the case of the Glauber dynamics both Λ

(∓,±)
ii and∑

j T
(±)
ji are local quantities depending only on the current state

of the system, and calculating transition probabilities constitutes
an insignificant computational overhead.

{system in replica (+) and state i}
α← randomly selected+ spin
pacc = min(1 − πi/πj) {here j is the state where α is flipped,
compared to i}
p← rand(0, 1)
if p ≤ pacc then

spin is flipped {typical MH move}
else

q← rand(0, 1)
if q ≤ Λ

(+,−)
ii /(1−

∑
j T

(+)
ji ) then

switch replica from (+) to (−)
end if

end if

5. Testbed: N-spins ferromagnetic cluster

We choose N-spins ferromagnetic cluster (equal strength in-
teraction between all the spins) as a testbed and discuss sam-
pling from respective stationary distribution, πs1,...,sN ∼ exp
−(J/2N)

∑
k,k′ sksk′


, where J > 0. Note, that a state of the simple

system is completely characterized by its global spin, S =∑
k sk, and respective probability distribution, P(S) ∼ N!

N+!N−!
exp

−JS2/(2N)

, where N± = (N ± S)/2 is the number of positive/

negative spins. Considered in the thermodynamic limit, N → ∞,
the system undergoes a phase transition at J = 1. Away from
the transition in the paramagnetic phase, J < 1, P(S) is centered
around S = 0 and the width of the distribution is estimated by
δS ∼

√
N/J , which changes to δS ∼ N3/4 at the critical point

J = 1. One important consequence of the distribution broad-
ening is a slowdown observed at the critical point for reversible
MH–Glauber sampling. Then characteristic correlation time of S
(measured in the number of Markov chain steps) is estimated as
Fig. 2. Correlation time of the total spin de-correlation in the spin cluster model.
Dots correspond to the direct diagonalization of the transition matrices. Crosses
are correlation times found from respective MCMC simulations. Blue and red colors
correspond to reversible and irreversible algorithms respectively. Best fitting slopes
are given by Trev ∼ N1.43 and Tirr ∼ N0.85 . (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Trev ∼ (δS)2, and the computational overhead associated with the
critical slowdown is ∼

√
N . We brought this simple model to il-

lustrate the advantage of using irreversibility. As shown below,
the irreversible modification of the MH–Glauber algorithm ap-
plied to the spin cluster problem achieves complete removal of
the critical slowdown. To estimate the correlation time in the ir-
reversible case we first note that, switching from one replica to
another the system always go through the S = 0 state. (This fol-
lows directly from the observation that Λ

(+,−)
ii = 0 for the states

with S > 0 and Λ
(−,+)
ii = 0 for the states with S < 0.) The

Markovian nature of the algorithm implies that all the trajectories
connecting two consequent S = 0-swipes are statistically inde-
pendent, and therefore correlation time is roughly equal to the typ-
ical number of steps in each of these trajectories. Recalling that
inside a replica (i.e. in between two consecutive swipes) dynamics
of S is strictly monotonous, one estimates Tirr ∼ δS. This estimate
suggests a significant acceleration: Tirr ∼

√
Trev ≪ Trev. Note, that

one expects to observe significant acceleration even outside of the
critical domain, for larger and smaller values of J .

We verified the correlation time estimation via numerical
tests. Implementing reversible and irreversible versions of the
MH–Glauber algorithm we, first, analyzed decay of the pair corre-
lation function, ⟨S(0)S(t)⟩, with time. Respective correlation time
was reconstructed by fitting the large time asymptotics with expo-
nential function, exp(−t/Trev), and exponential-oscillatory func-
tion, exp(−t/Tirr) cos(ωt − ϕ), in the reversible and irreversible
cases respectively. Second, for both MH and IMH algorithms we
constructed transition matrix corresponding to the random walk
in S, calculated spectral gap, ∆, related to the correlation time as,
T = 1/Re∆. In both tests we analyzed critical point J = 1 and
used different values of N ranging from 16 to 4096. Simulation re-
sults are shown in Fig. 2. The results found for two settings are
consistent with each other. Numerical values (Trev ∼ N1.43 and
Tirr ∼ N0.85) are also in a reasonable agreement with respective
theoretical predictions (Trev ∼ N3/2 and Tirr ∼ N3/4) while a slight
discrepancy can be attributed to finite size effects. Note, that in
the irreversible case correlation time of the global spin correlation
function (number of respective MC steps) grows with the number
of spins, N , but does it slower than linearly. In other words, mixing
becomes so efficient that equilibration of the global spin correla-
tions is observed even before all spins of the systems are flipped.
One concludes, that performance of the irreversible scheme is at
least as good as the one of the cluster algorithms [10,11] tested on
the spin clustermodel [12,13]. (We note, however, that direct com-
parison of the two algorithms is not straightforward, as the cluster
algorithm flips many spins at once and therefore its convergence
is normally stated in renormalized units.)
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6. Discussion

Let us now discuss the relation of the proposed algorithm to
previous studies. Although the potential power of algorithms with
broken DB has already been realized for a while, only a handful of
irreversible examples have been proposed so far. One of the exam-
ples is the sequential updating algorithm [14] designed to simu-
late a two-dimensional Ising system. In the essence, the algorithm
consists of a number of subsystems (replicas) with internal dy-
namics, each characterized by its own transition matrix. In a great
contrast with our algorithm, the system switches between repli-
cas in a predefined deterministic fashion. Similar idea of breaking
DB by switching irreversibly but periodically between reversible
portions was implemented in the successive over-relaxation
algorithm of [15]. An important sampling algorithm with DB bro-
ken is the Hybrid Monte Carlo of [16], where Hamiltonian dy-
namics is used to accelerate sampling. Once again the story here
relates to replicas, each parameterized by distinct momentum,
with switches between the replicas controlled deterministically
by the underlying Hamiltonian. It is also appropriate to cite rel-
evant efforts originated in statistics [8], mathematics [7] and
computer science [17]. Several simple examples of irreversible
algorithmswere discussed and analyzed in [8]. [7] showed that im-
provement in mixing, provided by a multi-replica lifting, does not
allow reduction stronger than the one observed in the diffusive-
to-ballistic scenario, T →

√
T , where T is the mixing time of the

underlying reversible algorithm. The grain of salt here is that the
acceleration was achieved via a replication of an extremely high,
∼k2, degree where k is the number of states. [?] showed that some
complementary ideas, from the field of distributed networks, al-
lows to reduce this replication scaling a bit. Recently a novel ir-
reversible algorithm was developed for hard-sphere systems, that
achieves significant acceleration of mixing time [18].

We also find it useful to briefly discuss reversible algorithms
showing certain similarity to the algorithm and ideas we propose.
First of all, it is important to mention again cluster algorithms
[10,19,11] which were most successful in biting the odds of the
critical slowdown in the regular systems of the Ising type. The
trick here is to explore duality of the model, which allows two
alternative representations related to each other via a state-non-
local transformation. The cluster algorithm switches between two
dual representations, thus realizing long jumps in the phase space.
Note that such jumps would be forbidden by a phase space local
dynamics in either of the two representations. Best algorithms
of the cluster type achieves very impressive rate of convergence.
The downside is in the fact that the cluster algorithms are model
specific and rather difficult in implementation because of extreme
phase space non-locality of the steps.

Worm algorithm of [20] allows essential reduction in the
critical slowdown via mapping to a high-temperature-inspired
loop representation and making local moves there. We also
should mention the simulated annealing algorithm of [21] and
parallel tempering Monte Carlo [22], both methods are built on
a temperature-graded replication consistent with DB. In parallel
tempering the algorithm aims to overcome entropic barriers in the
free energy landscape by simulating several copies of the target
system at different temperatures. The system can thus escape
metastable states when wandering to higher temperatures. The
technique is similar to the one we propose, in the sense that it
also uses replication of the system into several copies and that it
also has synthetic (not physical) dynamics. However it maintains
reversibility of the Monte Carlo, DB is obeyed. In our proposal
the convergence to a steady state is accelerated by introducing
a compressible flow in the phase space, while pertaining the
overall balance. One interesting direction for future research is to
explore if (and under which conditions) additional irreversibility
can improve already good mixing performance provided within
each of these reversible algorithms.

Last, we would like to stress that our algorithm did not use the
Z2 symmetry of the Ising model, thus we expect it to work in ap-
plications with less symmetry of the ground-state. A part of future
research is testing these ideas on more realistic systems, including
the 2D Ising model. Preliminary results show that straightforward
application of these ideas yields only marginal acceleration com-
pared to conventional MC methods, but more sophisticated ways
of breaking detailed balance should be explored as well.

7. Conclusions

To summarize, this letter describes how to upgrade a reversible
MC into an irreversible MC converging to the same distribution
faster. To prove the concept we design a spin-problem specific
irreversible algorithm, and tested it on the mean-field spin
cluster model. We showed on this example that the irreversible
modification can lead to dramatic acceleration of MC mixing. Our
results suggest that the irreversible MC algorithms are especially
beneficial for acceleration of mixing in systems containing
multiple soft and zero modes, however unaccessible for standard
(reversible) schemes. This situation occurs typically in systems
experiencing a critical slowdown in the vicinity of a phase
transition, and it is also an inherent property of systems possessing
internal symmetries of high degree. Entropic degeneracy is the
main factor limiting the convergence of a regular MCMC algorithm
in these problems. To conclude, the ideas discussed in the letter
might be useful in studies of phase transitions, soft matter
dynamics, protein structures and granular media.
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