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Abstract

I studied several physical situations in which turbulence plays a key role. By turbulence we mean

a state of a physical system with many degrees of freedom strongly deviated from equilibrium.

Each problem is a separate story and common to all is that the systems considered are out of

equilibrium and that the focus is on fractal distributions in either physical or phase space. I

begin by discussing clustering of particles in flows due to compressibility and due to inertia.

I then switch to two-dimensional turbulence and investigate the fractal nature of contours of

a passive scalar in a smooth, temporally uncorrelated, Gaussian velocity field and the energy

cascade in a forced system of point vortices. The last problem introduces a method which

utilizes non-equilibrium mixing to accelerate the convergence of a Markov Chain Monte Carlo

algorithm towards equilibrium.
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Introduction

Turbulence is a state of a physical system with many degrees of freedom strongly deviated from

equilibrium. Historically, the term was used to describe exclusively motions of fluids, but in

contemporary scientific jargon turbulence describes a chaotic, highly non-equilibrium state of a

nonlinear physical system. Examples of turbulence in nature are abundant: ocean waves after a

storm, rivers, vortices behind ships or cars, clouds, far-from-equilibrium states in solids, Bose-

Einstein condensates or nonlinear optics etc; most fluids in nature are turbulent. Although

omnipresent in the world around us, turbulence still lacks a unified theoretical description, and

this is one of the central problems of modern physics. On the other side, the enormous amount

of excited and interacting degrees of freedom involved, nonlinearity and lack of scale separations

make computational efforts to realistically model turbulence futile. Understanding turbulence

is of unprecedented importance for both theoretical and applied science.

Different realizations of turbulence from the same experiment do not look alike at all;

common to them is that they appear disordered, unpredictable, irreproducible and irreversible.

Ample empirical experience has convinced us that the appropriate language to study turbulence

is the language of probability theory. Surprisingly enough, it appears that descriptions of

many physical phenomena related to turbulence allow their understanding without detailed

knowledge of the structure of turbulence. Sufficient to know is that one deals with the random

flow possessing some general properties. In other words, there are universal laws describing the

effects of a random flow.

In this thesis, I focus on fractal distributions appearing in turbulent states in either phys-

ical space or phase space. I study both fractal contours produced by incompressible random

flows and fractal measures produced by compressible random flows. A deeper pursuit behind

my work is finding universal aspects of turbulence. The paragraphs bellow, provide brief intro-

1



ductions to the problems considered in this thesis, and state the main results.

Clustering of particles in flows

We begin by presenting new analytical results related to the statistics of particles suspended in

turbulent flows (see Chapters 1 and 2). These particles can be water droplets in clouds, dust

in air, planetesimals in the early Solar system, concentration of plankton or an oil slick on the

ocean surface etc. Spontaneous formation of clusters of particles suspended in chaotic flows may

originate from two different physical processes: compressibility of the fluid flow and particle

inertia. In the first case particles are trapped in regions of ongoing compression, while in the

second case inertia causes their ejection from vortical regions. The underlying link between

these phenomena is manifested in the limit of weak inertia, in which the particle dynamics in

incompressible flows can be approximated by that of tracers in a weakly compressible velocity

field [6, 72]. The following two paragraphs describe scenarios of clustering of particles due to

compressibility and inertia, respectively.

Together with G. Falkovich and I. Fouxon, we looked into causes of patchiness of pollutants

on the surfaces of oceans, seas and lakes. In most cases these water basins are stably stratified

(convection is severely suppressed), yet patchiness is often present. Thus, a mechanism of

producing inhomogeneities of floaters involves only the top layer of water. This hint lead us

to consider flows of surface waves. We have shown that turbulence of surface waves is weakly

compressible, and alone it cannot account for the clustering of matter on liquid surfaces, i.e.

the timescales on which clustering occurs due to waves alone are too long compared to those

observed in nature [103]. We made estimates of the rate and the fractal dimension of the density

distribution. Lastly, we have shown that the interplay between waves and currents gives realistic

timescales, and therefore can act as a source of inhomogeneities in natural environments [104].

Small impurities like dust, droplets or bubbles suspended in a flow, are finite-size particles

whose density often differs from that of the underlaying flow. Their behavior is vastly different

from that of the point-like tracers. In the same small portion of the fluid one can find particles

moving with substantially different velocities, which means that essentially the problem of

inertial particles in a flow is more difficult than the related problem of tracers - it is kinetic,
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rather than hydrodynamic [11, 12, 46]. Recently significant analytical progress was possible,

by utilizing the Lagrangian approach, in one-dimensional temporally uncorrelated flows [33].

Following, G. Falkovich, S. Musacchio, L. Piterbarg and I have managed to obtain analytical

results on the Lagrangian dynamics of inertial particles in a one-dimensional random flow with

particular finite-time correlations [47]. The velocity gradients of the flow were set to obey the

telegraph noise statistics. The motivation behind our work was to study the effects of time

correlations on the dynamics of inertial particles. We discussed the asymptotic of short- and

long-correlated flows, as well as the fluid-tracer limit [47]. The dependence of the Lyapunov

exponent of particle trajectories on dimensionless parameters of the model revealed the presence

of a region in parameter space, where the Lyapunov exponent changes sign, thus signaling

the aggregation-mixing transition. Extensions of this model might turn out to be useful in

describing rain formation, clustering of dust in air, optimization of combustion processes in

engines etc.

Two examples of two-dimensional turbulence

Passive scalar contours

In many natural and engineering settings one encounters the advection of a passive substance

by a flow. The concentration of such a substance can exhibit complex dynamic behavior that

shows many phenomenological parallels with the behavior of a turbulent velocity field. The

”substance” could be a pollutant, as in the familiar case of smoke dispersing in the air; or it

could be heat, when a hot object is cooled in the flow; or a fluorescent dye mixed by a turbulent

jet etc. Yet the statistical properties of this so-called passive scalar turbulence are decoupled

from those of the underlying velocity field.

Few years ago passive scalar turbulence had yielded to mathematical analysis1. A close

link was discovered between the multipoint statistics of the advected fields and the collective

behavior of the separating Lagrangian (fluid) particles. Essential for this progress has been the

observation that anomalous scaling properties and coherent structures in a scalar field occur

1 More information on the passive scalar problem one can get from references in review articles, such as
[45, 91].

3



even for a scalar advected by a simple random Gaussian velocity field [60, 61, 63]. Now that

we know much about the statistics of moments of the passive scalar field in different velocity

fields, the question is can one go beyond moments and multi-point correlations functions of

the fields advected by a flow and consider an infinite-point object, a line? Statistics of the

isolines of passive scalar is of considerable practical importance, as it is the best characteristic

of convective mixing (what was inside the isoline stays inside).

A recent discovery in mathematics, the so called Schramm Loewner Evolution (SLE) lead

to an explosive growth of new results in mathematics, field theory and the theory of critical

phenomena [10, 23, 67]. In fluid dynamics SLE was used to characterize the isolines of vorticity

in the inverse cascade of two-dimensional flows [17, 24] and the isolines of temperature in

surface-quasi-geostrophic flows [18]. This discovery motivated G. Falkovich, K. S. Turitsyn and

myself to look at passive scalar contours in the case where the passive substance is carried

by a two-dimensional, incompressible, smooth, Gaussian and delta-correlated in time velocity

field (see Chapter 3). Such velocity fields are dubbed incompressible Kraichnan velocity fields

in Batchelor regime, c.f. [8, 60]. Most of the analytical results on the statistics of passive

scalar have been obtained for these flows. At present, even in this simplest case, there are no

analytical results about individual contours. The problem is notoriously difficult since we are

interested in single contours, and not the whole field of isolines. Objects of this kind are non-

local structures, parametrized with infinite number point, which can recombine and disappear

under the influence of forcing, advection and molecular diffusion. In [105] we have numerically

obtained the box-counting fractal dimension of the passive scalar contours at scales much larger

than the forcing scale. Within numerical accuracy, the result matches our heuristic prediction:

D0 = 3/2. We report on this work in Chapter 3.

Point vortices as a discretization of a 2D flow

With G. Falkovich and A. Shafarenko, we looked at an idealized two-dimensional turbulent flow

[106]. In nature there are many examples of nearly two-dimensional turbulence, for instance

large-scale motions in the atmosphere, shallow layers of a fluid, soap films etc. The steady state

of 2D-turbulence has two integrals of motion balancing it, and these cascade through scales.
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The energy flows upscale in an inverse cascade, while the enstrophy (integral of the square

of the curl of velocity) cascades down toward smaller scales (direct cascade). One of the most

relevant results in turbulence, since A. N. Kolmogorov’s 1941 work [58], is the discovery, of R. H.

Kraichnan, of the velocity spectrum (〈k|vk|2〉 ∝ k−5/3) in the inverse cascade of two-dimensional

incompressible turbulence [59].

Some properties of two-dimensional ideal flows can be modeled by a point vortex gas on

a plane, which is a variant of the Coulomb gas. The Coulomb gas description has been remark-

ably effective in condensed matter physics and quantum field theory. In particular, numerous

results were obtained for the equilibrium statistics of point vortex gases. However, nobody ever

managed, either numerically or analytically, to describe far-from-equilibrium states including

turbulence. In 1981 for a forced system of point vortices E. G. Siggia and H. Aref performed,

back then the state of the art numerics, and obtained what looked like an inverse cascade of

energy (the scaling matched the expected k−5/3; see [92]). Chapter 4 summarizes our efforts

to repeat this classical result. We have used the same numerical method as E. G. Siggia and

H. Aref, made larger runs that they did and nevertheless did not recover the k−5/3 scaling.

At this point it is unclear, whether k−5/3 was not observed, because of the approximations

introduced by the numerical method employed (”cloud-in-the-cell”) or maybe not all aspects

of two-dimensional turbulence can be modeled with point vortices. This inconsistency invites

a more fundamental question - as to what extent the model point vortices is an exemplar of

two-dimensional turbulence. For example, we know that a point vortex gas is dynamically con-

formally invariant, while the realistic two-dimensional turbulence is not (only certain features

of it have been conjectured to be conformally invariant [17, 81]). Answers to such profound

questions, regarding conformal symmetry in turbulence remain a matter of future research.

Non-equilibrium mixing accelerates computations

The last problem, presented in this thesis, is about Monte-Carlo (MC) sampling [100]. A guiding

principle in the development of MC sampling techniques has been the notion that equilibrium

systems evolve according to detailed balance. However it is known that detailed balance is

a sufficient, but not a necessary condition, for MC to converge to a steady state. If so, a

5



question naturally arises: Can one utilize non-equilibrium mixing to reach a given steady state

faster? The answer happens to be affirmative in many cases. Indeed, our work shows how to

build an irreversible deformation of a reversible algorithm, after which the sampling procedure

is substantially improved. To illustrate the general scheme M. Chertkov, K. S. Turitsyn and

myself have designed an Irreversible version of a well known Metropolis-Hastings algorithm

(which we will abbreviate as IMH) and have tested it on the example of a ferromagnetic spin-

chain with long-range interactions. The standard Metropolis-Hastings (MH) algorithm suffers

from the critical slowdown (a phenomena that, the mixing time diverges in the vicinity of a

phase transition), while IMH is free from it. The advantages of our algorithm, over many

other proposals, with likewise impressive convergence rates, is that it is generic (opposed to

model-specific suggestions) and rather easy to implement. With some further development the

ideas presented in Chapter 5 have the potential to be useful in studies of phase transitions, soft

matter dynamics, protein structures, granular media and etc.
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Part I

Clustering of particles in flows

7





1. Clustering of matter in waves and currents

Figure 1.1: Left: The Great Pacific waste patch is a gyre of marine litter in the central North Pacific
Ocean. It is characterized by high concentrations of plastics, chemical sludge, and other debris that
have been trapped by the currents of the North Pacific Gyre. It was first noticed by passing ships
and believed to be located roughly between 135 − 155 ◦W and 35 − 42 ◦N. Its size is alleged to be
humongous. The area is not visible on satellite images, since plastic poorly reflects light. To the best
of our knowledge, up to now no scientific studies on the size and density of the patch have been done.
Right: Leaves on water, Mint Springs Park, Virginia.

Propagating waves create drifts in fluids. Understanding how drifts produced by many

waves disperse pollutants has broad implications for geophysics and engineering. Clustering of

matter (debris, oil slicks, seaweeds or etc) on the surfaces of lakes, seas or pools, is well-known

empirically, yet there is no theory to explain this ubiquitous phenomena. Dynamical processes

like wave breaking and Langmuir circulations produce streaks of flotsam [99]. In a random flow,

such as sea stirred by wind or a storm, waves of various wavelengths and directions are running

about on the surface and interacting, and regions of compression and expansion are constantly

emerging and disappearing. Patchiness, in random flows, is presumed to be a signature of a

fractal measure forming on the surface (see e.g. [30, 32, 77, 94, 96] and Figure 1.2). Our work

established the role of small-amplitude waves (omnipresent on water surfaces) in that process
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1 Clustering of matter in waves and currents

and estimated how fast the fractal set on the surface is formed and what is its fractal dimension.

Figure 1.2: Inhomogeneous distribution of hollow glass particles floating in a water tank. A central
part (20×20mm) is taken from a typical image of particle distribution in random waves at high mean
concentration (3.8 particles per square mm). Inset: the histogram of particle concentration in the
boxes 0.96 × 0.96mm at low mean concentration (1.46 particles per square mm, n0 = 1.35 particles
per box). The straight line is P ∝ n−2 presumably due to caustics. The picture is taken from the
experiment, analyzed in [32].

Since surface flows are compressible even for incompressible fluids (∂xvx + ∂yvy = −∂zvz),

a theory describing this clustering phenomena should be based on the general description of the

development of density inhomogeneities in a compressible flow. An important characteristic of

the formation of small-scale inhomogeneities is minus the sum of the Lyapunov exponents, λ.

It gives the asymptotic logarithmic growth rate of the density on fluid particle trajectories at

large times, in other words λ is minus the average value of the velocity divergence seen by a

fluid particle. Notice that λ is always nonnegative. The physics behind this sign-definiteness

is apparent, namely there are more Lagrangian particles1 in the contracting regions, leading

to negative average velocity gradients in the Lagrangian frame [6, 86–88]. The two averages,

Lagrangian (average along fluid trajectories) and Eulerian average (space average), coincide

1 Lagrangian (or fluid) particles are infinitesimal fluid volume elements.
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only in the incompressible case. In our case, at initial time they coincide and are equal to zero,

since we assume that the measure was uniform at the beginning. Actually if one takes density

to be the phase space density and starts from equilibrium (which is characterized by a uniform

measure), then λ is the entropy production rate, and λ ≥ 0 is the consequence of the second

law of thermodynamics.

The density grows on most trajectories. In the limit of infinite time, it concentrates

on a constantly evolving fractal set characterized by a singular measure, the so-called Sinai-

Ruelle-Bowen measure (see e.g. [37]). For floaters, this means that they form a multi-fractal

structure on the surface2. This structure is the attractor of the two-dimensional dissipative

dynamics obeyed by the particles on the surface. The Kaplan-Yorke dimension of the attractor,

DKY ≡ 1+λ1/|λ+λ1|, is between one and two, assuming that the principal Lyapunov exponent

λ1 is positive [78].

The Eulerian compressibility, measured by the dimensionless ratio ℘ ≡ 〈(∂ivi)2〉/〈(∂jvi)2〉,

of surface flows is of order one, cf. [19]. Here angular brackets stand for spatial averaging, v

is the floaters velocity field, and ℘ changes from zero for an incompressible flow to one for a

potential flow. One expects λ ∼ λ1 from ℘ ∼ 1, so that the deviation of DKY from the surface

dimension 2 is also of order one, 2 − DKY ∼ 1. The expectation holds true for the flow on

the surface of three-dimensional turbulence. Performing numerical simulations with the full

three-dimensional Navier-Stokes equations, Boffetta et al. [19] found ℘ ≈ 0.5, DKY ≈ 1.15

and observed strong clustering on the surface, see also [20, 31, 39]. However, due to stable

stratification, underwater turbulence is relatively rare in the natural environment, and it is

important to consider other cases of surface flows, of which the small-amplitude surface waves

are probably the most wide-spread. Despite the amplitude smallness, a small-but-finite λ

produces a strong effect over time-scales of order 1/λ or larger. Thus to evaluate the role of

surface waves in the formation of the floaters inhomogeneities in the natural environment, one

needs to know how small is λ. In [103] we show that λ is of sixth or higher order in wave

amplitude. Let us note that for surface waves the degree of compressibility ℘ is due to linear

waves, which produce potential flow with ℘ = 1. Thus one could expect that the estimates

2 Some of the relevant theoretical papers are [4, 6, 13, 39, 41, 42, 45, 88, 111], while for experiments see
[7, 30, 32, 77, 83, 89, 95, 96].
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1 Clustering of matter in waves and currents

λ ∼ λ1 and 2−DKY ∼ 1 would hold for surface waves, as they do for the underwater turbulence.

We show that in fact for surface waves λ # λ1, under some natural non-degeneracy assumptions

[103].

1.1 Weakly nonlinear waves

The calculation of λ for random non-interacting waves was the subject of [4]; we considered it

in the case of weakly-interacting waves in [104]. In the first order in the wave amplitude, the

particles carried by surface waves stay in place after the wave passes. The mass transfer (Stokes

drift) and net clustering are nonlinear effects (see e.g. [9]), therefore an analysis of clustering of

floaters should take into account the nonlinearity of waves. In [4] the authors assumed a linear

relation between the velocity field of the floaters and the wave amplitudes, and considered a

Gaussian ensemble of non-interacting waves. The system nevertheless was nonlinear, since the

calculation involved expressing Lagrangian objects in terms of Eulerian ones. It was shown that

λ vanishes in the fourth order in the wave amplitude for longitudinal waves, whose dispersion

relation does not allow the same frequency for two different wave-vectors (e.g. sound, gravity,

capillary waves). On the other hand, the lowest order non-vanishing contribution into λ1 was

shown to be of the fourth order in the wave amplitude. Under the same assumption of the

linear relation between the velocity and the wave amplitudes, in [104] we demonstrated that

the account of the wave interactions does not change the conclusion of [4] on the vanishing of

λ in the fourth order in the wave amplitude.

1.2 Contribution of the surface curvature

The results mentioned above were inconclusive as far as surface waves are concerned, for which

the relation between the velocity and the amplitudes is nonlinear, due to a small but finite

curvature of the surface, see [112, 113]. For this case a separate calculation of λ was needed,

and in [103] we provide such a calculation. We consider weakly nonlinear surface waves and

show that neither the wave interactions, nor the nonlinear relation between the velocity and

the amplitudes, are sufficient to create a nonzero sum of the Lyapunov exponents up to the

fourth order in the wave amplitudes.
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1.3 The Green-Kubo formula for the clustering rate

1.3 The Green-Kubo formula for the clustering rate

The main tool of our analysis is a Green-Kubo type formula for the sum of the Lyapunov

exponents [41, 42]. This formula expresses λ in terms of the correlations of the flow divergence

in the particle frame. It describes the interplay between the particle motion and the local flow

compressions in accumulating density inhomogeneities, which become pronounced as a result

of the long-time evolution.

The evolution of the density field n(t, x) in a flow v(t, x) is governed by the continuity

equation ∂tn + ∇ · (vn) = 0, see [9]. In the Lagrangian frame this equation has a formal

solution: n[t, X(t, x)] = n(0, x) exp
{

−
∫ t

0 dt′w[t′, X(t′, x)]
}

, where X(t, x) is a Lagrangian

particle trajectory starting at time t = 0 from X(0, x) = x and w(t, x) ≡ ∇ · v(t, x) is the

divergence of the velocity.

In the previous section we argued that one can characterize the growth of spatial in-

homogeneities at large times by the asymptotic logarithmic growth rate λ, which is defined

like

λ ≡ lim
t→∞

1

t
ln

[

n[t, X(t, x)]

n(0, x)

]

= − lim
t→∞

1

t

∫ t

0

dt′w[t′, X(t′, x)]. (1.1)

The above limit is well-defined, see e.g. [37], and it gives minus the sum of the Lyapunov

exponents of the flow v(t, x). It was shown in [41, 42] that if v(t, x) is a random, spatially

homogeneous, stationary flow, then one can express it likewise as

λ =

∫ ∞

0

dt〈w(0, x)w[t, X(t, x)]〉 , (1.2)

where angular brackets designate spatial averaging. This expression is the central formula we

use to derive our conclusions. The derivation of Eq. (1.2), starting from the definition of λ was

published in [41]. In Appendix A we repeat the key steps of this proof.
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1 Clustering of matter in waves and currents

1.4 Relating Eulerian and Lagrangian averages

The slowness of the particle drift from its initial position allows us to express the correlations

in terms of the Eulerian correlation functions of the velocity. We shall apply Eq. (1.2) to the

case where v(t, x) is the two-dimensional velocity field governing the motion of the floaters in

a (quasi-)stationary ensemble of weakly nonlinear surface waves sustained by some forcing, see

[114]. We first use the amplitude smallness to express the Lagrangian correlation function in

Eq. (1.2) in terms of the velocity correlation functions given in the Eulerian frame. We follow

[104] who considered Eq. (1.2) in the case of arbitrary low-amplitude waves. For a dispersion

relation Ωk, considering packets with both the wave number and the width of order k, the

correlation time of w can be estimated as Ω−1
k and the correlation length as k−1. The particle

deviation from the initial position, X(t, x) − x, during the period, t " Ω−1
k , is ε = kv/Ωk # 1

times smaller than k−1 which allows to expand Eq. (1.2) near x. Performing the expansion to

order ε4 we find

λ ≈ λ2 + λ3 + λ4 , (1.3)

λ2 ≡
∫ ∞

0

dt〈w(0)w(t)〉 , λ3 ≡
∫ ∞

0

dt

∫ t

0

dt1

〈

w(0)
∂w(t)

∂xα
vα(t1)

〉

, (1.4)

λ4 ≡
∫ ∞

0

dt

∫ t

0

dt1

∫ t1

0

dt2

〈

w(0)vβ(t2)

(

∂w(t)

∂xα

∂vα(t1)

∂xβ
+

∂2w(t)

∂xα∂xβ
vα(t1)

)〉

. (1.5)

Here we suppressed the spatial coordinate x, over which the averaging is performed. The

expansion above was introduced in [104]. Note that all contributions λi are of fourth or higher

order in wave amplitude. We further evaluate this expression by a lengthy, but straightforward

calculation, which is reproduced in section 1.5 and appendices C and E.

To calculate of λ we use a basic statistical property of the wave turbulence: its approxi-

mate Gaussianity. To leading order in the small wave amplitude, the correlation functions of

appearing in the above expression for λ were calculated using Wick’s theorem for Gaussian

statistics. In Appendix B we elaborate on Gaussianity of wave turbulence.
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1.5 The clustering rate λ for weakly-interacting waves

1.5 The clustering rate λ for weakly-interacting waves

We start the consideration of (1.3) from the simplest case when the flow is solely due to weakly

nonlinear waves. The normal coordinates of such waves satisfy the equation ∂tak = −iδH/δa∗
k

while the velocity Fourier component is assumed to be given by vk = Ak(ak − a∗
−k). Here H

is the wave Hamiltonian, which can be expanded in wave amplitudes as follows [114]: H =
∫

dkΩk|ak|2a∗
k + 1

2

∫

dk123 (V123a1a∗
2a

∗
3 + c.c.)+ · · · . We do not write explicitly here other (third

and fourth-order) terms since they will not contribute λ up to ∼ ε4. We use throughout the

shorthand notations V123 = V123δ(k1 − k2 − k3) and V123 = V (k1, k2, k3), Ω(±ki) = Ω±i and

A(ki) = Ai. One derives the clustering rate up to ε4 using a standard perturbation theory

for weakly interacting waves (see [114] and Appendix C). The first term in (1.3) is the time

integral (the zero-frequency value) of the second moment. At the order ε2, the second moment

in the frequency representation is proportional to the delta function: 〈a∗(k, ω)a(k′, ω′)〉 =

(2π)d+2n(k)δ(ω − Ωk)δ(k − k′)δ(ω − ω′). A finite width over ω and a finite value at ω = 0

appear either due to finite linear attenuation (the case considered in [44]) or due to nonlinearity

in the second order of perturbation theory (which gives ε4 and is considered here). The second

term in (1.3) is the triple moment which appears in the first order of the perturbation theory

and the last term contains the fourth moment which is to be taken at the zeroth order (i.e. as a

product of two second moments). Straightforward calculations3 then give for weakly nonlinear

waves the ε4 contribution:

λ = Re

∫

dk2dk3

(2π)2d
δ(Ω2 − Ω3)n(k2)n(k3)

{
∫

dk1

(2π)d

×
[(

V ∗
213

Ω1
− V3−12

Ω−1

) (

(2π)3d+1|A1 · k1|2
V213

Ω1
(1.6)

− (2π)2d

Ω2
(A∗

1 · k1)(A2 · k2)(A
∗
3 · (k2 + k1))

)]

+ (1.7)

+
π

Ω2
2

|(A3 · k3)(A
∗
2 · k3) − (A3 · k2)(A

∗
2 · k2)|2

}

. (1.8)

3 Note that one can also define Feynman rules and use diagrams in order to calculate λ. This is an equivalent
approach and for completeness purposes it is given in Appendix C.
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1 Clustering of matter in waves and currents

The common factor δ(Ω2 −Ω3)n(k2)n(k3) tells that here we have the contribution of two pairs

of waves with the same frequencies. All three terms are generally nonzero (and positive) when

the dispersion law is non-monotonic or non-isotropic, so that Ω2 = Ω3 does not require k2 = k3.

In most interesting cases, however, Ωk is a monotonous function of the modulus k so that

k2 = k3. Let us show first that wave interaction does not contribute to λ in this case. Indeed,

the first two terms, (1.6,1.7), that came out of the first two terms of (1.3), are proportional to

the difference, V ∗
213−V3−12, between the amplitude of decay into a wave with k1 and confluence

with a wave with −k1. Interaction coefficients for k2 = k3 have rotational symmetry and are

thus functions of wave numbers so that V213 − V3−12 = V213 − V312 = V212 − V212 = 0. The last

term (1.8) comes from the last two terms of (1.3) and does not contain the interaction coefficient

V . This term is due to nonlinear relation between Eulerian and Lagrangian variables rather

than due to wave interaction. We can compare (1.8) with the growth rate of the squared

density for non-interacting waves, see (12) in [4] written there in terms of the energy spectrum,

Eαβ(k, ω) = 2πAα(k)A∗β(k)[n(k)δ(ω − Ωk) + n(−k)δ(ω + Ω−k)]. The comparison shows this

part of our logarithmic growth rate being exactly half the growth rate for the second moment

as it should be for a short-correlated flow [45]. Indeed, the process, of creation of density

inhomogeneities, is effectively short-correlated since the time it takes (1/Ωkε4 or longer) exceeds

the correlation time of velocity divergence in the Lagrangian frame, 1/Ωk. For monotonous

Ω(k), (1.8) is nonzero only if the polarization vector Ak is neither parallel nor perpendicular to

k, in other words if the polarization vectors contains both solenoidal and potential components.

This is not the case for most waves in continuous media. We therefore conclude that for most

common situations (in particular, for sound or for surface waves) the entropy production rate

is zero in the order ε4. We find it remarkable that the flow of random potential waves is only

weakly compressible (i.e. the senior Lyapunov exponent is much larger than the sum of the

exponents).

1.6 The clustering of matter in surface waves

Note that for surface waves, the canonical variables are elevation η(r, t) and the potential

φ(r, z = η, t) which are related to the surface velocity by a nonlinear relation v = ∇φ(r, η, t).
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1.6 The clustering of matter in surface waves

Expanding it in the powers of η, in the following section we show that this extra nonlinearity

does not contribute λ in the order ε4.

1.6.1 The velocity field of the floaters

To use the Eq. (1.3) to find λ to order ε4, we established the expression for the surface flow v

to order ε3 (see Appendix 1.6.1). The velocity field that governs the evolution of the floaters

coordinates r = (x, y) in the horizontal plane, has the following form

v(r, t) =

(

∂φ(r, z, t)

∂x
[z = η(r, t)] ,

∂φ(r, z, t)

∂y
[z = η(r, t)]

)

, (1.9)

where η(r, t) is the surface elevation and φ(r, z, t) is the velocity potential, v = ∇φ. In [112, 113]

Zakharov showed that the system of weakly interacting surface waves is a Hamiltonian system

with canonically conjugate coordinates η(r, t) and ψ(r, t) ≡ φ(r, η(r, t), t). The calculation of

the surface flow of the floaters to order ε3, needed for calculation of λ to order ε4, is given in

[103]. The result is

v = i

∫

dk1

(2π)2
k1 exp [ik1 · r] ψ1 − i

∫

dk12

(2π)4
exp [i(k1 + k2) · r] |k1|k2ψ1η2

− i

2

∫

dk123

(2π)6
ei(k1+k2+k3)·rψ1η2η3

(

|k1|2k2 + |k1|2k3 − 2
√

k2
1 + k2

2|k1|k3

)

, (1.10)

where h is the fluid depth and we introduced the shorthand notations ηi(t) = η(ki, t), ψi(t) =

ψ(ki, t), dkijl... = dkidkjdkl... and |k| = |k| tanh(|k|h). In the approximation of the infinitely

deep fluid, h → ∞, the above formula corresponds to formula (1.8) from [113]. Note that the

velocity field on the surface v(r, t) is neither potential, nor solenoidal.

Gaussianity of the wave turbulence4 is most succinctly expressed in terms of the normal

coordinates a(k, t) defined by:

η(k, t) =

√

|k|
2Ωk

[a(k, t) + a∗(−k, t)] , ψ(k, t) = −i

√

Ωk

2|k|
[a(k, t) − a∗(−k, t)], (1.11)

4 See Appendix B.
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1 Clustering of matter in waves and currents

where Ωk is the dispersion relation: Ω2
k = |k|(g + (σ/ρ)|k|2) tanh[|k|h], where g is the grav-

itational acceleration, σ is the surface tension and ρ is the density of the fluid. Then in the

Gaussian approximation the pair correlation functions are given by

〈a∗(k, t)a(k′, 0)〉 = (2π)2δ(k − k′)n(k) exp [iΩkt] , 〈a(k, t)a(k′, 0)〉 = 0, (1.12)

〈ψ(k, t)ψ(k′, 0)〉 =
Ωk(2π)2δ(k + k′)

2k
[n(k) exp (−iΩkt) + n(−k) exp (iΩ−kt)] ,

〈η(k, t)η(k′, 0)〉 =
k(2π)2δ(k + k′)

2Ωk

[n(k) exp (−iΩkt) + n(−k) exp (iΩ−kt)] ,

〈ψ(k, t)η(k′, 0)〉 =
(2π)2δ(k + k′)

2i
[n(k) exp (−iΩkt) − n(−k) exp (iΩ−kt)] . (1.13)

We now return to the expression for the sum of the Lyapunov exponents (1.3) and calculate λ

in Appendix E.

1.6.2 Results on clustering in surface waves

We have shown that the sum of the Lyapunov exponents for surface wave turbulence vanishes

in the fourth order in wave amplitude. Using the approximate Gaussianity of the statistics,

it is easy to see that the leading order term in λ is of the sixth order in wave-amplitude, or

higher (λ ! Ωkε6). For waves with a typical period of the order of seconds and not too small

ε = 0.1, we find that the time-scale 1/Ωkε6 is of the order of weeks. Thus, even if there is no

degeneracy in the sixth order and λ ∼ Ωkε6, the formation of the inhomogeneities would occur

at the time-scale of weeks and larger. It is unlikely that a low-amplitude wave turbulence would

persist for such time. Thus, we expect the turbulence of small-amplitude surface waves to have

a negligible effect on the formation of the floaters inhomogeneities in realistic situations. Let

us stress that this weak compressibility of surface waves holds in the sense of the long-time

action of the flow on the particles, while the characteristic value of the ratio of the surface

flow divergence to the curl is of order one. We argued in [103] that since the wave interactions

and the nonlinearity of the velocity-amplitude relation add to λ1 additional terms of the fourth

order in the wave amplitude and higher it is highly implausible that these terms produce exact

cancelation of λ1 in the fourth order. If so, we have the following order of magnitude estimates:

λ1 ∝ Ωkε4 and λ ∝ Ωkε6. It follows that surface wave turbulence is also weakly compressible
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1.7 Conclusions on clustering with surface waves

in the sense of the ratio λ/λ1 ! 1, which is of the second order in the wave amplitude. The

Kaplan-Yorke dimension of the particles attractor on the surface is close to the space dimension:

DKY ≈ 2 − λ/λ1 ≈ 2. For dimensionless exponents λ̃1 ≡ λ1/Ωk and λ̃ ≡ λ/Ωk we find the

order of magnitude relation λ̃ ∼ λ̃3/2
1 holding at small wave amplitudes. The above estimates

are supported by numerical simulations performed by [101] in a similar problem with standing

surface waves. It was shown there that both λ ! λ1 and 2 − DKY ! 1 hold. Moreover, the

numerical values of the dimensionless exponents λ̃, λ̃1 found there, can be easily seen to be in

agreement with the relation λ̃ ∼ λ̃3/2
1 . The box-counting dimension of the particles attractor on

the surface was found very close to DKY , which we expect to hold for wave turbulence as well.

The detailed calculations of the exact expressions for λ1 and λ are subjects for future work.

1.7 Conclusions on clustering with surface waves

We believe that our conclusion on the weak clustering in surface waves with a small amplitude

is an important step in identifying possible reasons for clusters of floaters observed on liquid

surfaces ubiquitously. Our results suggest that other mechanisms need to be explored, such as

the wave breaking and Langmuir circulation, see e.g. [99], the interplay of waves and currents

(see the next section and [104]) and others.

1.8 Interplay of waves and currents

We now consider the clustering rate in the presence of solenoidal currents and potential waves,

the situation most relevant for oceanological applications [79, 99]. The solenoidal flow u of

currents is weakly perturbed by potential waves moving with velocity field v. To derive λ

in the lowest (second) order in ε = kv/Ωk, we neglect the contribution of v into X in Eq.

(1.2) and assume ∂tX(t, x) ≈ u[t, X(t, x)]. In this order, w = ∇ · v is Gaussian and one

may integrate by parts: 〈w(0, x)w(t, X(t, x))〉 =
∫

dt′dx′Φ(t′, x′−x)〈δw[t, X(t, x)]/δw(t′, x′)〉.

Here Φ(t′ − t, x′ − x) = 〈w(t, x)w(t′, x′)〉 is the Eulerian correlation function and

λ ≈
∫ ∞

0

dt 〈Φ[t, J(t)]〉, J(t) ≡ X(t, x) − x. (1.14)
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Figure 1.3: Satellite image of a swirl near Japan with a plankton bloom in it. Eddies commonly
break off of the Kuroshio Current near Japan and go swirling about on their own for weeks or months,
trapping plankton inside.

Waves and currents are considered statistically independent in this order. Using the spectrum,

kαkβEαβ
k ≡ k2Ek, we can express Φ(t, r) = (2π)−d

∫

k2Ek cos(k · r−Ωkt)dk and rewrite (1.14)

as a weighted spectral integral:

λ = (2π)−d

∫

k2Ekµ(k) dk , (1.15)

µ(k) =

∫ ∞

0

〈cos [k · J(t) − Ωkt]〉 dt. (1.16)

The spectral weight µ(k) is the Lagrangian correlation time of the k-harmonic of w and is

expressed via the characteristic function of the particle drift J(t). Without currents Eqs.

(1.15,1.16) reproduce the first term of Eq. (1.3) since only the zero-frequency wave con-

tributes. Already a steady uniform current ū contributes the clustering rate in the order

ε2 if there are waves whose Doppler-shifted frequency is zero in the current reference frame:

λ = (2π)−d
∫

k2Ekδ(Ωk − k · ū)dk. Similar Cherenkov resonance has been noticed before for

diffusivity [3]. Let us stress that this result is based on the assumption that waves are inde-

pendent of currents; in particular, that there is no Doppler shift of the wave frequency. For

instance, that takes place when there is only a surface mean current. If, on the contrary, the
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1.8 Interplay of waves and currents

current is homogeneous across the depth brought into motion by a wave (of the order of a wave

length) for gravity waves or the whole water depth for inertio-gravity waves5) then Eq. (1.16)

needs replacing Ωk → Ωk + k · ū, and the effect of the mean current is zero due to Galilean

invariance.

Further on, we consider the fluctuating part of current velocity characterized by the rms

velocity u2
0 ≡ 〈u2〉 and the correlation time τ ≡

∫

〈uα(0, x)uα[t, X(t, x)]〉dt/u2
0. Accordingly,

there are two dimensionless parameters that describe spatial and temporal relationships between

wave and current parameters respectively: L ≡ ku0τ is the ratio between the distance passed

by the fluid particle during τ and the wavelength, and T ≡ Ωkτ is the ratio between the

correlation time of currents and wave period. The characteristic function 〈exp [ik · J(t)]〉 in

general depends on the details of the currents statistics, but it has universal behavior both at

t % τ and t & τ where general calculations are possible. On the plane of the dimensionless

parameters L, T we distinguish three regions of different asymptotic behavior, see Figure (1.4).
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Figure 1.4: The isolines of the dimensionless clustering rate µ(k)Ωk given by (1.20), here L = ku0τ ,
T = Ωkτ .

5 Inertio-gravity (also known as internal-gravity) waves are propagating under the influence of both buoyancy
and Coriolis forces.
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1.8.1 The ballistic limit

Consider first the ballistic limit when the integral Eq. (1.16) is determined by the times t ! τ .

In this case the drift velocity does not change much and J(t) ≈ u(0, x)t. Again, only those

waves contribute that are in a Cherenkov resonance with the current (whose phase velocity

coincides with the local projection of the current velocity): µ = π
〈

δ
(

Ωk−k ·u
)〉

. In this limit,

the weight µ is determined by the single-time probability distribution of the current velocity

which we denote P(u). In particular, for the isotropic Gaussian P(u) ∝ exp(−u2/2u2
0), we get

µ(k) = (πd/2)1/2(ku0)
−1 exp[−(

√
dΩk/

√
2ku0)

2] , (1.17)

The ballistic approximation and (1.17) hold when k2u2
0τ

2/d is much larger than both unity and

Ωkτ .

1.8.2 The diffusive limit

The second universal limit is that of slow clustering which proceeds for the time exceeding the

correlation time of currents. At t & τ , we use the diffusion approximation, 〈exp [ik · J(t)]〉 =

exp[−k2u2
0τ t/d], in (E.15):

µ(k) = τ
d(ku0τ)2

(ku0τ)4 + (dΩkτ)2
. (1.18)

The above formula and the diffusive approximation hold when both k2u2
0τ

2/d and Ωkτ are

small. Formulas (1.15,1.18) can be compared with the expression for the clustering rate for

waves with a linear damping, λ )
∫

k2Ekγk(Ω2
k + γ2

k)
−1dk [44]. We see that in this limit the

diffusive motion of fluid particles due to currents is equivalent in its effect to a damping of

waves with γk = k2u2
0τ/d, where u2

0τ/d is the eddy diffusivity.

1.8.3 Limit of fast-oscillating waves

The third asymptotic regime takes place for fast-oscillating waves when Ωkτ exceeds both

unity and k2u2
0τ

2/d. An integral of the fast oscillating exponent with a slow function,
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1.8 Interplay of waves and currents

∫ ∞

0 cos(Ωkt)f(t) dt, decays as Ω−2n−2
k , where 2n + 1 is the lowest order of the non-vanishing

derivative of f(t) = 〈exp [ik · J(t)]〉 at t = 0. When all odd derivatives at zero are zero, the

integral decays exponentially. We see that the answer depends on the details of the statistics

of currents.

If u[t, X(t, x)] is Gaussian and isotropic with

〈uα(0, x)uβ(t, X(t, x))〉 = (u2
0/d)δαβ exp(−|t|/τ) , then (1.19)

µ(k)= τ

∫ ∞

0

ds cos(Ts) exp
[

(L2/d)
(

1 − s − e−s
)]

. (1.20)

It gives both limits Eqs. (1.17,1.18) and

µ(k) = (ku0)
2/τΩ4

kd , (1.21)

at large Ωk since the lowest non-vanishing derivative is f ′′′(0). Isolines of Eq. (1.20) are shown

in Figure 1 for arbitrary parameters. Remind that the whole description based on Eq. (1.14)

is valid when v $ u.

If one interpolates between the ballistic and diffusive regimes (i.e. between J2 ∝ t2 and

J2 ∝ t) with the help of the function
√

1 + (t/τ)2 − 1, which is smooth at t = 0, then the

weight factor can be calculated analytically

µ(k) =
τL2

d
exp

(

L2

d

) K1

(

√

(L4/d2) + T 2
)

√

L4/d2 + T 2
. (1.22)

Here K1(x) is a Bessel function of an imaginary argument having the following asymptotics:

K1(x) =
√

π/2x exp(−x)[1 + O(1/x)] for x & 1 and K1(x) ' 1/x + O(x ln(x)) for x $ 1.

We see that (1.22) reproduces (1.17, 1.18) in the regions L2/d & 1, L2/d & T and L2/d $ 1,

T $ 1 respectively. At the fast-oscillation limit one gets an exponentially small contribution

µ(k) = τ

√

π(ku0)4τ

2d2Ω3
k

e−Ωkτ . (1.23)

That concludes the analysis of the weight µ(k) and we can now turn to (1.15) to get the
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1 Clustering of matter in waves and currents

clustering rate λ.

When the wave spectrum is not particularly wide (with the width comparable to k) we

get

λ ! (kv)2µ(k) = ε2Ω2
kµ(k) . (1.24)

Let us now find out which wavenumbers contribute (1.15) when the spectrum is wide. We

assume an isotropic power spectrum Ek ∝ kb−d between some kmin and kmax and the dispersion

relations Ωk = Cka [114]. First, we consider the ballistic regime. For (a > 1 ∧ b > 0) ∨ (a <

1∧b < 0) the wavenumber k∗ = [bu2
0/dC2(a−1)]1/(2a−2) determines λ. For (b ≤ 0∧a > 1)∨(b <

−1∧a = 1) the clustering rate is determined by kmin, while for (b ≥ 0∧a < 1)∨(b ≥ −1∧a = 1)

by kmax. Let us give physical examples using Kolmogorov spectra of waves. For capillary waves

on a deep water, Ωk ∝ k3/2 and Ek ∝ k−11/4, and λ is determined by kmin i.e. by longest waves

in the wave turbulent spectrum (assuming the ballistic approximation is valid for them). For

gravity waves on a deep water, Ωk ∝ k1/2, and for both Kolmogorov solutions, Ek ∝ k−20/6 and

Ek ∝ k−7/2, the clustering rate is determined by waves around k∗. The clustering rate in the

difusive regime is determined by kmax if b ≥ max[2a − 4, 0] and by kmin if b < max[2a − 4, 0].

1.9 Results on clustering with waves and currents

The asymptotic behavior estimates, given in Eqs. (1.17,1.18,1.21,1.23), show that λ/(ε2Ωk) !

Ωkµ(k) is a dimensionless function which has a maximum of order unity either in the ballistic

regime where the phase velocity of waves is comparable to the current velocity or in the diffusive

regime where the eddy diffusivity u2
0τ is comparable to Ωkk−2 (in the third asymptotic regime

λ/(ε2Ωk) is always small). In those cases, λ/Ωk ! ε2, i.e. the degree of clustering during a

period is the squared wave nonlinearity (typically ε is between 0.1 and 0.01). Such clustering is

pretty fast (minutes for meter-sized gravity waves and a week for fifty-kilometer-sized inertio-

gravity waves). Therefore, it is likely that the interplay between waves and currents is the

source of inhomogeneities of floater distribution in many environmental situations.

Clustering leads to fractal distribution of floaters over the surface. When compressible

component of the velocity is small, the Lyapunov exponents are due to the current flow, λ1 ∼

λ2 ∼ τ−1. Then, the fractal dimension of the density distribution can be expressed by the
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Kaplan-Yorke formula 1 + λ1/|λ2| = 2 − λ/|λ2| ≈ 2 − λτ . The fractal part reaches maximum

in the ballistic regime when Ωk # ku0, then λτ # ε2Ωkτ = ε2k$ grows with $ = u0τ and

reaches order unity when k$ # ε−2. Therefore, the distribution is most fractal when waves are

weak and short while currents are long and strong. For example, meter-sized gravity waves

on a water surface will produce most inhomogeneous distribution of floaters when there are

currents with velocities in meters per second and scales in hundreds of meters. We see that

the current-to-wave ratio of scales, k$, compensates for a small wave nonlinearity, ε2, so that

even weak waves with the help of solenoidal currents can produce highly inhomogeneous fractal

distribution of matter.

1.10 Remark on entropy production rate in dynamical systems

Apart from fluid mechanics, one can think about the evolution of a dynamical system as a flow in

the phase space and treat density as a measure. Solenoidal (incompressible) flow corresponds to

Hamiltonian dynamics and to a constant (equilibrium) measure. Compressibility corresponds

to pumping and damping, i.e. to non-equilibrium. Indeed, the notion of singular (fractal)

measures first appeared in non-equilibrium statistical physics [21, 37, 93] and then was applied

in fluid mechanics [6, 13, 45, 95, 96]. Therefore, the formulas (1.14–E.15, 1.18–1.23) also

describe the entropy production rate in dynamical systems under the action of perturbations

periodic in space and in time.
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2. Particles in a flow with time correlations

This chapter is about suspensions of dust, droplets, bubbles or other small impurities in fluids.

Particles suspended in flows have finite sizes and their mass density usually different from

the density of the carrier fluid, hence inertia causes particles to lag behind the flow. Among

specialists they are referred to as inertial particles. Such particles have vastly different dynamics

from point like tracers. First surprise with inertial particle came in 1987, when M. R. Maxey

showed that no matter how weak the inertial effects are, they can not be neglected. Inertia of

particles renders the effective flow to be compressible. Namely the dynamics of weakly inertial

particles in an incompressible flow can be approximated by the dynamics of point like traces in

a weakly compressible flow [72]. Mathematically, inertia is a singular perturbation since it adds

a higher-order derivative (d2/dt2) to the equation. Yet another interesting observation is that

in the same small portion of the fluid one can find inertial particles moving with substantially

different velocities, which makes the problem of dynamics of inertial particles of kinetic, rather

than hydrodynamic nature [11, 12, 46].

At long times inertial particles concentrate on singular sets evolving with the fluid motion,

leading to the apparition of a strong spatial inhomogeneity dubbed preferential concentration.

The spontaneous formation of clusters of particles suspended in chaotic flows may originate

from two different physical processes: compressibility of the fluid flow and particle inertia. Sur-

prisingly enough it has been shown that in compressible flows, where fluid trajectories coalesce,

large enough inertia can induce a transition from the strong clustering regime (aggregation)

into a weak clustering one, where particle trajectories remain chaotic, and the senior Lyapunov

exponent is positive [34, 73, 74, 108]. Previously analytic results on this aggregation-mixing

transition have been obtained under the assumption that the underlaying flow is uncorrelated

in time [33]. In [47] we tried to answer how time correlations can influence the aggregation-
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2.1 The model

Figure 2.1: Rain drops in clouds are examples of inertial particles driven by flow of air. Photograph
show clouds in Israel, close to the Jordan river.

mixing transition. We introduced a one-dimensional model for the Lagrangian dynamics of

inertial particles in a flow, where the fluid velocity gradients follow telegraph noise statistics.

In parallel, with our work, the same time-correlated model flow was used also to describe the

dynamics of point-like tracers in one and two spatial dimensions [43]. The inspiration behind

our work was to investigate if the dynamics of inertial particles in time-correlated flows is

qualitatively different, compared to the dynamics of these particles in time uncorrelated flows.

2.1 The model

Particles that we consider are so small, that the flow around them is viscous. Motion of each

particle is described by a Newton equation, which includes the gravitational and the viscous

(Stokes) force: v̇i(t) = τ−1 (ui[t, ri(t)] − vi(t)) + g, where τ = (2/9)(ρ0a2/η) is the Stokes time,

a is the particle radius, ρ0, ρ are the particle and fluid densities respectively, η is the dynamical

flow viscosity and g is the gravitational acceleration. The fluid velocity u(t, r) is a given random

function of time and space. The separation of a pair of particles R(t) ≡ r1(t)−r2(t) with relative
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2 Particles in a flow with time correlations

Figure 2.2: For the problem of planetary formation one seeks a mechanism to gather small dust
particles together into aggregates. Dust particles are also examples of inertial particles. Authors in [22]
introduce a scenario in which turbulence mediates this process by aggregating dust into anticyclonic
regions. Distribution of dust in the disk (left) and the vorticity field (right) after about t ∼ 15 (at
r = π/6 a typical rotation time is T " 1.15. It is determined by Kepler’s law of motion). Figures are
taken from [22].

velocity V (t) ≡ v1(t) − v2(t) is governed by the following system of equations

Ṙ(t) = V (t) ,

V̇ (t) =
1

τ
(U [t, R(t)] − V (t)) , (2.1)

where U [t, R(t)] ≡ u1[t, r1(t)] − u2[t, r1(t)]. At small separations one can assume U [t, R(t)] =

s(t)R, where s(t) is local velocity gradient (taken in the Lagrangian frame). Note, that so far

we have two timescales in our problem: the Stokes time τ and the inverse velocity gradient 1/s

(where s labels some characteristic value of s(t); bellow we will take this characteristic value to

be the r.m.s. value of s(t)). Their ratio is an important dimensionless parameter of the system:

the Stokes number, St ≡ sτ .

The equations (2.1) behave very differently for positive and negative velocity gradients.

Positive gradients |s| expand the system towards the asymptote V = ξR, where ξ = (−1 +
√

1 + 4St)/(2τ). In such gradients a pair of particles separates exponentially with a rate smaller

that the rate of fluid trajectories ξ < s. On the other hand at negative velocity gradients, −|s|,

28



2.1 The model

the separation of particles contracts. Depending on the relative intensity of fluid gradients and

inertial drag two scenarios of contraction are observed. At small Stokes numbers St < 1/4 the

system evolves toward the asymptote V = ζR, where ζ = (−1 +
√

1 − 4St)/(2τ). Particles

slow down less efficiently than the fluid, and hence their separation goes to zero with a faster

exponential rate |ζ | > s. While at large Stokes numbers St > 1/4 the system has two complex

conjugate eigenvalues ζ = (−1± i
√

4St − 1)/(2τ) and the solution decays exponentially with a

clockwise spiral motion on the (R, V ) plane. Particles now collide (cross the R = 0 axis) with

a nonzero relative velocity, which gives rise to shocks [46]. The critical value of Stokes number

at which shocks start to appear, distinguishes between small and large Stokes number regimes:

St∗ = 1/4. Presence of such critical Stokes number is a characteristic of flows where fluid

velocity gradient values are bounded. Conversely, if the statistics of the fluid velocity gradient

is unbounded, shocks can appear at arbitrarily St, but they are exponentially suppressed in the

limit St → 0 [33, 46].

2.1.1 Telegraph noise

We assume that the velocity gradient has telegraph noise statistics, i.e. s(t) is a two state

Markov process (s1 = |s|, s2 = −|s|), with correlation time ν−1 (ν = ν1 + ν2). The transition

rate νi describes the transition j → i, e.g. ν2/ν is the fraction of time that the particle pair

spends in the regions of compression. Since in potential flows particles spend more times in

regions of local compression than in expanding regions, we set ∆ν ≡ ν2 − ν1 > 0. The mean

value of s(t) noise is s0 ≡ 〈s(t)〉 = −s∆ν/ν, while the noise fluctuations are exponentially

correlated 〈s(t)s(t′)〉 = 4s2(ν1ν2/ν2) exp(−ν|t−t′|). An important observation is that s2(t) = s2

is a constant, this will prove to be crucial for the solvability of our model. Time correlations

introduce a third time scale in our problem - the velocity gradient correlation time ν−1. Hence,

there is another dimensionless parameter of interest: the Kubo number Ku ≡ s/ν.

The introduced model is analytically tractable. One can write systems of ordinary differ-

ential equation on the evolution of various correlation functions of the form 〈αk(t)φ[t, α(τ)]〉,

where k = 1, 2, ...;0 < τ ≤ t; t = 0 is the moment of imposing initial conditions and φ is a func-

tion of t and an arbitrary functional of α(τ). Next for a stationary random process whose first
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2 Particles in a flow with time correlations

moment is zero and the second moment is an exponentially decaying function of the relative

time there is a way to split the correlation functions by using the formulae of differentiation.

Note that α(t) fulfills these requirements: 〈α(t)〉 = 0 and 〈α(t1)α(t2)〉 ∝ exp [−ν|t1 − t2|]. Thus

in the case we are considering the formulae of differentiation hold and they are

d

dt
〈αk(t)φ[t, α(τ)]〉 = −ν〈αk(t)φ[t, α(τ)]〉 + 〈αk(t)φ̇[t, α(τ)]〉 + ν〈αk(t)〉〈φ[t, α(τ)]〉 , (2.2)

〈αk(t)α(t1)...α(tn)〉 = −ν〈αk(t)α(t1)...α(tn)〉 + ν〈αk(t)〉〈α(t1)...α(tn)〉 , (2.3)

here n = 1, 2, .... These formulae were introduced in 1978 by V. E. Shapiro and V. M. Loginov

in [90]. In our model, for a large class of functionals φ[t, α(τ)] one obtains a closed system of

ODEs, due to the peculiar feature of the telegraph noise statistics: s2(t) = s2 is a constant.

 0.01

 0.1

 1

 10

 0.01  0.1  1  10  100

Ku
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!>0

!<0

Figure 2.3: The isolines of the Lyapunov exponent λ on the plane of Stokes (St ≡ sτ) and Kubo
(Ku ≡ sν−1). The isolines are spaced every 0.02 s (dotted and solid lines). The boundary of the
chaotic region (λ > 0) is represented by the dot-dashed line. The physically relevant region in (St,Ku)
parameter space is below the solid line (see subsection 2.1). The solid line represents the upper bound
for the Kubo number achievable in the system Ku ≤ Ku∗ = 2St/(

√
1 + 4St − 1).

As already mentioned, in potential flows both fluid and inertial particles tend to spend
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2.2 Results

more time in regions of local compression than in expanding regions, this sets ∆ν > 0. The

assumptions of statistical homogeneity and isotropy of the flow specify the actual value of ∆ν.

The mean position of a particle is solely determined by its initial position (i.e. the distance

R is statistically conserved, 〈R〉 = const), due to these symmetries. Using the formulae of

differentiation one easily obtains the evolution equations for moments: 〈R〉, 〈V 〉, 〈αR〉 and

〈αV 〉. They form a closed system of equations and allow for a constant solution for 〈R〉, only

when ∆ν = s/(1+ντ) . From this condition on ∆ν we observe that inertia reduces the trapping

of particles in compressing regions. This effect is encoded in the behavior of the parameter ∆ν,

which is a decreasing function of Stokes time τ , and vanishes in the limit τ → ∞. The positivity

of ν1 requires ∆ν < ν, and gives an upper bound for the Kubo number achievable in the system

Ku ≤ Ku∗ =
2St√

1 + 4St − 1
. (2.4)

In the limit of fluid tracers, τ → 0, the constraint becomes Ku < 1. The accessible region in

(St, Ku) parameter space is shown in Figure (2.3) below the solid line.

2.2 Results

In the sections below we study the statistics of the particle-velocity gradient, the Lyapunov

exponent, the Lyapunov moments and the limits of short- and long-correlated flows. Also,

where appropriate we discuss the comparison with the fluid-tracer case.

2.2.1 The statistics of the particle-velocity gradient

From the system of equations (2.1) one can obtain the equation for the particle-velocity gradient

σ(t) = V (t)/R(t)

σ̇(t) = −σ2(t) − τ−1 [σ(t) − s(t)] . (2.5)

Before proceeding forward, as a side remark note that in the one-dimensional case the substitu-

tion R = Ψ exp[−t/2τ ] turns this equation into the Schrödinger equation, Ψ̈−sΨ/τ = Ψ/(4τ 2),
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2 Particles in a flow with time correlations

where time has the role of space1.

Next we use the formulae of differentiation (2.2,2.3) and obtain a system of equations for

the averaged over noise stationary Probability Distribution Function (PDF) of x ≡ σ +1/(2τ),

p(x) ≡
∫

dαP(x, α)/τ , where we denote P(x, α) as the joint stationary PDF of x and α. The

equations on p(x) are

[(

1

4τ 2
− x2 +

s0

τ

)

p

]

x

+ qx = 0 , (2.6)

[(

1

4τ 2
− x2 − s0

τ

)

q

]

x

+

(

s2 − s2
0

τ 2

)

px + νq = 0 , (2.7)

where q(x) ≡
∫

dαP(x, α)α/τ . The first equation yields q = −(C + (1/4τ 2 − x2 + s0/τ)p), and

here C should be understood as the mean flux of x. Substituting q in the second equation we

get the equation on p(x)

[

s2

τ 2
−

(

1

4τ 2
− x2

)2
]

px +

[

(4x − ν)

(

1

4τ 2
− x2

)

− ν
s0

τ

]

p + C(2x − ν) = 0 . (2.8)

At large |x| the PDF behaves like p(x) ∼ C/x2 (C > 0) which gives the probability of strong

particle velocity gradients, and is therefore related to the probability of shocks. For small-

Stokes-number (St < St∗) the PDF is bounded, while for large-Stokes-number (St > St∗) it

is unbounded. We discuss the form of the PDF in some detail in the subsections below. The

schematic in Figure 2.4 summarizes the different regions in the parameter space (St, Ku) where

the transitions occur in the PDF of x.

The small Stokes number limit

At small Stokes numbers, St < St∗ and zero flux (C = 0) there is a unique positive integrable

solution of Eq. (2.8) has the following form

p(x) = C1
(w − x)m−1(x − w̃)m̃−1

(w + x)m+1(x + w̃)m̃+1
for x ∈ (w̃, w) , (2.9)

1 The telegraph model for the Schrödinger equation was used by M. M. Benderskii and L. A. Pastur to evaluate
the density of states [16].
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2.2 Results

Figure 2.4: Parameter space (St,Ku). Shape transitions in the PDF of the particle velocity gradient
x occur at St = St∗ = 1/4 (vertical solid line), m̃ = 1 (dashed line) and m = 1 (dash-dotted line).
Labels refers to the PDFs shown in Figures 2.5 and 2.6. The gray area is not physically relevant.
Crosses represent the boundary of the chaotic region

here

w =
√

1 + 4St/2τ , m = (ν + ∆ν)/4w ,

w̃ =
√

1 − 4St/2τ , m̃ = (ν − ∆ν)/4w̃ .
(2.10)

The solution is localized in the compact interval (w̃, w), outside of this interval p = 0. Its

shape is determined by the values of m and m̃. For m̃ < 1 (low frequency) the PDF is peaked

around the two border values. For m < 1 < m̃ (intermediate frequency) it vanishes at w̃, and

finally when m > 1 (high frequency) it vanishes both at w̃ and w (see Figure 2.5). Indeed,

when St < St∗, the solution of the linear system for (R, V ) oscillates between two asymptotes

V = (w−1/2τ)R and V = (w̃−1/2τ)R according to the sign of the noise. If the noise frequency

is low the system has enough time to get close to the two asymptotes and the PDF is peaked

around them. Conversely, when the sign of the noise switches frequently, the system does not

have enough time to reach the asymptotes and oscillates rapidly around the mean value.
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Figure 2.5: PDF of x ≡ σ+1/(2τ), where σ is the particle-velocity gradient and τ is the Stokes time
in the small Stokes regime (St = 1/8) for different values of Kubo number: Ku = 1/8 (a), Ku = 1/16
(b) and Ku = 1/24 (c).

The large Stokes number limit

At St > St∗ the solution of (2.8) consists of two different parts

p(x) = Cp1(x) + C2p2(x) . (2.11)

The first one is the solution of (2.8) with C = 1,

p1 =
|w − x|m−1

|w + x|m+1(x2 + w̃2)
en(arctan(x/w̃))

∫ x

−w

dy
|w + y|m+1(ν − 2y)

|y − w|m−1(w2 − y2)
e−n(arctan(y/w̃)) , (2.12)

while the second one is the right tail of the solution of the homogeneous (flux-less) equation:

p2 =
|w − x|m−1

|w + x|m+1(x2 + w̃2)
en(arctan(x/w̃))Iw,∞(x) . (2.13)
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Figure 2.6: PDF of x ≡ σ+1/(2τ), where σ is the particle velocity gradient and τ is the Stokes time,
in the large Stokes regime (St = 1) for different values of Kubo number: Ku = 0.1 (d) and Ku = 1
(e).

Here Iw,∞(x) is the characteristic function (indicator) of the interval (w,∞), and

w =
√

4St + 1/2τ , m = (ν + ∆ν)/4w ,

w̃ =
√

4St − 1/2τ , n = (ν − ∆ν)/2w̃ .
(2.14)

Conditions for determining C and C2 are:
∫

p(x)dx = 1 and
∫

q(x)dx = 0. These conditions

guarantee the continuity of the PDF in the limit St → St∗ (see Appendix G). The PDF obtained

in the regime St > St∗ is extended over all real x, with power-law tails p ∼ C/x2 for large |x|

that are due to shocks, which occur for large negative values of s(t). For short-correlated noise

(m > 1), the PDF is characterized by an asymmetric core localized between −w and w. When

m < 1 a singular peak arises at x = w (see Figure 2.6). This behavior is easily understood

in term of solution of the linear system for (R, V ). When s(t) = +|s| the solution converges

toward the asymptote V = ξR = (w−1/2τ)R. This produces the peak at x = w, provided that
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Figure 2.7: The Lyapunov exponent λ as a function of the Kubo number. An interval of positive
Lyapunov exponents appears for St ! 4.3. The dashed line represents the asymptotic behavior for
Ku = Ku∗.

the correlation time of the noise is long enough (m < 1) to get close to the asymptote. The

large-Stokes number regime is hence characterized by an infinite series of shocks alternated to

”quiet” phases in which the particle-velocity gradient relaxes toward ξ.

2.2.2 The Lyapunov exponent

The Lyapunov exponent of particle trajectories can be obtained from Eq. (2.5 as an ensemble

average λ ≡ 〈x(t)〉 − τ/2 over different realizations of noise. For St < St∗ the mean value

〈x(t)〉 can be written in terms of hypergeometric functions of two variables (see [47]). The

behavior of the Lyapunov exponent as a function of Stokes and Kubo number is shown in

Figure 2.3. Lyapunov exponent is negative for small Stokes, and decreases approximately as

λs−1 ∼ −Ku at increasing Ku numbers. In the limit St → 0, the exponent recovers the actual

value for fluid tracers [43]: λ0 ≡ limτ→0 λ = −s2/ν. Notice that fluid tracers are always in

the aggregation regime within this model, as signaled by the negative value of λ0. A sharp

negative minimum λ = −2s is found for St = 1/4 at Ku = (
√

2 + 1)/2. It corresponds to the

maximum aggregation of particles. As the correlation time of the flow decreases, the minimum
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becomes less pronounced, and it moves to larger Stokes numbers. A region of positive Lyapunov

exponents is present in the parameter-space for St ! 4.3. The isoline of vanishing Lyapunov

exponent, which border this region, represents the transition from the strong clustering regime

(λ < 0) to the chaotic regime (λ > 0). Indeed, Figure 2.7 shows that, as Stokes number

increases, the interval of Kubo numbers appears where the Lyapunov exponent grows, and

eventually becomes positive. This can be understood as follows: to achieve an effective mixing

the correlation time of the fluid gradients must be long enough to provide substantial stretching

of particle trajectories, but not too long, to avoid particle segregation in compressing regions.

Therefore, the chaotic region is confined in bounded window of Ku numbers, where the lower

bound is determined by stretching efficiency and particle trapping sets the upper bound.

2.2.3 Lyapunov moments

We also considered the behavior of the Lyapunov moments γn, defined as 〈Rn〉 ∼ exp(γnt).

The evolution of 〈Rn〉, for n positive integer, is determined by a closed system of 2(n + 1)

equations. Details of the calculations are given in Appendix H. There is no simple explicit

expression for γn in general. Taking the limit of vanishing inertia, St → 0, one recovers the

Lyapunov moments of fluid tracers [43],

γn =

√

(ν

2

)2
+ s2(n2 − n) − ν

2
. (2.15)

The asymptotically linear behavior of γn for large n is the hallmark of the presence of an upper

bound for velocity gradients.

2.2.4 Short-correlated flows

Next we examine the limit of short-correlated flows. In order to recover the δ-correlated noise

fluctuations 〈s(t)s(t′)〉 = 2Dδ(t− t′), the limit ν → ∞ must be taken keeping constant s2/ν =

D. Meaning as the Kubo number Ku = s/ν tends to zero the Stokes number St = sτ should

grow, so that the product KuSt = s2τ/ν = Dτ , remains constant. In this sense, the short

correlated limit for inertial particles correspond always to the large-inertia case. In the delta-
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Figure 2.8: Lyapunov exponent λ ≡ 〈x(t)〉 − τ/2 in short-correlated flows.

correlated limit the relevant time-scale associated to fluid velocity gradients is given by the

Lyapunov exponent of fluid tracers λ0 = −s2/ν = −D. This is confirmed by the collapse of

particle Lyapunov exponents in the short-correlated limit once their intensity and Stokes times

are re-scaled with |λ0| (see Figure 2.8). A noticeable minimum is observed for |λ0|τ = Ku St %

0.05 and a transition to chaos, i.e. from negative to positive λ, occurs for Ku St ! 1.6. These

features are in qualitative agreement with previous analytic and theoretical results obtained in

the framework of δ–correlated flows [33, 108]. Notice that in those studies Gaussian statistics

is assumed for velocity gradients, at variance with our model in which only the two values ±s

are allowed. Therefore quantitative details such as the exact position of the minimum can be

different.

We remark that in the short–correlated asymptotics, the fluid–tracers limit becomes sin-
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gular. Indeed one has

lim
ν→∞

s0 = lim
ν→∞

− s2

ν(1 + ντ)
=







−D τ = 0

0 τ > 0
, (2.16)

which signals that fluid tracers are still preferentially attracted by regions of ongoing compres-

sion, while inertial particles with arbitrary finite τ are not. Notice that in the limit ν → ∞

fluid velocity gradients become unbound because s → ∞, and for fluid tracers we recover the

quadratic behavior of Lyapunov moments γn = D(n2 − n).

2.2.5 Long-correlated flows

Time correlation of fluid gradient is bounded by the maximal Kubo number, see Eq. (2.4).

When Ku = Ku∗ the transition rate ν1 from −s to s vanishes, while the transition rate ν2

from s to −s reaches its maximum ν∗ = (
√

1 + 4St − 1)/(2τ). Particles initially seeded in

expanding regions are gradually captured by contracting ones, where they remain trapped

forever. Therefore the population of expanding regions decreases exponentially as

P (t) ∼ exp(−ν∗t). (2.17)

Moments of particle separations will consequently evolve asymptotically according to

〈|R|n〉 ∼ enξtP (t) + (1 − P (t))enRe(ζ)tf(Im(ζ)t) , (2.18)

where ζ = (−1 ± i
√

4St − 1) and f(t) is a periodic function, with a period 2π. Notice that

ν∗ = ξ and therefore for n = 1 the decreasing fraction of particle in expanding regions is

exactly balanced by the exponential growth of their separation. From (2.17,2.18) the Lyapunov

moments of 〈|R|n〉, γ̃n, are

γ̃n = ξ(n − 1) for n ≥ (ξ − Re(ζ))−1 ,

γ̃n = Re(ζ)n for n ≤ (ξ − Re(ζ))−1 .
(2.19)

39



2 Particles in a flow with time correlations

-2

-1.5

-1

-0.5

 0

 0.01  0.1  1  10  100

!s
-1

St

10-2

10-1

100

10-2 10-1 100

103102101100
10-3

10-2

10-1

Figure 2.9: Lyapunov exponent λ for Ku = 1 (solid line) and on the line Ku = Ku∗ (dashed line),
corresponding to the longest correlation of velocity gradients achievable within the model. Upper

inset: asymptotic behavior for large Stokes number λs−1 ∼ St−2/3 (dotted line), (Ku = 1). Lower

inset: asymptotic behavior for small Stokes number |λ − λ0|s−1 ∼ Stζ (dotted line).

In the limit of fluid tracers one obtains γ̃n = s(n − 1) for n ≥ 1/2 and γ̃n = −sn for n ≤ 1/2,

in agreement with Eq. (H.5). Finally, the Lyapunov exponent along the critical line Ku = Ku∗

is λ = (∂γ̃n/∂)|n=0 = Re(ζ). In Figure 2.9 we compare its behavior with that of the Lyapunov

exponent along the line Ku = 1. For small Stokes number both of them recover the fluid-tracers

limit λ → λ0 = −s, but with different power law behavior. On the line Ku = Ku∗ we have

|λ − λ0|s−1 ∼ St, while for Ku = 1 we have |λ − λ0|s−1 ∼ St2 (see lower inset of Figure 2.9).

For large Stokes number Lyapunov vanishes as λs−1 ∼ −St−1 on the line Ku = Ku∗ and as

λs−1 ∼ St−2/3 for Ku = 1 (see upper inset of Figure 2.9). In between these two asymptotics a

sharp minimum appears for St = St∗.

The asymptotic decay St−2/3, here shown for long-correlated flows, has been already

predicted and observed also for δ-correlated flows [15, 49]. The agreement between these results

confirms that in the large-Stokes number limit the role of time correlation becomes insignificant
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and particles behave as if suspended in δ-correlated-in-time flows.

2.3 Conclusions

In spite of its simplicity our model reproduces the phenomenon of trapping of particles in

compressing regions for time-correlated flows. The telegraph noise statistics represents a special

case of time-correlated statistics, for which the Lagrangian dynamics of inertial particles is

amenable to analytical treatment. We studied the effects of finite-time correlations of velocity

gradients on the trajectories of inertial particles. Also, we obtained numerical results on the

dependence of the Lyapunov exponent on Stokes and Kubo numbers (see Figure 2.3). We

derived the Lyapunov moments and have discussed the asymptotics of long- and short-correlated

flows, as well as the fluid-tracers limit.

For large Stokes numbers, a regime characterized by the formation of shocks, we found

a chaotic region in parameter space (St, Ku), where the Lyapunov exponent becomes positive.

From this finding we concluded that inertia is responsible for the transition from a strong

clustering regime, originated by the compressible nature of the flow, to a chaotic regime. The

latter is observed in a range of Kubo numbers such that the time correlation of fluid gradients

is long enough to provide substantial stretching, but not too long to cause particles to remain

trapped in a compressing region.

2.3.1 Further directions

Many of the complex phenomena which occur in real flows are beyond the scope of this model.

In particular it would be very interesting to study the effects of preferential concentration

(strong spatial inhomogeneity) in hyperbolic regions. The increase of chaoticity of inertial

particle trajectories in turbulent flows is commonly believed to be the consequence of these

effects [14]. For such a study a two-dimensional extension of the model is needed. However a

two-dimensional case is still an unsolved problem even in time uncorrelated flows. Namely this

problem is formally equivalent to another unsolved problem in physics - dynamics of spins in a

random magnetic field2. Another possible direction is to characterize the structures which are

2 Mapping to the spin problem: One writes the Newton’s equation for the particle separation and makes a
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2 Particles in a flow with time correlations

observed in particle distributions at all scales within the turbulent inertial range [50]. Such an

analysis requires an entirely different approach, since the Lyapunov statistics suitably describes

only the clustering of inertial particles at the dissipative scales of the turbulent flow.

substitution of the form R = S exp[−it/(2τ)]. In this way one is left with a Schrödinger equation, where
time is space and two components of the vector are spins.
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Part II

Two-dimensional turbulence
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3. Passive scalar contours

Turbulent advection is rife: it appears in many natural and engineering settings, which range

from atmospheric phenomena, combustion, stretching and amplification of magnetic fields on

galactic and terrestrial scales, biology (large fluctuations make the local gradient concentrations,

of e.g. odor or nutrients, futile for navigation) etc. Usually the advected ”substance” has an

effect on the turbulent flow itself, by generating local forces. However in some instances this

feedback effect is negligibly small. It is these cases we will concentrate on here. In general

a transported field can have arbitrary structure (scalar, vector or tensor), however we confine

our analysis to passive scalar fields - scalar fields that are passively transported by the flow.

A passive scalar substance could be a pollutant, smoke dispersing in the air, a fluorescent dye

mixing in a turbulent jet, a temperature field (if the buoyancy forces are small compared to

inertial stresses), a salinity field etc. On Figure (3.1) we show some examples of passive scalar

from natural settings and on Figure (3.2) are examples from experiment and numerics.

Figure 3.1: Instances of passive scalar turbulence observed in nature: (left) cigarette smoke (Photo
of Humphrey Bogart by Yousuf Karsh, 1946 (”Yousuf Karsh collection” at the Library and Archives
Canada).), (middle) blue dye in water ( c©iStockphoto.com/claylib) and (right) jets long after they
were released from an airplane (French ”Mirages” celebrating 150 years of the city of Nice, 2010.)
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3 Passive scalar contours

Figure 3.2: Instances of passive scalar in experiment and simulations. (left) Fluorescent dye in
a turbulent jet of Reynolds number Re = 4000 [97]; (right) numerical simulation of passive scalar
advection in two dimensions for a rough Kraichnan velocity on a 8192 square grid [27].

Passive scalar substance can exhibit complex dynamic behavior that shows many phe-

nomenological parallels with the behavior of the turbulent velocity field. Yet the statistical

properties of this so-called passive scalar turbulence are decoupled from those of the underlying

velocity field. Few years ago passive scalar turbulence has yielded to mathematical analysis1.

A close link was discovered between the multipoint statistics of the advected fields and the

collective behavior of the separating Lagrangian (fluid) particles. Essential for this progress

has been the observation that the anomalous scaling properties and the coherent structures in

the scalar field occur even for a scalar advected by a random Gaussian velocity field [60, 61, 63].

Namely the non-trivial statistical aspects of the scalar originate from the mixing process it-

self, rather than being inherited from the carrier flow. The turbulent flow transports and

disperses the scalar. The spatial non-uniformity of the velocity field causes the lines of con-

stant scalar concentration to stretch and fold; as a result, variations of the scalar concentration

reach progressively smaller scales. This process amplifies the local concentration gradients until

molecular diffusivity finally takes over, causing local variations of the scalar to dissipate.

1 For a survey of passive scalar literature see references in reviews [45, 91, 102].
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The evolution of the passive scalar θ(t, r) is governed by the advection-diffusion equation

∂tθ(t, r) + (v(t, r) · ∇)θ(t, r) = κ∇2θ(t, r) + ϕ(t, r) , (3.1)

where v(t, r) is the velocity field, κ is the molecular diffusivity and ϕ(r, t) describe the sources.

Two distinct situations can be considered: the smooth or the rough velocity case. In smooth

velocity fields, in the absence of forcing and dissipation, the advection equation can be easily

solved in terms of the Lagrangian flow. To calculate the value of θ at a given time one has to

trace the field evolution equations backwards along the Lagrangian trajectories. The tracer θ is

conserved along the Lagrangian trajectories: θ(t, r) = θ(R(0; r, t), 0), where R(·; r, t) denotes

the Lagrangian trajectory passing at time t through point r. Actually for scalar dynamics, the

space integral of any function of θ(t, r) is conserved in the absence of sources and diffusion.

Most of the results on the passive scalar statistics are on averaged quantities - moments

and multi-point correlation functions of the passive scalar field. Here we aim to consider non-

local objects, such as individual contours of the passive scalar field. It is therefore that we

choose the simplest possible case, a passive scalar advected by Batchelor-Kraichnan velocities,

where a lot of analytical results are known for on the scalar’s statistics. We choose the forcing

to be white in time and Gaussian and assume the velocity to be smooth, i.e. to be in the

so-called Batchelor regime [8]. This is a reasonable assumption for scales much smaller than

the viscous scale η ≡ (ν3/ε)1/4, where ν is the kinematic viscosity of the flow and ε is the energy

dissipation rate. In this case the velocity field enters into the advection equations only through

the time-dependent strain matrix v(t, r) = ∂tR(t) + σ̂(t)(r − R(t)), where σ̂(t) is taken along

the same trajectory. On these scales a two-dimensional incompressible flow is characterized

with a Lyapunov exponent that λ1 (λ2 = −λ1) that stretches the blobs is some direction

depending on the velocity realization. We also assume that the flow is Kraichnan [60], which

stands for velocity ensemble being Gaussian, δ−correlated in time and its correlations being

scale invariant. Hence the incompressible Kraichnan velocity ensemble in the Batchelor regime
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3 Passive scalar contours

is then fully specified by the two-point correlations of the strain matrix σ̂

σ̂ =





a b + c

b − c −a



 , (3.2)

where a, b and c are mutually independent, Gaussian random functions of time, with zero

mean and variance: 〈a(t)a(t′)〉 = 〈b(t)b(t′)〉 = 〈c(t)c(t′)〉/2 = D2δ(t − t′). Incompressibility is

guarantied by tr σ̂ = 0. We also choose 〈det σ̂〉 = 0 since we wish the potential and solenoidal

parts have equal strength on average. The velocity field has nonzero gradients therefore it

stretches the blob in one direction and compresses it in the other direction. These compressions

and elongations appear exponential in time. The diffusion stops reducing the dimension of the

blob, when its width becomes of the order of the diffusion scale rd ∝
√

κ/λ1. Here the Prandtl

number Pr ≡ ν/κ is large2.

Besides, the diffusion scale rd and the viscous scale η, we have one more characteristic

scale in our problem, it is the forcing scale l. In order to be able to describe the stretching

and the compressions in detail, we choose to have a wide convective interval : rd & l. However,

since one and the same mechanism compresses and stretches a blob, it is necessary to resolve

well also the interval of scales above the forcing scale l & η. The large resolutions render the

numerical modeling of this problem to be technically demanding.

Since the velocity field is smooth and just elongates the blob in one direction and shrinks

it in the perpendicular direction, we expect the fractal dimension of the blob’s perimeter to be

equal to unity for r < l. We believe that it is the interplay of the forcing and the velocity field

that can lead to a nontrivial fractal dimension at scales r much larger than the forcing scale

(l & r & η).

3.1 Heuristic arguments for fractal dimension D0 = 3/2

Let us present some heuristic arguments on the fractal dimension of passive scalar contour

lines. As it was noted in the last section, we expect a nontrivial fractal dimension only for

2 In heat transfer problems, the Prandtl number controls the relative thickness of the momentum and thermal
boundary layers. When Pr is small, it means that the heat diffuses very quickly compared to the velocity
(momentum). The mass transfer analog of the Prandtl number is the Schmidt number.
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Figure 3.3: Snapshot of a part of the passive scalar field. The square has 75 l × 75 l, where l is the
initial blob size (forcing scale). Note the vertical stripes of scalar, this is due to stretching along the
velocity gradient.

long contours. By long here we mean contours with perimeters which are much longer that the

forcing scale P " l. The longest contours one finds at the Corsin integral level
∫

drθ(r, t) = 0.

The smooth isolines produced by pumping are stretched and compressed so that wherever

one looks at the passive scalar field, there is usually just a set of parallel lines. And at scales

above the diffusion scale, rd, the complete level set is dense [29]. However we are interested in

the fractal dimension of a single line. Most of lines which are inside an area proportional to πl2

are straight and aligned along the expansion direction. Some of lines inside this area of size l

have turning points or ”fjords” (see Figure 3.4). The creation of fjords by the joint action of

velocity and pumping is sketched on Figure 3.5. When an isoline is longer than forcing scale

l the action of pumping can shift and displace parts of the line differently. Since the velocity

and the forcing are uncorrelated, it is natural to assume that turnings happen randomly. In

that case at some scale L, which is larger than the forcing scale l, the number of turning points

scales as L1/2, thus for smooth velocity fields we have that the perimeter of a contour scales as

P ∝ L3/2, which corresponds to fractal dimension D0 = 3/2.
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fjords

l

λ1

Figure 3.4: Isolines of the passive scalar are represented with the solid line. They are elongated
along the first Lyapunov exponent λ1. Long ones are dominated by fjords. The dashed circle just
shows the initial size of one blob, l.

v ϕ v ϕ v

Figure 3.5: The creation of fjords on a part of an isoline by successive stretching and compression
by velocity v and shifting by forcing ϕ.

3.2 The numerical algorithm

3.2.1 Generating the passive scalar field

We developed a new computational method to generate the passive scalar field as a collection of

blobs of scalar. Our method mimics impinging drops of ink on a piece of paper. It is based on

the fact that the advection-diffusion equation (3.1) is linear. To get a snapshot of the passive

scalar field at a particular time, we a sum over all of the blobs of scalar that hit the surface, at

random times and positions in the past. We assume that the passive scalar field is a collection

of a large number of blobs, in order to ensure the Gaussian statistics of the resulting field.

Each blob initially had a spherical shape

θ(t0, r0) = A exp

[

−(r0 − rc)2

2l2

]

, (3.3)

where t0 is the time that the blob of amplitude A had dropped on the surface at position rc.
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3.2 The numerical algorithm

The shape of such a blob at a later time t can be found by the method of characteristics

θ(t, r0) =
Al2

√

det Î(t, t0)
exp

{

−1

2

[

Ŵ (t, t0)r0 − rc

]

Î−1(t, t0)
[

Ŵ (t, t0)r0 − rc

]

}

, (3.4)

Î(t, t0) = Ŵ (t, t0)Ŵ (t, t0)
T + κ

∫ t

0

dt′Ŵ (t, t0)Ŵ (t′, t0)
−1

[

Ŵ (t, t0)Ŵ
−1(t′, t0)

]T

, (3.5)

here Ŵ (t, t0) is the evolution operator, r(t) = Ŵ (t, t0)r(t0), and Î(t, t0) is the tensor of inertia.

Notice that to specify a blob at a time t it is enough to know six values: the symmetric matrix

Î(t, t0), rc and t0.

These blobs are advected by a Kraichnan random velocity field. The direction of elonga-

tion depends on the velocity realization. Since there is spatial asymmetry in the problem, we

use it to optimize the computations. We precalculate the velocity field evolution and obtain

the elongation direction, then we align the vertical axis along this direction. Next we start

impinging blobs. At each time step we record in to a data file blobs that fell on the plane at

that time. We have seen, in the previous paragraph, that each blob is fully characterized by

six values. Once we have created enough blobs to ensure the Gaussianity of the passive scalar

field we start summing over them. The outcome is a snapshot of the passive scalar field.

3.2.2 Analysing the contours

To obtain the isolines of the passive scalar field we modified the Hoshen-Kopelman algorithm

(HK algorithm) [54]. This algorithm is mainly used to label percolation clusters. Its innovatory

idea is that not a single label, but a set of labels determines the same cluster. For example

as the algorithm scans through the matrix two clusters with different labels might merge into

a single one. In this case the HK algorithm rather then returning and ”repainting” the joint

cluster with a unique label, it just adds both labels to a set of labels that denote this new single

cluster. In each set of labels, one is the so-called proper label of the cluster, but the cluster itself

is never ”repainted” with its proper label. HK algorithm needs one passing through the matrix

in order to determine the clusters and as such is extremely efficient when working with large

matrices. We modified the HK algorithm to label contours instead of clusters (CHK algorithm)

and to calculate arbitrary contour integrals on the fly. Like HK, the CHK algorithm is also a
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3 Passive scalar contours

one passage algorithm.

Figure 3.6: A typical long passive scalar contour. This particular one has perimeter P ! 270 l, where
l is the forcing scale. Here in order visualize the fjords better, we enlarged twice the vertical axis.

We measure the fractal dimension by box-counting. To calculate the box-counting dimen-

sion for a fractal, one imagines that the fractal lies on an evenly-spaced grid, and counts how

many boxes are required to cover it. If N(ε) is the number of boxes of edge length ε needed to

cover the fractal, the box-counting dimension is defined as the following limit:

D0 = − lim
ε→0

[ln N(ε)/ ln(ε)]. (3.6)

3.3 Results

We made several velocity realizations of 200002 resolution and some of 600002. These snapshots

represent 600 l × 600 l. The ratio of the forcing to the dissipation scale was l/rd = 100. The

large simulations, 600002, resolve up to the diffusion scale, while in the smaller simulations one

pixel is 3rd. Our preliminary results show that the fractal dimension at scales much larger than

the forcing scale is the same in both types of simulations. This numerically justifies neglecting

diffusion in our heuristic arguments, for the fractal dimension. In Figure 3.6 we show a typical

long contour and on Figure 3.7 we show the box counting dimension obtained from a single

velocity realization, of resolution 200002, where we averaged over 80 curves. We clearly observe

two distinct box counting fractal dimensions. First one is valid bellow forcing scale and has the

value of D0 = 0.9 ± 0.3, while on scales larger than the forcing scale, we get D0 = 1.3 ± 0.2.

Future steps include a more extensive analysis of the data available and getting the generalized

box-counting dimension [105].
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Figure 3.7: The fractal dimension of passive scalar isolines, at θ = 0 level obtained by box counting.
The dashed line has the slope D0 = 0.9 ± 0.3, the line’s projection on the horizontal axis is the
interval of sub-forcing scales, which was used to make this fit. While, the dotted line has the slope
D0 = 1.3 ± 0.2 slope and this line’s horizontal projection represents the interval of scales above the
forcing scale (that was used to get the value of the slope). Here averaged over 80 contours from a
single velocity realization. All the contours we averaged over had perimeters larger than 360 l, where l
is the forcing scale. The error bars represent the deviation from 〈ln(N(ε))〉, where N(ε) is the number
of boxes of size ε needed to cover the curve.
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4. 2D turbulence of point vortices

This chapter is about an idealized two-dimensional turbulent flow. In nature manifestations of

such flows are the large-scale motions in the atmosphere, shallow layers of a fluid, soap film etc.

In 2D taking the curl of the Navier-Stokes equations yields an equation involving only vorticity

ω(r, t) ≡ ∇ × v(r, t)

∂tω + (v · ∇)ω = ∇ × f + ν∆ω . (4.1)

In the absence of forcing and dissipation, the two arguably most important invariants are the

integrated squared vorticity, so-called enstrophy, Ω ≡
∫

ω2dr and the kinetic energy (inte-

grated squared velocity). The existence of two quadratic and positive invariants dictates that

the steady state of turbulence must have two cascades. The intuition from 3D flows in that

the energy cascades towards small scales, however in 2D when one excites turbulence at a large

scale by injecting energy and enstrophy at finite rates, the energy does not cascade toward

large scales. The reason is that the exact relation 〈ε〉 = ν〈ω2〉, that holds for homogeneous

turbulence, tells us that a nonzero energy dissipation implies infinite enstrophy dissipation in

the inviscid limit. Thus, energy flows upscale (inverse cascade) while enstrophy cascades down-

scale (direct cascade). The direction of the cascade was concluded from the non-equilibrium

development of L. Onsager’s equilibrium treatment of a system of point vortices (1949), in

which the joint conservation of energy and enstrophy lead to the notion of negative temper-

atures. The temperature is negative when the available phase-space volume decreases with

increasing energy. The phenomenon arises at sufficiently high energy because the nonvanishing

enstrophy requires the energy to be redistributed only among modes with low wavenumbers.

R. H. Kraichnan discovered the velocity spectrum in the inverse cascade for two-dimensional
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incompressible turbulence [59].

We set out first to repeat the results of E. D. Siggia and H. Aref [92], who got the inverse

energy cascade in a system of point vortices by introducing some small scale forcing. The later

goal in mind was to study the statistics of this flow in detail. However so far we have not been

able to reproduce the results of [92]. All we see is the equilibrium energy spectra.

4.1 Point vortices

The Euler equation can be cast in Hamiltonian form. A particularly simple formulation emerges

when the vorticity field is approximated by a large number of point vortices of individual

circulation Γi: ω(r, t) =
∑N

i=1 Γiδ(r − ri(t)) . The canonically conjugate Hamiltonian variables

are the simply: Γixi and Γiyi. In the absence of boundaries the Hamiltonian is the energy of

interaction of the vortices: H = (−1/4)
∑N

i<j;i,j=1 ΓiΓj ln |zi − zj |, where zj = xj + iyj. This

system represents potentially a rich playground for analytical calculations on two-dimensional

flows. The equilibrium case is a matter of classical textbooks. Here we look at a system of

point vortices subjected to external forcing, which drives the system out of equilibrium.

As a starting point we wanted to repeat the numerical results of E. G. Siggia and H.

Aref [92] and obtain the inverse energy cascade. To model the inverse cascade of energy in

2D they have used point vortices and devised a physically plausible forcing technique to inject

energy. Vortex methods have been successfully used to simulate a number of nearly inviscid

flows when the vorticity distribution is nonuniformly distributed. When used in conjunction

with a lattice, to facilitate inversion of Poisson’s equation (the cloud-in-cell algorithm [28, 92]),

their numerical efficiency is competitive with finite difference or spectral methods. For the

statistically homogeneous, isotropic flow simulated here, one might hope that, in spite the effects

of the lattice, a vortex simulation would better express the local conservation of circulation

(Kelvin’s theorem). A second reason for applying vortex methods is that they do not require

viscosity, i.e. the inverse cascade of energy (π〈k|vk|2〉 ∝ k−5/3) extends all the way to the

highest wavenumber resolved. In the following section we describe our numerical efforts.
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Figure 4.1: (left) Energy spectra E(k) = 〈k|v(k)|2〉 and (right) energy E = (1/2)
∑

αβ ωαβψαβ

(α and β are the site coordinates on the torus) at various moments of time. The parameters of the
simulation were βΓ = 0.04, Γ = 1.0, kf = 256, dt = 5.0 × 10−5. There were 2562 vortices on a grid of
1024 × 1024 points. The total vorticity was zero.

4.1.1 Cloud-in-cell algorithm

We will investigate the properties of point vortices on a torus. The stream function of the

flow, ψ(r, t) ≡ ∇ × v(r, t), obeys the Poisson equation ∆ψ(r, t) = −ω(r, t), where ω(r, t) =
∑N

i=1 Γiδ(r − ri), is the vorticity and Γi = ±Γ is the circulation of each vortex. The point

vortices move according to

ṙi = −ẑ × ∇ψ′(ri) + βΓi∇ψ′
f (r, t) , (4.2)

here ψ′ is the stream function due to all vortices except the one at ri and the last term

represents the forcing: β is a scale factor, and ψ′
f is the stream function ψ′, filtered to remove

all wavenumbers less than some set threshold value kf . The reason for this filtering is to fulfill

the constraint that the energy transfer from small to large scales is not modified by uniform

sweeping. In the absence of forcing, the Eq. (4.2) represents the advection of vortices along

instantaneous stream lines. The force represents a small incremental velocity up or down the

local stream function depending on the sign of Γi. Due to forcing, for β > 0, same sign vortices

slightly attract. If we spread randomly point-vortices on the torus and let them evolve, after

some time they will form a dipole, and they tend to remain in this dipole configuration in most
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cases for arbitrarily long times.

4.2 Concluding remarks

E. G. Siggia and H. Aref claim that there is a transient state, for which the energy spectra

has the same scaling as in the 2D inverse cascade of energy (π〈k|vk|2〉 ∝ k−5/3). We tried to

repeat their results [92] with a wide range of parameters. All we have observed is heating of

the system and equilibrium like spectra E(k) ∝ k−1. Our runs were larger than [92] and do

not recover k−5/3 scaling. At this point it is unclear, whether k−5/3 was not observed, because

of the numerical method employed (”cloud-in-the-cell”) or two-dimensional turbulence can not

be fully modeled with point vortices.

Nevertheless, this inconsistency with [92] poses an intriguing question, as to what extent

the point vortex model a suitable model of two-dimensional turbulence. For example we know

that such a system is dynamically conformally invariant, while the real two-dimensional tur-

bulence is not (only certain aspects of it have been conjectured to be conformally invariant

[17, 81]).
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Part III

Non-equilibrium mixing accelerates

computations
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5. Efficient Sampling with Irreversible Monte

Carlo Algorithms

Recent decades have been marked by fruitful interaction between physics and computer science,

with one of the most striking examples of such interaction going back to forties when physicists

proposed a Markov Chain Monte Carlo (MCMC) algorithm [75, 76]. MCMC evaluates large

sums, or integrals, approximately, in a sense imitating how nature would do efficient sampling

itself. Development of this idea has became wide spread and proliferated a broad variety of

disciplines. (See [55, 64, 65] for a sample set of reviews in physics and computer science.) If

one formally follows the letter of the original MCMC suggestion one ought to ensure that the

Detailed Balance (DB) condition is satisfied. This condition reflects microscopic reversibility

of the underlying equilibrium dynamics. A reader, impressed with indisputable success of the

reversible MCMC techniques, may still wonder if the equilibrium dynamics is the most efficient

strategy for sampling and evaluating the integrals? In [100] we argue that typically the answer

is NO. Let us try to illustrate the ideas on a simple everyday life example. Consider mixing

sugar in a cup of coffee, which is similar to sampling, as long as the sugar particles have to

explore the entire interior of the cup. DB dynamics corresponds to diffusion taking an enormous

mixing time. This is certainly not the best way to mix. Moreover, our everyday experience

suggests a better solution – enhance mixing with a spoon. Spoon steering generates an out-

of-equilibrium external flow which significantly accelerates mixing, while achieving the same

final result – uniform distribution of sugar concentration over the cup. In this letter we show

constructively, with a practical algorithm suggested, that a similar strategy can be used to

decrease mixing time of known reversible MCMC algorithms.

There are two main obstacles which prevent fast mixing by traditional MCMC methods.
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First, the effective energy landscape can have high barriers, separating the energy minima.

In this case mixing time is dominated by rare processes of passing the barriers. Second, slow

mixing can originate from the high entropy of the states basin (too many comparably important

states) providing major contribution to the system partition function. In the later case mixing

time is determined by the number of steps it takes for reversible (diffusive) random walk to

explore all the relevant states.

MCMC algorithms are best described on discrete example. Consider a graph with vertices

i = 1, . . . ,N each labeling a state of the system and edges (i → j) corresponding to “allowed”

transitions between the states. For instance, an N -dimensional hypercube corresponds to a

system of N spins (with N = 2N states) with single-spin flips allowed. An MCMC algorithm

can be described in terms of the transition matrix Tij representing the probability of a single

MCMC step from state j to state i. Probability of finding the system in state i at time t,

P t
i , evolves according to the following Master Equation (ME): P t+1

i =
∑

j TijP t
j . Stationary

solution of ME, P t
i = πi, satisfies the Balance Condition (BC):

∑

j

(Tijπj − Tjiπi) = 0. (5.1)

Qij = Tijπj from the lhs of Eq. (5.1) can be interpreted as the stationary probability flux from

state i to state j. Obviously, stationarity of the probability flow reads conditions incoming and

outgoing fluxes at any state to sum up to zero. Note also, that Eq. (5.1) is nothing but the

incompressibility condition of the stationary probability flow.

The DB used in traditional MCMC algorithms is a more stringent condition, as it requires

the piecewise balance of terms in the sum (5.1): for any pair of states with allowed transitions

one requires, Tijπj = Tjiπi. The main reason for DB is so often used in practice originates

from its tremendous simplicity. Otherwise, DB-consistent schemes constitute only a small

subset of all other MCMC schemes convergent to the same stationary distribution π. From the

hydrodynamic point of view reversible MCMC corresponds to irrotational probability flows,

while irreversibility relates to nonzero rotational part, e.g. correspondent to vortices contained

in the flow. Putting it formally, in the irreversible case antisymmetric part of the ergodic

flow matrix is nonzero and it actually allows the following cycle decomposition, Qij − Qji =
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5.1 The irreversible MCMC algorithm

Figure 5.1: Schematic representation of the replication deformation. Dashed lines represent replica
switching transitions, which compensate for compressibility of the probability flows associated with
solid lines.

∑

α Jα(Cα
ij − Cα

ji), where index α enumerates cycles on the graph of states with the adjacency

matrices Cα
ij . Then, Jα stands for the magnitude of the probability flux flowing over cycle α.

5.1 The irreversible MCMC algorithm

Aiming to achieve practical and flexible implementation we focus on building irreversible

MCMC algorithms via controlled deformation of an existent reversible MCMC. To be more

specific, we adopt and develop replication/lifting trick discussed in [26, 35]. The main idea

behind our strategy is as follows. Instead of planting into the system an irreversible probability

flux, correspondent to an “incompressible” BC, we add a mixing desirable “compressible” flux,

and compensate for its compressibility by building an additional replica with reversed flux and

allowing some inter-replica transitions. To enforce BC one tunes the replica switching proba-

bilities computed ”on the fly” (and locally). The replication idea is illustrated in Figure 5.1.

Acknowledging generality of the setting, we focus here on explaining one relatively simple im-

plementation of this idea. Generalization and modifications of the procedure will be analyzed

and discussed elsewhere.

Consider reversible MCMC algorithm characterized by the transition matrix Tij which

(a) obeys the DB condition, and (b) converges to the equilibrium distribution πi. Assume

that each state has duplicates in two replicas, marked by ±. Following some local rule (an
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5 Efficient Sampling with Irreversible Monte Carlo Algorithms

example will be provided below) one introduces a split between states within each of the replicas,

Tij = T (+)
ij + T (−)

ij , such that all T (±)
ij are positive and satisfy, ∀i "= j, T (+)

ij πj = T (−)
ji πi, to be

called the skew DB condition. The total transition matrix,

T̂ =





T̂ (+) Λ̂(+,−)

Λ̂(−,+) T̂ (−)



 , (5.2)

also contains nonzero and positive (as probabilities) inter-replica terms, Λ(±,∓)
ii , allowing tran-

sitions only between two replicas of the same state. One tunes the inter-replica terms to

ensure convergence to the given steady distribution, πi. This is be achieved by choosing

Λ(±,∓)
ii = max

{

0,
∑

j T (±)
ij − T (∓)

ij

}

≤ 0, and the diagonal terms T (±)
ii are fixed according to

the stochasticity condition: T (±)
ii = 1 −

∑

j,j #=i T
(±)
ji − Λ(∓,±)

ii . This description completes our

construction of an irreversible MCMC algorithm from a given reversible one. Note that this

construction is not unique, and in general multiple choices of Λ(±,∓)
ii are possible. The proposed

scheme is illustrated below on example of a simple spin system, with the Metropolis-Hastings

(MH)-Glauber algorithm chosen as the respective reversible prototype.

MH [51] is the most popular reversible MCMC algorithm. MH-transition from a current

state i is defined in two steps. (A) A new state j is selected randomly. (B) The proposed

state is accepted with probability pacc = min(1, πj/πi) or rejected with the probability 1− pacc

respectively. Selecting the proposed state i.i.d. randomly from all possible single spin flips

corresponds to the Glauber dynamics popular in simulations of spin systems. Let us now

explain how to build an irreversible MCMC algorithm for spin systems based on the reversible

MH-Glauber algorithm. One considers separation in two replicas according to the sign value,

+ or −, of the spin to be flipped. Then, our irreversible MH-Glauber scheme works as follows.

Spin α is selected i.i.d. randomly from the pool of all other spins of the system having +

or − values, depending on the sign of the replica where the system stays. The selected spin

is flipped with the probability pacc = min(1, πj/πi), in which case the system stays in the

same replica. If the flip is not accepted the state is switched to its counterpart of the other

replica with probability Λ(∓,±)
ii /(1 −

∑

j T (±)
ji ). (These transitions are indicated as dash lines

in Figure 5.1.) Note, that in the case of the Glauber dynamics both Λ(∓,±)
ii and

∑

j T (±)
ji are
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Figure 5.2: Correlation time of the total spin de-correlation in the spin-cluster model. Dots cor-
respond to the direct diagonalization of the transition matrices. Crosses are correlation times found
from respective MCMC simulations. Blue and red colors correspond to reversible and irreversible
algorithms respectively. Best fitting slopes are given by Trev ∼ N1.43 and Tirr ∼ N0.85.

local quantities depending only on the current state of the system, and calculating transition

probabilities constitutes an insignificant computational overhead.

5.2 Testbed - a ferromagnetic spin-chain

We choose N -spins ferromagnetic cluster (equal strength interaction between all the spins)

as a testbed and discuss sampling from respective stationary distribution, πs1...sN
∼

exp
[

(−J/2N)
∑

k,k′ sksk′

]

. Note, that a state of the simple system is completely charac-

terized by its global spin, S =
∑

k sk, and respective probability distribution, P (S) ∼
N !

N+!N−! exp [−JS2/(2N)], where N± = (N ± S)/2 is the number of positive/negative spins.

Considered in the thermodynamic limit, N → ∞, the system undergoes a phase transition

at J = 1. Away from the transition, in the paramagnetic phase J < 1, P (S) is centered

around S = 0 and the width of the distribution is estimated by δS ∼
√

N/J , which changes to

δS ∼ N3/4 at the critical point J = 1. One important consequence of the distribution broad-

ening is a slowdown observed at the critical point for reversible MH-Glauber sampling. Then

characteristic correlation time of S (measured in the number of Markov chain steps) is esti-
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5 Efficient Sampling with Irreversible Monte Carlo Algorithms

mated like Trev ∼ (δS)2, and the computational overhead associated with the critical slowdown

is ∼
√

N . We brought this simple model to illustrate the advantage of using irreversibility. As

shown below, the irreversible modification of the MH-Glauber algorithm applied to the spin

cluster problem achieves complete removal of the critical slowdown. To estimate the correlation

time in the irreversible case we first note that, while switching from one replica to another the

system will always comes through the S = 0 state. (This follows directly from the observation

that Λ(+,−)
ii = 0 for the states with S > 0 and Λ(−,+)

ii = 0 for the states with S < 0.) The

Markovian nature of the algorithm implies that all the trajectories connecting two consequent

S = 0-swipes are statistically independent, and therefore the correlation time is roughly equal

to the typical number of steps in each of these trajectories. Recalling that inside a replica (i.e.

in between two consecutive swipes) the dynamics of S is strictly monotonous, one estimates

Tirr ∼ δS. This estimate suggests a significant acceleration: Tirr ∼
√

Trev # Trev. Note, that

one expects to observe significant acceleration even outside of the critical domain, for both

larger and smaller values of J .

5.2.1 Results

We verified the correlation time estimation via numerical tests. Implementing reversible and ir-

reversible versions of the MH-Glauber algorithm we, first, analyzed decay of the pair correlation

function, 〈S(0)S(t)〉, with time. Respective correlation time was reconstructed by fitting the

large time asymptotics with the exponential function, exp(−t/Trev), and exponential-oscillatory

function, exp(−t/Tirr) cos(ωt−ϕ), in the reversible and irreversible cases respectively. Second,

for both MH and IMH algorithms we constructed transition matrix corresponding to the ran-

dom walk in S, calculated spectral gap, ∆, related to the correlation time as, T = 1/Re∆.

In both tests we analyzed critical point J = 1 and used different values of N ranging from

16 to 4096. Simulation results are shown in Figure 5.2. The results found for two settings

are consistent with each other. Numerical values (Trev ∼ N1.43 and Tirr ∼ N0.85) are also in

a reasonable agreement with respective theoretical predictions (Trev ∼ N3/2 and Tirr ∼ N3/4)

while a slight discrepancy can be attributed to finite size effects. Note, that in the irreversible

case correlation time of the global spin correlation function (number of respective MC steps)

66



5.3 Relation of proposed irreversible MCMC to previous studies

grows with the number of spins, N , but does it slower than linearly. In other words, mixing

becomes so efficient that equilibration of the global spin correlations is observed even before

all spin of the systems are flipped. One concludes, that performance of the irreversible scheme

is at least as favourable as the one of the cluster algorithms [98, 109] tested on the spin clus-

ter model [80, 84]. (We note, however, that direct comparison of the two algorithms is not

straightforward, as the cluster algorithm flips many spins at once and therefore its convergence

is normally stated in renormalized units.)

5.3 Relation of proposed irreversible MCMC to previous studies

Here we would like to discuss relations of the proposed algorithm, irreversible MCMC, to

previous studies. Although potential power of algorithms with broken DB has been realized

for already a while, only handful of irreversible examples have been proposed so far. One of

the examples is the sequential updating algorithm [85] designed to simulate two-dimensional

Ising system. In essence, the algorithm consists of a number of subsystems (replicas) with

internal dynamics, each characterized by its own transition matrix. In a great contrast with our

algorithm, the system switches between replicas in a predefined deterministic fashion. Similar

idea of breaking DB by switching irreversibly but periodically between reversible portions was

implemented in the successive over-relaxation algorithm of [1]. Another noteworthy sampling

algorithm with DB broken is Hybrid Monte Carlo of [53], where Hamiltonian dynamics is

used to accelerate sampling. Once again the story here relates to replicas, each parameterized

by distinct momentum, with switches between the replicas controlled deterministically by the

underlying Hamiltonian. It is also appropriate to cite relevant efforts originated in statistics [35],

mathematics [26] and computer science [56]. Several simple examples of irreversible algorithms

were discussed and analyzed in [35]. [26] showed that improvement in mixing, provided by a

multi-replica lifting, does not allow reduction stronger than the one observed in the diffusive-to-

ballistic scenario, T →
√

T , where T is the mixing time of the underlying reversible algorithm.

The grain of salt here is that the acceleration was achieved via a replication of an extremely

high, ∼ k2, degree where k is the number of states. [56] showed that complementary distributed

network ideas allows to reduce this replication scaling a bit.
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We also find it useful to discuss reversible algorithms showing certain similarity to the

algorithm and ideas of the Letter. First of all, it is important to mention again cluster algorithms

[40, 98, 109] which were most successful in biting the odds of the critical slowdown in the regular

systems of the Ising type. The trick here is to explore duality of the model, which allows two

alternative representations related to each other via a state-non-local transformation. The

cluster algorithm switches between two dual representations, thus realizing long jumps in the

phase space. Note that such jumps would be forbidden by phase-space local dynamics in either

of the two representations. Best algorithms of the cluster type achieves truly impressive rate

of convergence. The downside is in the fact that the cluster algorithms are model specific and

rather difficult in implementation because of extreme phase space non-locality of the steps.

Worm algorithm of [82] allows essential reduction in the critical slowdown via mapping to a

high-temperature-inspired loop representation and making local moves there. The last but not

the least, we mention the simulated annealing algorithm of [57] built on a temperature-graded

replication consistent with DB. One attractive direction for future research is to explore if (and

under which conditions) additional irreversibility can improve already good mixing performance

provided within each of these reversible algorithms.

5.4 Conclusions

Here we described how to upgrade a reversible MC into an irreversible MC converging to the

same distribution faster. To prove the concept we designed a spin-problem specific irreversible

algorithm, and tested it on the mean-field spin-cluster model. We showed on this example

that the irreversible modification can lead to dramatic acceleration of MC mixing. Our re-

sults suggest that the irreversible MC algorithms are especially beneficial for acceleration of

mixing in systems containing multiple soft and zero modes, however inaccessible for standard

(reversible) schemes. This situation occurs typically in systems experiencing critical slowdown

in the vicinity of a phase transition, and it is also an inherent property of systems possessing

internal symmetries of high degree. Entropic degeneracy is the main factor limiting the con-

vergence of regular MCMC algorithm in these problems. To conclude, we are convinced that

ideas discussed might be useful in studies of phase transitions, soft matter dynamics, protein
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structures and granular media [100].
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Appendix

A Derivation of the Green-Kubo formula for the clustering rate λ

The sum of Lyapunov exponents (−λ) is expressible with the help of a time integral of the

pair-correlation function of velocity divergence [41, 42]. So far it is the only combination

of Lyapunov exponents known, to have such a short and operational expression. It is this

expression, given in Eq. (1.2), that we used to derive our conclusions in [103, 104]. Hence let

us sketch the proof of passing to Eq. (1.2) starting from the definition of the sum of Lyapunov

exponents, Eq. (1.1). The original proof can be found in [41]. It should be noted that Eq.

(1.2) is valid for statistically stationary velocity fields, however here we will discuss the case of

a time independent velocity field, since the generalization to the statistically stationary case is

rather straightforward.

Let us consider a smooth dynamical system defined by a steady velocity field v(x) =

dx/dt, where x is the coordinate of the system. The velocity field defines the flow X(t, x) in

space

∂X

∂t
(t, x) = v[X(t, x)] , where X(0, x) = x , (A.1)

and an significant relation holds between them: v[X(t, x)] = Ŵ (t, x)v(x), where Wij(t, x) ≡

∂Xi(t, x)/∂xj . This relation allows, in particular, to describe the evolution of an arbitrary

differentiable function f [X(t, x)] defined along a trajectory, namely

df

dt
= (v(x) · ∇x)f [X(t, x)] = −w(x)f [X(t, x)] + ∇x · [v(x)f [X(t, x)]] . (A.2)
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We integrate this identity over space

d

dt

∫

dx

V
f [X(t, x)] = −

∫

dx

V
w(x)f [X(t, x)] ≡ −〈w(0)f(t)〉 , (A.3)

∫

dx

V
f(x) −

∫

dx

V
f [X(t, x)] =

∫ t

0

〈w(0)f(t′)〉dt′ . (A.4)

Here we assume that the space integral of the last term in Eq. (A.2) vanishes because it can

be written as an integral over the boundary. This is true in the periodic case or in the case

where the normal component of velocity vanishes (it might be interesting to consider the cases

where boundary is important as well). We shall see below that our main equality Eq. (1.2) is

a particular case of Eq. (A.3). Integrating Eq. (A.4) over time we have

∫

dx

V
f(x) − 1

t

∫ t

0

dt′
∫

dx

V
f [X(t′, x)] =

∫ t

0

〈w(0)f(t′)〉dt′ − 1

t

∫ t

0

t′〈w(0)f(t′)〉dt′. (A.5)

Next we consider what may happen with Eqs. (A.4) and (A.5), when t → ∞. From Eq. (A.4)

we observe that provided
∫ ∞

0 〈w(0)f(t)〉dt exists there must also exist a finite limit of the spatial

average

lim
t→∞

∫

dx

V
f [X(t, x)] =

∫

dx

V
f(x) −

∫ ∞

0

〈w(0)f(t)〉dt . (A.6)

If we choose as the initial state of the continuity equation, a constant n0(x) ≡ n(t = 0, x) =

1/V , then Eq. (A.6) can be rewritten as

lim
t→∞

∫

dx

V
f(x)n(t, x) =

∫

dx

V
f(x) −

∫ ∞

0

〈w(0)f(t)〉dt , (A.7)

which suggests that the finiteness of temporal correlations, i.e. the existence of the integrals
∫ ∞
0 〈w(0)f(t)〉dt for continuous f is equivalent to the existence of the limiting non-equilibrium

state characterized by the probability measure µlim = limt→∞ n(x, t). The difference of the

non-equilibrium state measure µlim and equilibrium measure E satisfies

µlim(f) − E(f) =−
∫ ∞

0

〈w(0)f(t)〉dt, µlim(f) =

∫

fdµlim, E(f) ≡
∫

dx

V
f(x). (A.8)
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As for the Eq. (A.5), it involves a weaker limit µav = limt→∞ t−1
∫ t

0 n(x, t′) dt′ (for details see

[88]). The existence of this limit is equivalent to the convergence of the subtracted correlation

integral

µav(f) − E(f) = − lim
t→∞

[
∫ t

0

〈w(0)f(t′)〉dt′ − 1

t

∫ t

0

t′〈w(0)f(t′)〉dt′
]

. (A.9)

Thus we have µav(f) = µlim(f), provided that
∫ ∞

0 〈w(0)f(t)〉dt exists.

A limit of the type used in µav appears when one considers the sum of Lyapunov exponents
∑d

i=1 λi(x). That sum determines the growth rate of an infinitesimal volume initially located

at x. From Eq. (1.1) we observe that
∑d

i=1 λi is represented as a time-average of a function on

the phase space. This is a unique combination of Lyapunov exponents that is representable in

such a form. Using Eq.(A.5) we have

∫

dx

V

d
∑

i=1

λi(x) = − lim
t→∞

[
∫ t

0

〈w(0)w(t′)〉dt′ − 1

t

∫ t

0

t′〈w(0)w(t′)〉dt′
]

= −
∫ ∞

0

〈w(0)w(t)〉dt , (A.10)

where the last equality holds provided the integral exists. We used E(w) = 0 assuming that

the integral over the boundary vanishes. The above formula holds for systems whose stationary

measure is arbitrarily far from the equilibrium measure and nevertheless it has a remark-

able resemblance to the Green-Kubo formula holding near equilibrium. It also suggests that
∫

dx
∑d

i=1 λi ≤ 0 always. Here we note that
∫

dx
∑d

i=1 λi < 0 signifies that µ is singular.

Therefore, the criteria of singularity of the non-equilibrium measure is
∫ ∞
0 〈w(0)w(t)〉dt > 0.

The above relations are simplified for systems satisfying the SRB theorem that guarantees

the equality between temporal average and average with respect to the limiting measure for

any continuous function f , [21, 93]. For SRB-theorem systems
∑d

i=1 λi(x) is constant almost

everywhere, thus for such systems using Eq. (A.10) we obtain Eq. (1.2).
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B Note on the Gaussianity of weak wave turbulence

B Note on the Gaussianity of weak wave turbulence

It is commonly assumed and somewhat backed up empirically that the statistics of the weak

wave turbulence at wavenumbers much greater than the pumping is close to Gaussian, for

wide classes of pumping statistics. On the other hand when the forcing itself is Gaussian, the

statistics of wave amplitudes will remain close to Gaussian as long as the nonlinearity is weak.

It is an open problem in wave turbulence to find the precise conditions which guarantee the

wave field is a Gaussian field. One starts by solving the linear equation for waves in the spectral

interval of pumping and formulate the criteria on the forcing that guarantee that the cumulants

remain small. For more information see e.g. [25, 69, 114] and the references within.
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C The diagrammatic technique

Here we provide the diagrammatic technique derivations of the clustering rate of matter λ (given

by Eq. (1.1)) by weakly-interacting waves. This technique was introduced by H.W. Wyld in

the turbulence community [110] and in condensed matter it is known as the Martin-Siggia-Rose

formalism [71]. Bellow we immediately proceed with calculations, since the problem and main

definitions have been already introduced in Chapter 1.

It is more convenient to switch from the velocity potential at the surface ψ and elevation

η to another pair of canonically conjugate coordinates, which we label a and a∗. In order to do

this, let us first derive the dispersion law of small amplitude waves in deep fluids. Retaining

only the linear terms in the equations of motion we have

∂η

∂t
=

∂φ

∂z

∣

∣

∣

∣

z=0

, (C.1)

∂ψ

∂t
+ gη − α∇2η = 0 , (C.2)

here we take ∂φ/∂z|z=0, we get Ω(k) =
√

g|k| + α|k|3. Now we can introduce a and a∗ as

follows

a(k, t) =

√

Ω(k)

2|k|
η(k, t) + i

√

|k|
2Ω(k)

ψ(k, t) , (C.3)

then from the fact that η(r, t) and ψ(r, t) are real we get

a(k, t) =

√

Ω(k)

2|k|
η(k, t) + i

√

|k|
2Ω(k)

ψ(k, t) ,

a∗(−k, t) =

√

Ω(k)

2|k|
η(k, t) − i

√

|k|
2Ω(k)

ψ(k, t) ,

η(k, t) = Bk [a(k, t) + a∗(−k, t)] , Bk ≡

√

|k|
2Ω(k)

, (C.4)

ψ(k, t) = Ak [a(k, t) − a∗(−k, t)] , Ak ≡ −i

√

Ω(k)

2|k| . (C.5)

Let us express the sum of Lyapunov exponents via a and a∗, for this we calculate several
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of auxiliary correlation functions. Bellow in (C.10-C.18) the subscript indices refer to q for

variables ψ, η, a and H , F , J and K which we introduced as follows

〈a1a2〉 ≡ (2π)d+1δ(q1 + q2)H1 (C.6)

〈a∗
1a2〉 ≡ (2π)d+1δ(q1 − q2)F1 (C.7)

〈a1a2a3〉 ≡ (2π)d+1δ(q1 + q2 + q3)J123 (C.8)

〈a∗
1a2a3〉 ≡ (2π)d+1δ(q1 − q2 − q3)K123 (C.9)

Note that Fq = F ∗
q and Hq = H−q by definition. The auxiliary correlation functions are

〈ψ1ψ2〉 = A1A2〈(a1 − a∗
−1)(a2 − a∗

−2)〉 = A1A2〈a1a2 − a∗
−1a2 − a1a

∗
−2 + a∗

−1a
∗
−2〉 =

= (2π)d+1δq1+2A1A−1(H1 + H∗
−1 − F1 − F−1)

= (2π)d+1δq1+2A1A−1(2Re(H1) − F1 − F−1) , (C.10)

〈ψ1η2ψ3〉 = A1B2A3〈(a1 − a∗
−1)(a2 + a∗

−2)(a3 − a∗
−3)〉 =

= A1B2A3(〈a1a2a3〉 + 〈a∗
−1a

∗
−2a

∗
−3〉 − 〈a∗

−1a2a3〉 − 〈a1a
∗
−2a

∗
−3〉+

+ 〈a1a
∗
−2a3〉 + 〈a∗

−1a2a
∗
−3〉 − 〈a1a2a

∗
−3〉 − 〈a∗

−1a
∗
−2a3〉) =

= A1B2A3(2π)d+1δq1+2+3×

× (J123 + J∗
−1−2−3 − K−123 − K∗

1−2−3 + K1−23 + K∗
−12−3 − K12−3 − K∗

−1−23) , (C.11)

〈ψ1ψ2ψ3〉 = A1A2A3〈(a1 − a∗
−1)(a2 − a∗

−2)(a3 − a∗
−3)〉 =

= A1A2A3(〈a1a2a3〉 − 〈a∗
−1a

∗
−2a

∗
−3〉 − 〈a∗

−1a2a3〉 + 〈a1a
∗
−2a

∗
−3〉

− 〈a1a
∗
−2a3〉 + 〈a∗

−1a2a
∗
−3〉 − 〈a1a2a

∗
−3〉 + 〈a∗

−1a
∗
−2a3〉)

= A1A2A3(2π)d+1δq1+2+3×

× (J123 − J∗
−1−2−3 − K−123 + K∗

1−2−3 − K1−23 + K∗
−12−3 − K12−3 + K∗

−1−23) , (C.12)
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〈ψ1η2ψ3η4〉 = A1B2A3B4〈(a1 − a∗
−1)(a2 + a∗

−2)(a3 − a∗
−3)(a4 + a∗

−4)〉 = (C.13)

= A1B2A3B4(−〈a∗
−1a

∗
−2a3a4〉 + 〈a∗

−1a2a
∗
−3a4〉−

− 〈a1a
∗
−2a

∗
−3a4〉 − 〈a∗

−1a2a3a
∗
−4〉 + 〈a1a

∗
−2a3a

∗
−4〉 − 〈a1a2a

∗
−3a

∗
−4〉) =

= (2π)2d+2A1B2A3B4[−(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3) (C.14)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) − (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)] ,

〈ψ1η2ψ3ψ4〉 = A1B2A3A4〈(a1 − a∗
−1)(a2 + a∗

−2)(a3 − a∗
−3)(a4 − a∗

−4)〉 =

= A1B2A3A4(−〈a∗
−1a

∗
−2a3a4〉 + 〈a∗

−1a2a
∗
−3a4〉 − 〈a1a

∗
−2a

∗
−3a4〉

+ 〈a∗
−1a2a3a

∗
−4〉 − 〈a1a

∗
−2a3a

∗
−4〉 + 〈a1a2a

∗
−3a

∗
−4〉)

= (2π)2d+2A1B2A3A4[(F1F2 − F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3) (C.15)

+ (F−1F−3 − F1F3)(δq1+2δq3+4 + δq1+4δq2+3) + (F−1F−4 − F1F4)(δq1+2δq3+4 + δq1+3δq2+4)] ,

〈ψ1ψ2η3ψ4〉 = (2π)2d+2A1A2B3A4[(F1F3 − F−1F−3)(δq1+2δq3+4 + δq1+4δq2+3) (C.16)

+ (F−1F−2 − F1F2)(δq1+3δq2+4 + δq1+4δq2+3) + (F−1F−4 − F1F4)(δq1+3δq2+4 + δq1+2δq3+4)] ,

〈ψ1ψ2ψ3η4〉 = (2π)2d+2A1A2A3B4[(F1F4 − F−1F−4)(δq1+3δq2+4 + δq1+2δq3+4) (C.17)

+ (F−1F−3 − F1F3)(δq1+4δq2+3 + δq1+2δq3+4) + (F−1F−2 − F1F2)(δq1+4δq2+3 + δq1+3δq2+4)] ,

〈ψ1ψ2ψ3ψ4〉 = A1A2A3A4〈(a1 − a∗
−1)(a2 − a∗

−2)(a3 − a∗
−3)(a4 − a∗

−4)〉 =

= A1A2A3A4(〈a∗
−1a

∗
−2a3a4〉 + 〈a∗

−1a2a
∗
−3a4〉 + 〈a1a

∗
−2a

∗
−3a4〉

+ 〈a∗
−1a2a3a

∗
−4〉 + 〈a1a

∗
−2a3a

∗
−4〉 + 〈a1a2a

∗
−3a

∗
−4〉)

= (2π)2d+2A1A2A3A4[(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3) (C.18)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) + (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)] .

Notice that we substituted the correlation function of four a fields with correlation functions
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of pairs of a fields (Wick’s theorem). This substitution is justified, since we need the these

correlation functions in their lowest order. Likewise, we kept only the F correlation functions,

i.e. only correlation function of 〈a∗
i a

∗
jakal〉 type. This follows from Fq # Hq in the zeroth order,

which will be shown in subsection C.4.

Using (C.10-C.18) we express λ from (1.3) as a function of a and a∗

λ $
∫

dk1

(2π)d
k4

1A1A−1[Re(H(k1, 0)) − F (k1, 0)]

−
∫

dq123

(2π)3d+3
(2π)d+1δq1+2+3

[

|k1|k2
3(k1 · k2 + k2

2)(2π)δ(ω3)A1B2A3×

× (J123 + J∗
−1−2−3 − K−123 − K∗

1−2−3 + K1−23 + K∗
−12−3 − K12−3 − K∗

−1−23)

+ k2
1k

2
2(k2 · k3)

(

iπ

ω3
(δ(ω1) − δ(ω2)) +

1

ω1ω2

)

A1A2A3×

× (J123 − J∗
−1−2−3 − K−123 + K∗

1−2−3 − K1−23 + K∗
−12−3 − K12−3 + K∗

−1−23)

]

+ lim
t→∞

∫

dq1234

(2π)4d+4
(2π)2d+2× (C.19)

×
{

|k1|
2

(k1 · k2 + k2
2)|k3|(k3 · k4 + k2

4)(2π)δ(ω3 + ω4)×

× A1B2A3B4[−(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) − (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

+ |k1|(k1 · k2 + k2
2)k

2
3(k3 · k4)

[

−e−i(ω3+ω4)t − 1

(ω3 + ω4)ω4
+

e−iω3t − 1

ω3ω4

]

×

× A1B2A3A4[(F1F2 − F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 − F1F3)(δq1+2δq3+4 + δq1+4δq2+3) + (F−1F−4 − F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

+ k2
1|k2|(k2 · k3 + k2

3)(k2 · k4 + k3 · k4)

[

−e−i(ω2+ω3+ω4)t − 1

(ω2 + ω3 + ω4)ω4
+

e−i(ω2+ω3)t − 1

(ω2 + ω3)ω4

]

×

× A1A2B3A4[(F1F3 − F−1F−3)(δq1+2δq3+4 + δq1+4δq2+3)

+ (F−1F−2 − F1F2)(δq1+3δq2+4 + δq1+4δq2+3) + (F−1F−4 − F1F4)(δq1+3δq2+4 + δq1+2δq3+4)]

+ k2
1k

2
2(k2 · k4)|k3|

[

− e−i(ω2+ω3+ω4)t − 1

(ω2 + ω3 + ω4)(ω3 + ω4)
+

e−iω2t − 1

ω2(ω3 + ω4)

]

×

× A1A2A3B4[(F1F4 − F−1F−4)(δq1+3δq2+4 + δq1+2δq3+4)

+ (F−1F−3 − F1F3)(δq1+4δq2+3 + δq1+2δq3+4) + (F−1F−2 − F1F2)(δq1+4δq2+3 + δq1+3δq2+4)]
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+ k2
1k

2
2(k2 · k3)(k2 + k3) · k4

[

e−i(ω2+ω3+ω4)t − 1

i(ω2 + ω3 + ω4)(ω3 + ω4)ω4
− e−iω2t − 1

iω2(ω3 + ω4)ω4
−

− e−i(ω2+ω3)t − 1

i(ω2 + ω3)ω3ω4
+

e−iω2t − 1

iω2ω3ω4

]

A1A2A3A4[(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) + (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]+

+
1

2
k2

1k
2
2(k2 · k3)(k2 · k4)

[

e−i(ω2+ω3+ω4)t − 1

i(ω2 + ω3 + ω4)ω3ω4
− e−i(ω2+ω4)t − 1

i(ω2 + ω4)ω3ω4
−

− e−i(ω2+ω3)t − 1

i(ω2 + ω3)ω3ω4
+

e−iω2t − 1

iω2ω3ω4

]

A1A2A3A4[(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) + (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

}

C.1 Correlation functions of normal coordinates

A system of waves in terms of the introduced normal variables a(k, t) can be represented with

the following equations

∂a(k, t)

∂t
= −i

δH(t)

δa∗(k, t)
− if(k, t) − γ0(k)a(k, t) (C.20)

H =

∫

dkΩka
∗
kak +

∫

dk123

(

1

2
V123a1a

∗
2a

∗
3δk1−2−3 +

1

6
U123a

∗
1a

∗
2a

∗
3δk1+2+3 + c.c.

)

+

+

∫

dk1234

(

1

8
W1234a

∗
1a

∗
2a3a4δk1+2−3−4 + R∗

1234a1a2a3a4δk1+2+3+4

+Q1234a1a
∗
2a

∗
3a

∗
4δk1−2−3−4 + c.c.) . (C.21)

Here H(t) is the wave Hamiltonian, f(k, t) is forcing and γ0(k) the bare (linear) damping. In the

Hamiltonian we have written the non-interacting term and corrections that correspond to three-

wave and four-wave mixing. Also we have introduced shorthand notations δ(k1 + k2 + k3) →

δk1+2+3, ak1
→ a1, V (k1, k2, k3) → V123 and dk1dk2dk3 → dk123,

∫ ∞

−∞ →
∫

and suppressed

the dependence on time (only in the notation), which here enters as a parameter. Interaction

coefficients have the following symmetries [114]: V123 = V132, U123 = U132 = U213, Q1234 =

Q1324 = Q1243, R1234 = R2134 = R1243 = R3214 = R4231 and W1234 = W2134 = W1243 = W ∗
3412.

The last equality for W1234 follows, since Hamiltonian is real.

The wave equation, which we will solve perturbatively, in order to find 〈aa〉, 〈a∗a〉, 〈aaa〉
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C The diagrammatic technique

and 〈a∗aa〉 correlation functions, is

∂a(k, t)

∂t
= −i

δH
δa∗(k, t)

− if(k, t) − γ0a(k, t) . (C.22)

Let us rescale the field a → εa and f → εf , where ε % 1 and the new variables a and f are

now of the order of unity 1. Now in the rescaled Hamiltonian the interaction coefficients V and

U have smallness ε and the four-wave interaction coefficients have smallness ε2. For the time

being we will only consider three-wave interaction, later we will consider also the four-wave

interaction. Let us write one more time wave equation with the H3 hamiltonian explicitly

∂tak = −iΩkak − ifk − γ0kak (C.23)

− iε

∫

dk12

(

V123a1a
∗
2δk1−2−k

1

2
V ∗

k12a1a2δkk−1−2 +
1

2
Uk12a

∗
1a

∗
2δk1+2+k

)

.

To simplify the notation, we have omitted the time dependence of a and f and wrote the

dependence of all quantities on k as subscript k. If there will be the need to stress dependence

on −k we will denote it as subscript −k or write it explicitly. The generating functional of the

above equation is

Zf [l, l
∗] =

∫

DaDa∗ exp

{
∫

dt(la + l∗a∗)

}

∏

k,t

δ

[

∂a

∂t
+ iΩka − γ0ka + i

δHint

δa∗
+ ifk

]

×

×
∏

k,t

δ

[

∂a∗

∂t
− iΩka

∗ − γ0ka
∗ − i

(

δHint

δa∗

)∗

− if ∗

]

J [a, a∗] , (C.24)

here each a and l is a function of k and t and J [a, a∗] is the Jacobian which will enter the

normalization. Next, we introduce two new fields, p(k, t) and p∗(k, t) and set (p)∗ = p∗

Zf [l, l
∗] =

∫

DaDa∗DpDp∗ exp

{∫

dt(la + l∗a∗)

}

×

× exp

{

i

∫

dk

(2π)d
dt

[

∂a

∂t
+ iΩka − γ0ka + i

δHint

δa∗
+ if

]

p∗
}

×

1 We assume that the original f , has the same smallness as a, since otherwise a could not remain small during
evolution.
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× exp

{

−i

∫

dk

(2π)d
dt

[

∂a∗

∂t
− iΩka

∗ − γ0ka
∗ − i

(

δHint

δa∗

)∗

− if

]

p

}

J̃ [a, a∗]

=

∫

DaDa∗DpDp∗ exp

{
∫

dt(la + l∗a∗)

}

×

× exp

{
∫

dk

(2π)d
dt

[

i

(

∂a

∂t
+ iΩka − γ0ka

)

p∗ − i

(

∂a∗

∂t
− iΩka

∗ − γ0ka
∗

)

p

]}

(C.25)

× exp

{

−
∫

dk

(2π)d
dt

[

δHint

δa∗
p∗ +

(

δHint

δa∗

)∗

p

]}

exp

{

−
∫

dk

(2π)d
dt [fp∗ + f ∗p]

}

J̃ [a, a∗] .

We average over forcing f

Zf [l, l
∗] =

∫

DfDf ∗P[f, f ∗]
Zf [l, l∗]

Zf [l = 0, l∗ = 0]
(C.26)

here P[f, f ∗] is the probability distribution of forcing, which general is unknown. Note that

Zf [l = 0, l∗ = 0] = 1, due to the Jacobian appearing in Zf [l, l∗]. We obtain an interaction

vertex of p and p∗, which we do not know explicitly, unless we specify P[f, f ∗]. Hence we will

assume that we know one of the basic objects of this field theory: the pair correlation function,

i.e. wave spectra (it will be introduced later as n(k)) in the lowest order. Our results on the

sum of Lyapunov exponents are to be interpreted, as functionals of this spectra. We obtain for

the generating functional

Z[l, l∗] =

∫

DaDa∗DpDp∗ exp

{
∫

dt(la + l∗a∗)

}

×

× exp

{
∫

dk

(2π)d
dt

[

i

(

∂a

∂t
+ iΩka − γ0ka

)

p∗ − i

(

∂a∗

∂t
− iΩka

∗ − γ0ka

)

p

]}

(C.27)

× exp

{

−
∫

dk

(2π)d
dt

[

δHint

δa∗
p∗ +

(

δHint

δa∗

)∗

p

]}〈

exp

{

−
∫

dkdt

(2π)d
dt [fp∗ + f ∗p]

}〉

f

J̃ [a, a∗] ,

here the J̃ [a, a∗] is the new normalization (c.f. [36]). From the generating functional averaged

over force (C.27) we get the Feynman rules (〈 〉f denotes averaging over force). All the terms

in the exponent can be represented as iI, I has the role of action and we will call it Martin-

Siggia-Rose action [5, 36, 70, 71, 110]. The correlations functions of fields a are proven to be
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C The diagrammatic technique

given [36, 71, 110] by the following functional integrals

〈a(k1, t1)...a(kn, tn)a∗(kn+1, tn+1)...a
∗(km, tm)〉 =

= Z−1[0, 0]
δmZ[l, l∗]

δl(k1, t1)...δl(kn, tn)δl∗(kn+1, tn+1)...δl∗(km, tm)

∣

∣

∣

∣

l=0,l∗=0

. (C.28)

We are considering a case of the weak nonlinearity. The main objects of the analysis are the

pair correlation function F (k, t) and the Green’s function G(k, t). They are determined as the

following averages

F (k, t)(2π)dδ(k − k′) ≡ 〈a∗(k, 0)a(k′, 0)〉 (C.29)

G(k, t)(2π)dδ(k − k′) ≡
〈

δa(k, t)

δf(k′, 0)

〉

, (C.30)

where δa designates the response of a solution of (C.20) to the variation δf of the pumping

force. In the lowest order we already said we will take as know the form of Fq, while the

bare propagator between a(k1, ω1) and p(k2, ω2) from the quadratic part of Martin-Siggia-Rose

action. Let us look at

i

∫

dk1

(2π)d
dt

dω1dω2

(2π)2
a1(−iω1 + iΩ1 − γ01)p

∗
2e

−i(ω1−ω2)t

= i

∫

dk1

(2π)d
dk2dt

dω1dω2

(2π)2
ei(ω2−ω1)ta1(−iω1 + iΩ1 − γ01)p

∗
2δ(k1 − k2)

=

∫

dq1dq2

(2π)2d+2
a1(ω1 − Ω1 + iγ01)p

∗
2(2π)d+1δ(q1 − q2) ,

here ai and pi are functions of qi. This calculus gives us the bare propagator between a and p∗

G(k, ω) =
1

ω − Ωk + iγ0k
(C.31)

Let us recall the exact Dyson’s equation for the dressed propagators 2

G(q) = [ω − Ω(k) + iγ0(k) − Σ(q)]−1 , where (C.32)

2 Frequently the equation on F is called the Dyson-Wyld equation.
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F (q) = [Φ(q) + Φ0(q)] |G(q)|2 , (C.33)

〈f ∗(q)f(q′)〉 ≡ (2π)d+1Φ0(q)δ(q − q′) , (C.34)

G0(q) = [ω − Ω(k) + iγ0(k)]−1 . (C.35)

Above we introduced self-energy function Σ and the mass operator Φ and the forcing correlation

function Φ0. The imaginary part of Σ determines the damping of waves, the real part shifts

the frequency from Ωk, while Φ is the renormalized pumping. Due to small nonlinearity

Σ(k, ω) ∝ ε2 & Ω(k) , (C.36)

thus (C.31) has a sharp peak in the vicinity of Ω(k). As a first thep in analysis one may neglect

the ω dependence of Σ(k, ω) and use

Σ(k, ω) ' Σ(k, Ω(k)) . (C.37)

With this approximation for the self-energy we get that (C.32) looks like

G(q) ' G̃(q) = [ω − ΩR(k) + iγ(k)]−1 , (C.38)

ΩR(k) ≡ Ω(k) + ReΣ(k, Ω(k)) , (C.39)

γ(k) ≡ γ0(k) − ImΣ(k, Ω(k)) , (C.40)

Φ(q) ' Φ̃(q) = Φ(k, Ω(k)) , (C.41)

F (q) ' F̃ (q) = |G̃(q)|2[Φ0(q) + Φ̃(q)] . (C.42)

Thus, in the lowest order we are have

F (k, ω) ' n(k)(2π)δ(ω − Ω(k)) (C.43)

Recall that we take wave spectrum n(k) as given. We will also assume that n(k) is a steady

state, since the sum of Lyapunov exponents can be written as (1.1) only for a steady state. This

steady state imposes Φ(q)/γ(k) = const, however this alone does not help, since we assume
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nothing about the forcing that created the wave spectra. The vertices and propagators that

appear in this field theory are listed bellow.

C.2 Rules and vertices

a p∗ G1(2π)d+1δ(q1 − q2) ≡ 〈a1p∗2〉

a a∗ F1(2π)d+1δ(q1 − q2) ≡ 〈a∗
1a2〉

a a∗ emphasizes that the F is taken as dressed

ak

a∗
1

a2

−εV12ka1a∗
2p

∗
k

ak

a∗
1

a∗
2

−(ε/2)V ∗
k12a1a2p∗k

ak

a1

a2

−(ε/2)Uk12a∗
1a

∗
2p

∗
k

a∗
k

a1

a∗
2

−εV ∗
12ka

∗
1a2pk
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a∗
k

a1

a2

−(ε/2)Vk12a∗
1a

∗
2pk

a∗
k

a∗
1

a∗
2

−(ε/2)U∗
k12a1a2pk

Note that the direction of G and G∗ is opposite, while F = F ∗ can have both directions.

We will use bold lines to denote the dressed propagator and pair correlation function. The

momentum is conserved at each vertex.

Let us look at a wave field a

a(k, t) =

∫

dw

2π
a(k, t)e−iωt (C.44)

We introduce a cut-off ωb such that ωb " Ω(kp), where kp is the characteristic wavenumber of

the pumping scale. Now a(k, t) can be decomposed into a slow a′ and fast ã part as follows

a(k, t) = a′ + ã, a′ ≡
∫

|ω|<ωb

dw

2π
a(k, t)e−iωt, ã ≡

∫

|ω|≥ωb

dw

2π
a(k, t)e−iωt (C.45)

Note that at those frequencies G′
q $ −1/Ωk.

C.3 Correlation function 〈a′∗a′〉

Let us look at following quantity

∫ ∞

−∞

dt〈a∗(k1, 0)a(k2, t)〉 = F (k1, ω = 0)δ(k1 − k2)(2π)d (C.46)

We see that the main contribution to these quantity will be given from small frequencies, i.e. a′

wave amplitudes. Since there is no pumping on those scales in the lowest order 〈a′∗a′〉 is zero.
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The first non-vanishing order is ε2. The graph that contributes to this correlation function is

〈a′∗a′〉 =
V123

V ∗
123

(C.47)

here we used a bold wavy line to emphasize that the correlation functions F should be taken

as dressed. With the vertices we have on disposal we can make the following graphs

F (k3, ω3 = 0) = Φ1(k3, ω3 = 0) + Φ2(k3, ω3 = 0) + Φ3(k3, ω3 = 0) (C.48)

V123

V ∗
123

Φ1(k3, ω3 = 0) = ε2(2π)d−1|G′
3|2

∫

dq12|V123|2δq1−2−3F (q1)F (q2) =

= ε2(2π)d+1 1

Ω2
3

∫

dk12|V123|2δk1−2−3n1n2δ(Ω1 − Ω2) (C.49)

V ∗
312

V312

Φ2(k3, ω3 = 0) = 2
ε2

4
(2π)d−1|G′

3|2
∫

dq12|V312|2δq3−1−2F (q1)F (q2) =

=
ε2

2
(2π)d+1 1

Ω2
3

∫

dk12|V312|2δk3−1−2n1n2δ(Ω1 + Ω2) (C.50)
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U312

U∗
312

Φ3(k3, ω3 = 0) = 2
ε2

4
(2π)d−1|G′

3|2
∫

dq12|U123|2δq1+2+3F (q1)F (q2) = (C.51)

=
ε2

2
(2π)d+1 1

Ω2
3

∫

dk12|U123|2n1n2δ(Ω1 + Ω2) (C.52)

Adding all terms (C.49,C.50 and C.52) we get

F (k3, ω3 = 0) =
ε2

2
(2π)d+1 1

Ω2
3

∫

dk12n1n2[2|V123|2δk1−2−3δ(Ω1 − Ω2)

+ |V312|2δk3−1−2δ(Ω1 + Ω2) + |U123|2δk3+1+2δ(Ω1 + Ω2)] (C.53)

C.4 Correlation function 〈a′a′〉

We notice again that there is no zeroth order contribution to 〈a′a′〉 since the is no pumping at

those scale. The main contribution comes graph bellow

V123

V21(−3)
a3 a3 (C.54)

With the vertices we have on disposal we can make the following graphs

H(k3, ω3 = 0) = Ξ1(k3, ω3 = 0) + Ξ2(k3, ω3 = 0) (C.55)

V123

V21(−3)
a3 a3 +

V12(−3)

V213
a3 a3
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C The diagrammatic technique

Ξ1(k3, ω3 = 0) =
ε2

2
(2π)d−1G′

3G
′
−3

∫

dq12F1F2[V123V21(−3)δq1−2−3 + V12(−3)V213δq1−2+3]

=
ε2

2
(2π)d+1 1

Ω3Ω−3

∫

dk12n1n2δ(Ω1 − Ω2)[V123V21(−3)δk1−2−3 + V12(−3)V213δk1−2+3] (C.56)

V ∗
312

U(−3)12
a3 a3 +

U(−3)12

V ∗
312

a3 a3

Ξ2(k3, ω3 = 0) =
ε2

4
(2π)d−1G′

3G
′
−3

∫

dq12F1F2[V
∗
312U12(−3)δq3−1−2 + V ∗

(−3)12U123δq1+2+3]

=
ε2

2
(2π)d+1 1

Ω3Ω−3

∫

dk12n1n2δ(Ω1 + Ω2)[V
∗
312U12(−3)δk3−1−2 + V ∗

(−3)12U123δk1+2+3] (C.57)

Hence from (C.56,) we get the 〈a′a′〉 correlator

H(k3, ω3 = 0) =
ε2

4
(2π)d+1 1

Ω3Ω−3

∫

dk12n1n2×

× [2(V123V21(−3)δk1−2−3 + V12(−3)V213δk1−2+3)δ(Ω1 − Ω2)

+ (V ∗
312U12(−3)δk3−1−2 + V ∗

(−3)12U123δk1+2+3)δ(Ω1 + Ω2)] (C.58)

C.5 Correlation function 〈a1a2a3〉

(C.59)

J123 = −ε(2π)dU123(G1F2F3 + G2F1F3 + G3F1F2)

= −ε(2π)d+2U123[G1n2n3δ(ω2 − Ω2)δ(ω3 − Ω3) + G2n1n3δ(ω1 − Ω1)δ(ω3 − Ω3)+

+ G3n1n2δ(ω1 − Ω1)δ(ω2 − Ω2)] (C.60)

here Gi is the bare Green’s function.
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C.6 Correlation function 〈a∗1a2a3〉

a∗
1

a3

a∗
2

a4

(C.61)

K123 = −ε(2π)dV123(G
∗
1F2F3 + G2F1F3 + G3F1F2)

= −ε(2π)d+2V123[G
∗
1n2n3δ(ω2 − Ω2)δ(ω3 − Ω3) + G2n1n3δ(ω1 − Ω1)δ(ω3 − Ω3)+

+ G3n1n2δ(ω1 − Ω1)δ(ω2 − Ω2)] (C.62)

here also Gi is the bare Green’s function.

C.7 Correlation function 〈ã∗1ã∗2ã3ã4〉

All correlation function of four a that appear in (1.3) need to be taken in the zeroth order, since

there is already an ε2 factor in front. Hence all a should be taken as ã. These guys correspond

to fast frequencies and also can arise directly from pumping. The diagrams that contribute to

them are

a∗
1

a3

a∗
2

a4

+ a∗
1

a3

a∗
2

a4

〈ã∗
1ã

∗
2ã3ã4〉 = (2π)2d+2(δq1−3δq2−4 + δq1−4δq2−3)F1F2

= (2π)2d+4[δq1−3δq2−4 + δq1−4δq2−3]δ(ω1 − Ω1)δ(ω2 − Ω2)n1n2 (C.63)

Note that the correlation function 〈ãã〉 only appears in the ε2 orders, since there are is no bare

vertex of p interacting with p (there is a vertex however of p interacting with p∗).
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C.8 Four wave interaction

In the rescalled wave equation the four-wave interaction terms comes with ε2 smallness, thus to

the order of ε4 in λ such a term could enter only correlation functions 〈a′
1a

′
1〉 and 〈a′∗a′〉. The

only possible diagram that could contribute is

(C.64)

However we notice that this diagram actually in ε2 corresponds to pair correlation functions of

〈ã1ã1〉 and 〈ã∗ã〉. Contributions to 〈a′
1a

′
1〉 and 〈a′∗a′〉 would be of orders higher that ε2.

Some questions arise: Could it have been anticipated that λ is to depend on the sign of

interaction? Can it be then guessed that a term with four-wave interaction in ε2 order would

not enter?

C.9 Higher than ε4

The next order terms to a field theory with vertices of three-, four- and five-wave interactions

(five-wave interaction vertex is of order ε3) show that the ε5 order does not exist. We see this by

trying to draw diagrams of ε5 order for correlation functions 〈a′∗
i a′

j〉, 〈a′
ia

′
j〉, 〈aiajak〉, 〈a∗

i ajak〉

and four and five a and a∗ fields correlation functions.

C.10 Calculating the sum of Lyapunov exponents

Now we recall the derived formula for the sum of Lyapunov exponents (C.19), we write it in

terms of rescalled fields a and plugg the correlation functions expressed in terms of unknown
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wave spectra n(k) (C.53−C.63)

λ = ε4(2π)

∫

dk123k
4
3A3A−3n1n2

{

Re

[

1

4Ω3Ω−3
[2(V123V21(−3)δk1−2−3+

+ V12(−3)V213δk1−2+3)δ(Ω1 − Ω2) + (V ∗
312U12(−3)δk3−1−2 + V ∗

(−3)12U123δk1+2+3)δ(Ω1 + Ω2)]

]

−

− 1

2Ω2
3

[

2|V123|2δk1−2−3δ(Ω1 − Ω2) + |V312|2δk3−1−2δ(Ω1 + Ω2) + |U123|2δk3+1+2δ(Ω1 + Ω2)
]

}

+ ε4

∫

dq123

(2π)d+2
δq1+2+3

{

|k1|k2
3(k1 · k2 + k2

2)(2π)δ(ω3)A1B2A3×

× [U123(G1F2F3 + G2F1F3 + G3F1F2) + U∗
−1−2−3(G

∗
−1F−2F−3 + G∗

−2F−1F−3 + G∗
−3F−1F−2)

− V−123(G
∗
−1F2F3 + G2F−1F3 + G3F−1F2) − V ∗

1−2−3(G1F−2F−3 + G∗
−2F1F−3 + G∗

−3F1F−2)

+ V−213(G1F−2F3 + G∗
−2F1F3 + G3F1F−2) + V ∗

2−1−3(G
∗
−1F2F−3 + G2F−1F−3 + G∗

−3F−1F2)

− V−312(G1F2F−3 + G2F1F−3 + G∗
−3F1F2) − V ∗

3−1−2(G
∗
−1F−2F3 + G∗

−2F−1F3 + G3F−1F−2)]

+ k2
1k

2
2(k2 · k3)

(

iπ

ω3
(δ(ω1) − δ(ω2)) +

1

ω1ω2

)

A1A2A3×

× [U123(G1F2F3 + G2F1F3 + G3F1F2) − U∗
−1−2−3(G

∗
−1F−2F−3 + G∗

−2F−1F−3 + G∗
−3F−1F−2)

− V−123(G
∗
−1F2F3 + G2F−1F3 + G3F−1F2) + V ∗

1−2−3(G1F−2F−3 + G∗
−2F1F−3 + G∗

−3F1F−2)

− V−213(G1F−2F3 + G∗
−2F1F3 + G3F1F−2) + V ∗

2−1−3(G
∗
−1F2F−3 + G2F−1F−3 + G∗

−3F−1F2)

− V−312(G1F2F−3 + G2F1F−3 + G∗
−3F1F2) + V ∗

3−1−2(G
∗
−1F−2F3 + G∗

−2F−1F3 + G3F−1F−2)]

}

+ λaaaa + O(ε6) . (C.65)

here we introduced λaaaa as follows

λaaaa ≡ lim
t→∞

ε4

∫

dq1234

(2π)4d+4
(2π)2d+2× (C.66)

×
{

|k1|
2

(k1 · k2 + k2
2)|k3|(k3 · k4 + k2

4)(2π)δ(ω3 + ω4)×

× A1B2A3B4[−(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) − (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

+ |k1|(k1 · k2 + k2
2)k

2
3(k3 · k4)

[

−e−i(ω3+ω4)t − 1

(ω3 + ω4)ω4
+

e−iω3t − 1

ω3ω4

]

×
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× A1B2A3A4[(F1F2 − F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 − F1F3)(δq1+2δq3+4 + δq1+4δq2+3) + (F−1F−4 − F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

+ k2
1|k2|(k2 · k3 + k2

3)(k2 · k4 + k3 · k4)

[

−e−i(ω2+ω3+ω4)t − 1

(ω2 + ω3 + ω4)ω4
+

e−i(ω2+ω3)t − 1

(ω2 + ω3)ω4

]

×

× A1A2B3A4[(F1F3 − F−1F−3)(δq1+2δq3+4 + δq1+4δq2+3)

+ (F−1F−2 − F1F2)(δq1+3δq2+4 + δq1+4δq2+3) + (F−1F−4 − F1F4)(δq1+3δq2+4 + δq1+2δq3+4)]

+ k2
1k

2
2(k2 · k4)|k3|

[

− e−i(ω2+ω3+ω4)t − 1

(ω2 + ω3 + ω4)(ω3 + ω4)
+

e−iω2t − 1

ω2(ω3 + ω4)

]

×

× A1A2A3B4[(F1F4 − F−1F−4)(δq1+3δq2+4 + δq1+2δq3+4)

+ (F−1F−3 − F1F3)(δq1+4δq2+3 + δq1+2δq3+4) + (F−1F−2 − F1F2)(δq1+4δq2+3 + δq1+3δq2+4)]

+ k2
1k

2
2(k2 · k3)(k3 · k4)

[

e−i(ω2+ω3+ω4)t − 1

i(ω2 + ω3 + ω4)(ω3 + ω4)ω4
− e−iω2t − 1

iω2(ω3 + ω4)ω4
−

− e−i(ω2+ω3)t − 1

i(ω2 + ω3)ω3ω4
+

e−iω2t − 1

iω2ω3ω4

]

A1A2A3A4[(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) + (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

+
1

2
k2

1k
2
2(k2 · k3)(k2 · k4)

[

e−i(ω2+ω3+ω4)t − 1

i(ω2 + ω3 + ω4)ω3ω4
− e−i(ω2+ω4)t − 1

i(ω2 + ω4)ω3ω4
−

− e−i(ω2+ω3)t − 1

i(ω2 + ω3)ω3ω4
+

e−iω2t − 1

iω2ω3ω4

]

A1A2A3A4[(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) + (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

}

.

To manage the calculation of the length expression, given above, we brake it into a sum

of three terms

λ = λaa + λaaa + λaaaa + O(ε6) , (C.67)

where λaa corresponds to the part where we use the pair correlation functions F and H in only

ε2 order, λaa the part where we meet K and J correlation functions and the rest gives λaaaa.

The next order it’s ε6 as explained in section C.9.

Also from now on we focus on gravity-capillary waves, hence it is worth to revise some

characteristics of them that we will constantly use along the way
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• We assume F (k, ω = 0) = 0 and from the definition of n(k) from bare F (k, ω) as

F (k, ω) = (2π)n(k)δ(ω − Ω(k)) we get F (k, ω = 0) = 0 ⇒ n(k)δ(Ω(k)) = 0 ⇒ n(k) =

0 for Ω(k) = 0;

• Ω(ki) = Ω(−ki);

• Interaction coefficients Vijk, Uijk are real;

• A(ki) = A(−ki) and B(ki) = B(−ki) for gravity-capillary waves, but due to the fact

that velocity has to be real we have A(ki) = −A∗(−ki) and B(ki) = B∗(−ki).

We will assume things related to gravity-capillary waves, as they become necessary.

Terms λaa

λaa ≡ ε4(2π)

∫

dk123k
4
3A3A−3n1n2

{

Re

[

1

4Ω3Ω−3
[2(V123V21(−3)δk1−2−3+

+ V12(−3)V213δk1−2+3)δ(Ω1 − Ω2) + (V ∗
312U12(−3)δk3−1−2 + V ∗

(−3)12U123δk1+2+3)δ(Ω1 + Ω2)]

]

−

− 1

2Ω2
3

[

2|V123|2δk1−2−3δ(Ω1 − Ω2) + |V312|2δk3−1−2δ(Ω1 + Ω2) + |U123|2δk3+1+2δ(Ω1 + Ω2)
]

}

Since Ωi ≥ 0 we have that ninjδ(Ωi+Ωj) is non-zero only for Ωi = Ωj = 0 for which ni = nj = 0,

hence we have

λaa = ε4(2π)

∫

dk123k
4
3|A3|2n1n2

{

Re

[

1

2Ω3Ω−3
(V123V21(−3)δk1−2−3+

+ V12(−3)V213δk1−2+3)δ(Ω1 − Ω2)

]

− 1

Ω2
3

|V123|2δk1−2−3δ(Ω1 − Ω2)

}

= ε4(2π)

∫

dk123k
4
3|A3|2n1n2

[

|V123|2

Ω2
3

−
Re(V123V21(−3))

Ω3Ω−3

]

δ(Ω1 − Ω2)δk1−2−3 (C.68)

For gravity-capillary waves λaa is

λaa = ε4(2π)

∫

dk123k
4
3A

2
3n1n2

1

Ω2
3

δk1−2−3δ(Ω1 − Ω2)V123(V21(−3) − V123)

= 0
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One can check [38] that (V21(−3) − V123)δk1−2−3δ(Ω1 − Ω2) = 0 for gravity-capillary waves.

Terms λaaa

λaaa " −ε4

∫

dq123

(2π)d+2
δq1+2+3|k1|k2

3(k2 · k3)(2π)δ(ω3)A1B2A3× (C.69)

× [−V−123G3F−1F2 − V ∗
1−2−3G

∗
−3F1F−2 + V−213G3F1F−2 + V ∗

2−1−3G
∗
−3F−1F2]

+ ε4

∫

dq123

(2π)d+2
δq1+2+3k

2
1k

2
2(k2 · k3)A1A2A3

iπ

ω3
δ(ω1)×

× [−V−213G1F−2F3 + V ∗
2−1−3G

∗
−1F2F−3 − V−312G1F2F−3 + V ∗

3−1−2G
∗
−1F−2F3]

− ε4

∫

dq123

(2π)d+2
δq1+2+3k

2
1k

2
2(k2 · k3)A1A2A3

iπ

ω3
δ(ω2)×

× [−V−123G2F−1F3 + V ∗
1−2−3G

∗
−2F1F−3 − V−312G2F1F−3 + V ∗

3−1−2G
∗
−2F−1F3]

− ε4

∫

dq123

(2π)d+2
δq1+2+3

1

2
k2

1k
2
2k

2
3A1A2A3

1

ω1ω2
×

× [U123(G1F2F3 + G2F1F3 + G3F1F2) − U∗
−1−2−3(G

∗
−1F−2F−3 + G∗

−2F−1F−3 + G∗
−3F−1F−2)

− V−123(G
∗
−1F2F3 + G2F−1F3 + G3F−1F2) + V ∗

1−2−3(G1n−2F−3 + G∗
−2F1F−3 + G∗

−3F1F−2)

− V−213(G1F−2F3 + G∗
−2F1F3 + G3F1F−2) + V ∗

2−1−3(G
∗
−1F2F−3 + G2F−1F−3 + G∗

−3F−1F2)

− V−312(G1F2F−3 + G2F1F−3 + G∗
−3F1F2) + V ∗

3−1−2(G
∗
−1F−2F3 + G∗

−2F−1F3 + G3F−1F−2)]

To calculate λaaa we introduce three terms

λaaa ≡ λaaa1 + λaaa2 + λaaa3 (C.70)

Term λaaa1

λaaa1 ≡ −ε4

∫

dq123

(2π)d+2
δq1+2+3|k1|k2

3(k2 · k3)(2π)δ(ω3)A1B2A3× (C.71)

× [−V−123G3F−1F2 − V ∗
1−2−3G

∗
−3F1F−2 + V−213G3F1F−2 + V ∗

2−1−3G
∗
−3F−1F2]

+ ε4

∫

dq123

(2π)d+2
δq1+2+3k

2
1k

2
2(k2 · k3)A1A2A3

iπ

ω3
δ(ω1)×

× [−V−213G1F−2F3 + V ∗
2−1−3G

∗
−1F2F−3 − V−312G1F2F−3 + V ∗

3−1−2G
∗
−1F−2F3]
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− ε4

∫

dq123

(2π)d+2
δq1+2+3k

2
1k

2
2(k2 · k3)A1A2A3

iπ

ω3
δ(ω2)×

× [−V−123G2F−1F3 + V ∗
1−2−3G

∗
−2F1F−3 − V−312G2F1F−3 + V ∗

3−1−2G
∗
−2F−1F3]

= −ε4

∫

dq123

(2π)d+2
δq1+2+3|k1|k2

3(k2 · k3)(2π)δ(ω3)A1B2A3×

× [−V−123G3F−1F2 − V ∗
1−2−3G

∗
−3F1F−2 + V−213G3F1F−2 + V ∗

2−1−3G
∗
−3F−1F2]

+ ε4

∫

dq123

(2π)d+2
δq1+2+3k

2
1k

2
2(k1 · k3)A1A2A3

iπ

ω3
δ(ω2)×

× [−V−123G2F−1F3 + V ∗
1−2−3G

∗
−2F1F−3 − V−312G2F1F−3 + V ∗

3−1−2G
∗
−2F−1F3]

− ε4

∫

dq123

(2π)d+2
δq1+2+3k

2
1k

2
2(k2 · k3)A1A2A3

iπ

ω3
δ(ω2)×

× [−V−123G2F−1F3 + V ∗
1−2−3G

∗
−2F1F−3 − V−312G2F1F−3 + V ∗

3−1−2G
∗
−2F−1F3]

here we exchanged q1 and q2 in integrals that were with δ(ω1). This gave us

λaaa1 = −ε4

∫

dq123

(2π)d+2
δq1+2+3|k1|k2

3(k2 · k3)(2π)δ(ω3)A1B2A3×

× [−V−123G3F−1F2 − V ∗
1−2−3G

∗
−3F1F−2 + V−213G3F1F−2 + V ∗

2−1−3G
∗
−3F−1F2]

+ ε4

∫

dq123

(2π)d+2
δq1+2+3k

2
1k

2
2((k1 − k2) · k3)A1A2A3

iπ

ω3
δ(ω2)×

× [V ∗
3−1−2G

∗
−2F−1F3 − V−123G2F−1F3]

− ε4

∫

dq123

(2π)d+2
δq1+2+3k

2
1k

2
2((k1 − k2) · k3)A

∗
1A

∗
2A

∗
3

iπ

ω3
δ(ω2)×

× [V3−1−2G−2F−1F3 − V ∗
−123G

∗
2F−1F3]

Hence we get

λaaa1 = −ε4

∫

dq123

(2π)d+2
δq1+2+3|k1|k2

3(k2 · k3)(2π)δ(ω3)A1B2A3×

× [−V−123G3F−1F2 − V ∗
1−2−3G

∗
−3F1F−2 + V−213G3F1F−2 + V ∗

2−1−3G
∗
−3F−1F2]

+ 2Re

[

ε4

∫

dq123

(2π)d+2
δq1+2+3k

2
1k

2
2((k1 − k2) · k3)A1A2A3

iπ

ω3
δ(ω2)×

× [V ∗
3−1−2G

∗
−2 − V−123G2]F−1F3

]
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λaaa1 = 2Re

[

ε4π

∫

dq123

(2π)d+2
δq1+2+3|k1|k2

3(k2 · k3)(2π)δ(ω3)A1B2A3×

× [V ∗
1−2−3G

∗
−3 − V−213G3]F1F−2

]

+ 2Re

[

ε4

∫

dq123

(2π)d+2
δq1+2+3k

2
1k

2
2((k1 − k2) · k3)A1A2A3

iπ

ω3
δ(ω2)× (C.72)

× [V ∗
3−1−2G

∗
−2 − V−123G2]F−1F3

]

The difference (V ∗
3−1−2G

∗
−2 − V−123G2)δq1+2+3δ(ω2) gives zero for gravity-capillary waves and

both terms can be reduced to this difference.

Term λaaa2

λaaa2 ≡ −ε4

∫

dq123

(2π)d+2
δq1+2+3

1

2
k2

1k
2
2k

2
3A1A2A3

1

ω1ω2
× (C.73)

× [U123(G1F2F3 + G2F1F3 + G3F1F2) − U∗
−1−2−3(G

∗
−1F−2F−3 + G∗

−2F−1F−3 + G∗
−3F−1F−2)

− ε4

∫

dq123

(2π)d+2
δq1+2+3

1

2
k2

1k
2
2k

2
3

1

ω1ω2
×

× [A1A2A3U123(G1F2F3 + G2F1F3 + G3F1F2) + A∗
1A

∗
2A

∗
3U

∗
123(G

∗
1F2F3 + G∗

2F1F3 + G∗
3F1F2)

where we changed variables qi → −qi in the term with U∗
−1−2−3. A−1 = −A∗

1 comes from asking

the velocity to be real, however for gravity capillary waves even more is true A1 = A−1 = −A∗
1.

λaaa2 = −Re

[

ε4

∫

dq123

(2π)d+2
δq1+2+3

k2
1k

2
2k

2
3A1A2A3U123

ω1ω2
(G1F2F3 + G2F1F3 + G3F1F2)

]

= Re

[

ε4

∫

dk123δk1+2+3k2
1k

2
2k

2
3A1A2A3U123

(2π)d(Ω1 + Ω2 + Ω3 − iγ0)

(

n1n2

Ω1Ω2
− n1n3

Ω1(Ω1 + Ω3)
− n2n3

Ω2(Ω2 + Ω3)

)]

= Re

[

ε4

∫

dk123δk1+2+3k2
1k

2
2k

2
3A1A2A3U123n1n2

(2π)d(Ω1 + Ω2 + Ω3 − iγ0)

(

1

Ω1Ω2
− 1

Ω1(Ω1 + Ω2)
− 1

(Ω1 + Ω2)Ω2

)]

λaaa2 = 0 (C.74)

here we assumed γ0(k) ≡ γ0 does not depend on k, which is fine, since no result should depend

on γ0 and it is small. It just shows how to take the contour integrals. Also to make the last

step we changed in such way indices to have all terms with n1n2.
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Term λaaa3

λaaa3 ≡ −ε4

∫

dq123

(2π)d+2
δq1+2+3

1

2
k2

1k
2
2k

2
3A1A2A3

1

ω1ω2
× (C.75)

× [V ∗
1−2−3(G1n−2F−3 + G∗

−2F1F−3 + G∗
−3F1F−2) − V−123(G

∗
−1F2F3 + G2F−1F3 + G3F−1F2)+

+ V ∗
2−1−3(G

∗
−1F2F−3 + G2F−1F−3 + G∗

−3F−1F2) − V−213(G1F−2F3 + G∗
−2F1F3 + G3F1F−2)+

+ V ∗
3−1−2(G

∗
−1F−2F3 + G∗

−2F−1F3 + G3F−1F−2) − V−312(G1F2F−3 + G2F1F−3 + G∗
−3F1F2)]

= −ε4

∫

dq123

(2π)d+2
δq1+2+3

1

2
k2

1k
2
2k

2
3A1A2A3

1

ω1

(

1

ω2
− 1

ω3

)

×

× [V ∗
1−2−3(G1n−2F−3 + G∗

−2F1F−3 + G∗
−3F1F−2) − V−123(G

∗
−1F2F3 + G2F−1F3 + G3F−1F2)]

λaaa3 = 0 (C.76)

here we changed variables of integration so that all terms depend on V ∗
1−2−3 and V−123 and used

δω1+2+3, then we arrived expression above, which to show that it is zero it is enough to change

q2 ! q3 in 1/ω3 term.

C.11 Term λaaaa

λaaaa = ε4

∫

dq1234

(2π)4d+4
(2π)2d+2× (C.77)

×
{

|k1|
2

(k1 · k2 + k2
2)|k3|(k3 · k4 + k2

4)(2π)δ(ω3 + ω4)×

× A1B2A3B4[−(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) − (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

+ |k1|(k1 · k2 + k2
2)k

2
3(k3 · k4)

[

iπδ(ω3 + ω4)

ω4
− iπδ(ω3)

ω4
− 1

ω3(ω3 + ω4)

]

×

× A1B2A3A4[(F1F2 − F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3) + (F−1F−3 − F1F3)(δq1+2δq3+4+

+ δq1+4δq2+3) + (F−1F−4 − F1F4)(δq1+2δq3+4 + δq1+3δq2+4)] + k2
1|k2|(k2 · k3 + k2

3)×

× (k2 · k4 + k3 · k4)

[

iπ[δ(ω2 + ω3 + ω4) − δ(ω2 + ω3)]

ω4
− 1

(ω2 + ω3)(ω2 + ω3 + ω4)

]

×
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× A1A2B3A4[(F1F3 − F−1F−3)(δq1+2δq3+4 + δq1+4δq2+3)

+ (F−1F−2 − F1F2)(δq1+3δq2+4 + δq1+4δq2+3) + (F−1F−4 − F1F4)(δq1+3δq2+4 + δq1+2δq3+4)]

+ k2
1k

2
2(k2 · k4)|k3|

[

iπδ(ω2 + ω3 + ω4)

ω3 + ω4
− 1

ω2(ω2 + ω3 + ω4)
− iπδ(ω2)

ω3 + ω4

]

×

× A1A2A3B4[(F1F4 − F−1F−4)(δq1+3δq2+4 + δq1+2δq3+4)+

+ (F−1F−3 − F1F3)(δq1+4δq2+3 + δq1+2δq3+4) + (F−1F−2 − F1F2)(δq1+4δq2+3 + δq1+3δq2+4)]

+ k2
1k

2
2(k2 · k3)(k3 · k4)

[

−πδ(ω2 + ω3 + ω4)

(ω3 + ω4)ω4
+

1

iω2(ω2 + ω3 + ω4)ω4
+

+
πδ(ω2)

(ω3 + ω4)ω4
+

πδ(ω2 + ω3)

ω3ω4
− πδ(ω2)

ω3ω4
− 1

iω2(ω2 + ω3)ω4

]

×

× A1A2A3A4[(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) + (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

+
1

2
k2

1k
2
2(k2 · k3)(k2 · k4)

[

−πδ(ω2 + ω3 + ω4)

ω3ω4
+

1

i(ω2 + ω3 + ω4)(ω2 + ω4)ω4
+

πδ(ω2 + ω4)

ω3ω4

+
πδ(ω2 + ω3)

ω3ω4
− 1

iω2(ω2 + ω3)ω4
− δ(ω2)

ω3ω4

]

×

× A1A2A3A4[(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) + (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

}

Since we assume F (k, ω = 0) = 0 all δ(ωi + ωj + ωk) and δ(ωi) give zero and we obtain

λaaaa = ε4

∫

dq1234

(2π)4d+4
(2π)2d+2× (C.78)

×
{

|k1|
2

(k1 · k2 + k2
2)|k3|(k3 · k4 + k2

4)(2π)δ(ω3 + ω4)×

× A1B2A3B4[−(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) − (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

+ |k1|(k1 · k2 + k2
2)k

2
3(k3 · k4)

[

iπδ(ω3 + ω4)

ω4
− 1

ω3(ω3 + ω4)

]

×

× A1B2A3A4[(F1F2 − F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3) + (F−1F−3 − F1F3)(δq1+2δq3+4+

+ δq1+4δq2+3) + (F−1F−4 − F1F4)(δq1+2δq3+4 + δq1+3δq2+4)] + k2
1|k2|(k2 · k3 + k2

3)×
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× (k2 · k4 + k3 · k4)

[

−iπδ(ω2 + ω3)

ω4
− 1

(ω2 + ω3)(ω2 + ω3 + ω4)

]

×

× A1A2B3A4[(F1F3 − F−1F−3)(δq1+2δq3+4 + δq1+4δq2+3)

+ (F−1F−2 − F1F2)(δq1+3δq2+4 + δq1+4δq2+3) + (F−1F−4 − F1F4)(δq1+3δq2+4 + δq1+2δq3+4)]

+ k2
1k

2
2(k2 · k4)|k3|

[

− 1

ω2(ω2 + ω3 + ω4)

]

×

× A1A2A3B4[(F1F4 − F−1F−4)(δq1+3δq2+4 + δq1+2δq3+4)+

+ (F−1F−3 − F1F3)(δq1+4δq2+3 + δq1+2δq3+4) + (F−1F−2 − F1F2)(δq1+4δq2+3 + δq1+3δq2+4)]

+ k2
1k

2
2(k2 · k3)(k3 · k4)

[

− 1

iω2(ω2 + ω3)(ω2 + ω3 + ω4)
+

πδ(ω2 + ω3)

ω3ω4

]

×

× A1A2A3A4[(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) + (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

+
1

2
k2

1k
2
2(k2 · k3)(k2 · k4)

[

1

i(ω2 + ω3 + ω4)(ω2 + ω4)ω4
+

πδ(ω2 + ω4)

ω3ω4

+
πδ(ω2 + ω3)

ω3ω4
− 1

iω2(ω2 + ω3)ω4

]

A1A2A3A4[(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) + (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

}

We calculate λaaaa as a sum of five terms

λaaaa ≡ λaaaa1 + λaaaa2 + λaaaa3 + λaaaa4 + λaaaa5 (C.79)

Term λaaaa1

λaaaa1 ≡ ε4

∫

dq1234

(2π)4d+4
(2π)2d+2× (C.80)

|k1|
2

(k1 · k2 + k2
2)|k3|(k3 · k4 + k2

4)(2π)δ(ω3 + ω4)×

× A1B2A3B4[−(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) − (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

= −πε4

∫

dq1234

(2π)2d+2
(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)×
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×
[

|k1|(k1 · k2 + k2
2)|k3|(k3 · k4 + k2

4)δ(ω3 + ω4)A1B2A3B4−

− |k1|(k1 · k3 + k2
3)|k2|(k2 · k4 + k2

4)δ(ω2 + ω4)A1A2B3B4

+ |k1|(k1 · k4 + k2
4)|k3|(k2 · k3 + k2

2)δ(ω2 + ω3)A1B2A3B4

]

= −πε4

∫

dq12

(2π)2d+2
(F1F2 + F−1F−2)|k1|(k1 · k2 − k2

2)δ(ω1 − ω2)×

×
[

|k1|(k2 · k1 − k2
2)A1B2A−1B−2 − |k2|(k2 · k1 − k2

1)A1A2B−1B−2

]

= 2πε4

∫

dq12

(2π)2d+2
F1F2|k1|(k1 · k2 − k2

2)δ(ω1 − ω2)×

×
[

|k1|(k1 · k2 − k2
2)|A1B2|2 + |k2|(k1 · k2 − k2

1)Re(A1A2B
∗
1B

∗
2)

]

λaaaa1 = 2πε4

∫

dk12

(2π)2d
n1n2δ(Ω1 − Ω2)× (C.81)

×
[

|k1|2(k1 · k2 − k2
2)

2|A1B2|2 + |k2||k1|(k1 · k2 − k2
2)(k1 · k2 − k2

1)Re(A1A2B
∗
1B

∗
2)

]

For gravity-capillary waves

λaaaa1 =
π

2
ε4

∫

dk12

(2π)2d
n1n2δ(Ω1 − Ω2)|k1||k2|×

×
[

(k1 · k2 − k2
2)

2 − (k1 · k2 − k2
2)(k1 · k2 − k2

1)

]

=
π

2
ε4

∫

dk12

(2π)2d
n1n2δ(Ω1 − Ω2)|k1||k2|(k1 · k2 − k2

2)(k
2
1 − k2

2)

= 0 (C.82)

Term λaaaa2

λaaaa2 ≡ ε4

∫

dq1234

(2π)4d+4
(2π)2d+2× (C.83)

× |k1|(k1 · k2 + k2
2)k

2
3(k3 · k4)

[

iπδ(ω3 + ω4)

ω4
− 1

ω3(ω3 + ω4)

]

×

× A1B2A3A4[(F1F2 − F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3) + (F−1F−3 − F1F3)(δq1+2δq3+4+
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+ δq1+4δq2+3) + (F−1F−4 − F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

= ε4

∫

dq1234

(2π)4d+4
(2π)2d+2(F1F2 − F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)×

×
[

|k1|(k1 · k2 + k2
2)k

2
3(k3 · k4)

[

iπδ(ω3 + ω4)

ω4
− 1

ω3(ω3 + ω4)

]

A1B2A3A4

− |k1|(k1 · k3 + k2
3)k

2
2(k2 · k4)

[

iπδ(ω2 + ω4)

ω4
− 1

ω2(ω2 + ω4)

]

A1A2B3A4

− |k1|(k1 · k4 + k2
4)k

2
3(k2 · k3)

[

iπδ(ω2 + ω3)

ω2
− 1

ω3(ω2 + ω3)

]

A1A3A2B4

]

= ε4

∫

dq12

(2π)4d+4
(2π)2d+2(F1F2 − F−1F−2)×

×
[

− |k1|(k1 · k2 + k2
2)k

2
1(k1 · k2)

1

ω1(ω1 + ω2)
A1B2A−1A−2

+ |k1|(−k1 · k2 + k2
2)k

2
1(k1 · k2)

[

iπδ(ω1 − ω2)

ω1
− 1

ω1(ω1 − ω2)

]

A1A−1A2B−2

− |k1|(k1 · k2 + k2
2)k

2
2(k1 · k2)

1

ω2(ω1 + ω2)
A1A−1A−2B2

− |k1|(−k1 · k2 + k2
2)k

2
2(k1 · k2)

[

iπδ(ω1 − ω2)

ω1
− 1

ω2(ω1 − ω2)

]

A1A−1A2B−2

]

=

= ε4

∫

dq12

(2π)4d+4
(2π)2d+2F1F2

{

|k1|(k1 · k2)×

×
[

− (k1 · k2 + k2
2)k

2
1

1

ω1(ω1 + ω2)
A1A−1A−2B2 + (−k1 · k2 + k2

2)k
2
1

1

ω1(ω1 − ω2)
A1A−1A2B−2

+ (−k1 · k2 + k2
2)k

2
2

1

ω2(ω1 − ω2)
A1A−1A2B−2 − (k1 · k2 + k2

2)k
2
2

1

ω2(ω1 + ω2)
A1A−1A−2B2

+ (k1 · k2 + k2
2)k

2
1

1

ω1(ω1 + ω2)
A1A−1A2B−2 − (−k1 · k2 + k2

2)k
2
1

1

ω1(ω1 − ω2)
A1A−1A−2B2

− (−k1 · k2 + k2
2)k

2
2

1

ω2(ω1 − ω2)
A1A−1A−2B2 + (k1 · k2 + k2

2)k
2
2

1

ω2(ω1 + ω2)
A1A−1A2B−2

]

+ |k1|(−k1 · k2 + k2
2)(k

2
1 − k2

2)(k1 · k2)
iπδ(ω1 − ω2)

ω1
(A1A−1A−2B2 + A1A−1A2B−2)

}

If we take Ai = A−i and Bi = B−i, which is true for gravity-capillary waves we get

λaaaa2 =
π

2
ε4

∫

dk12

(2π)2d
n1n2(k

2
2 − k1 · k2)(k

2
1 − k2

2)(k1 · k2)δ(Ω1 − Ω2)

= 0 (C.84)
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Term λaaaa3

λaaaa3 ≡ ε4

∫

dq1234

(2π)4d+4
(2π)2d+2k2

1|k2|(k2 · k3 + k2
3)× (C.85)

× (k2 · k4 + k3 · k4)

[

−iπδ(ω2 + ω3)

ω4
− 1

(ω2 + ω3)(ω2 + ω3 + ω4)

]

×

× A1A2B3A4[(F1F3 − F−1F−3)(δq1+2δq3+4 + δq1+4δq2+3)

+ (F−1F−2 − F1F2)(δq1+3δq2+4 + δq1+4δq2+3) + (F−1F−4 − F1F4)(δq1+3δq2+4 + δq1+2δq3+4)]

= ε4

∫

dq1234

(2π)4d+4
(2π)2d+2(F1F2 − F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)×

×
{

k2
1|k2|(k2 · k3 + k2

3)(k2 + k3) · k4

[

iπδ(ω2 + ω3)

ω4
+

1

(ω2 + ω3)(ω2 + ω3 + ω4)

]

A1A2B3A4

− k2
1|k3|(k2 · k3 + k2

2)(k2 + k3) · k4

[

iπδ(ω2 + ω3)

ω4
+

1

(ω2 + ω3)(ω2 + ω3 + ω4)

]

A1B2A3A4

+ k2
1|k4|(k3 · k4 + k2

3)(k3 + k4) · k2

[

iπδ(ω3 + ω4)

ω2
+

1

(ω3 + ω4)(ω2 + ω3 + ω4)

]

A1A2B3A4

}

= ε4

∫

dq12

(2π)2d+2
(F1F2 − F−1F−2)×

×
{

k2
1|k2|(k2

1 − k1 · k2)(k
2
2 − k1 · k2)

[

iπδ(ω1 − ω2)

ω1
+

1

ω1(ω1 − ω2)

]

A1A2A−2B−1

− k2
1|k1|(k2

2 − k1 · k2)
2

[

iπδ(ω1 − ω2)

ω1
+

1

ω1(ω1 − ω2)

]

A1A−1A−2B2

+ k2
1|k2|(k1 · k2 + k2

1)(k1 + k2) · k2
1

ω1(ω1 + ω2)
A1A2A−2B−1

− k2
1|k1|(k1 · k2 + k2

2)(k1 + k2) · k2
1

ω1(ω1 + ω2)
A1A−1A2B−2

}

λaaaa3 = ε4

∫

dq12

(2π)2d+2
(F1F2 − F−1F−2)

{

k2
1(k

2
2 − k1 · k2)

iπδ(ω1 − ω2)

ω1
× (C.86)

× [|k2|(k2
1 − k1 · k2)A1A2A−2B−1 − |k1|(k2

2 − k1 · k2)A1A−1A−2B2]

+ k2
1|k2|A1A2A−2B−1

[

[(k1 · k2)
2 + k2

1k
2
2]

(

1

ω1(ω1 + ω2)
− 1

ω1(ω1 − ω2)

)

+
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+ [k2
1(k1 · k2) + (k1 · k2)k

2
2]

(

1

ω1(ω1 + ω2)
+

1

ω1(ω1 − ω2)

)]

+

− k2
1|k1|A1A−1A−2B2

[

[(k1 · k2)
2 + k4

2]

(

1

ω1(ω1 + ω2)
+

1

ω1(ω1 − ω2)

)

+ 2(k1 · k2)k
2
2

(

1

ω1(ω1 + ω2)
− 1

ω1(ω1 − ω2)

)]}

Now we use symmetry properties of the following functions

f(A, B) ≡ 1

A

[

1

A + B
+

1

A − B

]

, f(A, B) = f(−A,−B) (C.87)

g(A, B) ≡ 1

A

[

1

A + B
− 1

A − B

]

, g(A, B) = g(−A,−B) (C.88)

and obtain

λaaaa3 = −2πε4

∫

dq12

(2π)2d+2
F1F2k

2
1(k

2
2 − k1 · k2)

δ(ω1 − ω2)

ω1
× (C.89)

×
(

|k2|(k2
1 − k1 · k2)Re(iA1B

∗
1)|A2|2 + |k1|(k2

2 − k1 · k2)|A1|2Re(iA∗
2B2)

)

= −2πε4

∫

dk12

(2π)2d
n1n2k

2
1(k

2
2 − k1 · k2)

δ(Ω1 − Ω2)

Ω1
×

×
(

|k2|(k2
1 − k1 · k2)Re(iA1B

∗
1)|A2|2 + |k1|(k2

2 − k1 · k2)|A1|2Re(iA∗
2B2)

)

For gravity-capillary wave we have

λaaaa3 = −π

2
ε4

∫

dk12

(2π)2d
n1n2k

2
1(k

2
2 − k1 · k2)δ(Ω1 − Ω2)(k

2
1 − k2

2)

= 0 (C.90)

Term λaaaa4

λaaaa4 ≡ ε4

∫

dq1234

(2π)4d+4
(2π)2d+2A1A2A3B4k

2
1k

2
2(k2 · k4)|k3|

[

− 1

ω2(ω2 + ω3 + ω4)

]

× (C.91)

× [−(F−1F−4 − F1F4)(δq1+3δq2+4 + δq1+2δq3+4) + ×
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+ (F−1F−3 − F1F3)(δq1+4δq2+3 + δq1+2δq3+4) + (F−1F−2 − F1F2)(δq1+4δq2+3 + δq1+3δq2+4)]

= ε4

∫

dq1234

(2π)4d+4
(2π)2d+2k2

1k
2
2(F−1F−2 − F1F2)(δq1+4δq2+3 + δq1+3δq2+4)

×
{

A1A2A3B4(k2 · k4)|k3|
[

− 1

ω2(ω2 + ω3 + ω4)

]

+

+ A1A2A3B4(k3 · k4)|k2|
[

− 1

(ω2 + ω3 + ω4)ω3

]

− A1B2A3A4(k2 · k4)|k3|
[

− 1

(ω2 + ω3 + ω4)ω4

]}

= −ε4

∫

dq12

(2π)4d+4
(2π)2d+2k2

1k
2
2(F−1F−2 − F1F2)

{

2A1A2A−2B−1(k1 · k2)|k2|
1

ω1ω2

+ A1A−1(A−2B2 + A2B−2)(k1 · k2)|k2|
1

ω2
1

+ A1A−1(A2B−2 + A−2B2)k
2
2|k1|

1

ω1ω2

}

= 2ε4

∫

dq12

(2π)2d+2
k2

1k
2
2F1F2(A1A2A−2B−1 − A−1A−2A2B1)(k1 · k2)|k2|

1

ω1ω2

λaaaa4 = 0 (C.92)

since A(−k) = A(k) and B(−k) = B(k).

Term λaaaa5

λaaaa5 ≡ ε4

∫

dq1234

(2π)4d+4
(2π)2d+2A1A2A3A4× (C.93)

×
[

k2
1k

2
2(k2 · k3)(k3 · k4)

(

− 1

iω2(ω2 + ω3)(ω2 + ω3 + ω4)
+

πδ(ω2 + ω3)

ω3ω4

)

+
1

2
k2

1k
2
2(k2 · k3)(k2 · k4)

(

1

i(ω2 + ω3 + ω4)(ω2 + ω4)ω4
+

πδ(ω2 + ω4)

ω3ω4

+
πδ(ω2 + ω3)

ω3ω4
− 1

iω2(ω2 + ω3)ω4

)]

×

× [(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)

+ (F−1F−3 + F1F3)(δq1+2δq3+4 + δq1+4δq2+3) + (F−1F−4 + F1F4)(δq1+2δq3+4 + δq1+3δq2+4)]

= ε4

∫

dq1234

(2π)4d+4
(2π)2d+2A1A2A3A4(F1F2 + F−1F−2)(δq1+3δq2+4 + δq1+4δq2+3)×

×
{

k2
1k

2
2(k2 · k3)(k3 · k4)

[

− 1

iω2(ω2 + ω3)(ω2 + ω3 + ω4)
+

πδ(ω2 + ω3)

ω3ω4

]
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+ k2
1k

2
3(k2 · k3)(k2 · k4)

[

− 1

i(ω2 + ω3)(ω2 + ω3 + ω4)ω3
+

πδ(ω2 + ω3)

ω2ω4

]

+

+ k2
1k

2
4(k3 · k4)(k2 · k3)

[

− 1

i(ω2 + ω3 + ω4)(ω3 + ω4)ω4
+

πδ(ω3 + ω4)

ω2ω3

]

+
1

2
k2

1k
2
2(k2 · k3)(k2 · k4)

[

1

i(ω2 + ω3 + ω4)(ω2 + ω4)ω4
+

πδ(ω2 + ω4)

ω3ω4

+
πδ(ω2 + ω3)

ω3ω4
− 1

iω2(ω2 + ω3)ω4

]

+
1

2
k2

1k
2
3(k2 · k3)(k3 · k4)

[

1

i(ω2 + ω3 + ω4)(ω3 + ω4)ω4
+

πδ(ω3 + ω4)

ω2ω4

+
πδ(ω2 + ω3)

ω2ω4
− 1

i(ω2 + ω3)ω3ω4

]

+
1

2
k2

1k
2
4(k3 · k4)(k2 · k4)

[

1

iω2(ω2 + ω3 + ω4)(ω2 + ω4)
+

πδ(ω2 + ω4)

ω2ω3

+
πδ(ω3 + ω4)

ω2ω3
− 1

iω2(ω3 + ω4)ω4

]}

λaaaa5 = ε4

∫

dq12

(2π)4d+4
(2π)2d+2A1A2A−1A−2(F1F2 + F−1F−2)

πδ(ω1 − ω2)

ω2
1

× (C.94)

×
{

− k2
1k

2
2(k1 · k2)

2 +
1

2
k2

1k
4
2(k1 · k2) +

1

2
k2

1k
4
2(k1 · k2)+

− k4
1k

2
2(k1 · k2) +

1

2
k4

1(k1 · k2)
2 +

1

2
k4

1(k1 · k2)
2

}

= 2πε4

∫

dq12

(2π)2d+2
|A1A2|2F1F2

δ(ω1 − ω2)

ω2
1

×

×
{

− k2
1k

2
2(k1 · k2)

2 + k4
1(k1 · k2)

2 + k2
1k

4
2(k1 · k2) − k4

1k
2
2(k1 · k2)

}

= 2πε4

∫

dq12

(2π)2d+2
|A1A2|2F1F2

δ(ω1 − ω2)

ω2
1

×

×
{

k2
1(k

2
1 − k2

2)(k1 · k2)
2 + (k2

1k
4
2 − k4

1k
2
2)(k1 · k2)

}

= πε4

∫

dq12

(2π)2d+2
|A1A2|2F1F2

δ(ω1 − ω2)

ω2
1

×

×
{

k2
1(k

2
1 − k2

2)(k1 · k2)
2 − k2

2(k
2
1 − k2

2)(k1 · k2)
2 + (k2

1k
4
2 − k4

1k
2
2 + k2

2k
4
1 − k4

2k
2
1)(k1 · k2)

}
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= πε4

∫

dq12

(2π)2d+2
|A1A2|2F1F2

δ(ω1 − ω2)

ω2
1

(k2
1 − k2

2)
2(k1 · k2)

2

= πε4

∫

dk12

(2π)2d
|A1A2|2n1n2

δ(Ω1 − Ω2)

Ω2
1

(k2
1 − k2

2)
2(k1 · k2)

2

For gravity-capillary waves we have

λaaaa5 =
π

4
ε4

∫

dk12

(2π)2d

1

k1k2
n1n2(k

2
1 − k2

2)
2(k1 · k2)

2δ(Ω1 − Ω2) (C.95)

C.12 The sum of Lyapunov exponents for gravity-capillary waves

Gathering all the terms in (C.19) from equations (C.69,C.72,C.74,C.76,C.82,C.84,C.90,C.92

and C.95) we get

λ = 0 + O(ε6). (C.96)
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D The velocity field of floaters

Here we derive the velocity field of the floaters v(x, y, t) up to the third order in wave amplitude,

which is sufficient to calculate λ to the fourth order in wave amplitude. We perform the

calculation for arbitrary fluid depth h. Equation (1.9) from the main text can be rewritten as

v(x, y, t) =

(

∂ψ

∂x
− ∂η

∂x

∂φ

∂z
[z = η(x, y, t)] ,

∂ψ

∂y
− ∂η

∂y

∂φ

∂z
[z = η(x, y, t)]

)

. (D.1)

We observe that in order to establish the expression for v in terms of ψ and η up to the

third order in wave amplitude, we need to find the expression for the potential φ up to the

second order in wave amplitude. To do this we note that φ(x, y, z, t) satisfies the Laplace

equation ∇2φ + ∂2
zφ = 0 with the boundary conditions φ(x, y, η(x, y, t), t) = ψ(x, y, t) and

∂zφ(z = −h) = 0, see e.g. [66]. Here ∇ is the two-dimensional gradient operator. To the

lowest order in wave amplitude the boundary condition φ(x, y, η(x, y, t), t) = ψ(x, y, t) can be

substituted by φ(x, y, z = 0, t) = ψ(x, y, t). This gives the following expression for the lowest

order approximation to φ:

φ0(x, y, z, t)=

∫

dk

(2π)2

cosh [k(z + h)]

cosh [kh]
exp [ik · r] ψ(k, t), (D.2)

where ψ(k, t) is the Fourier transform of ψ(x, y, t) and all the vectors above are two-dimensional,

e.g. r = (x, y). To find the next order correction φ1 we use the identity

φ(x, y, z, t) =

∫

dk

(2π)2

cosh [k(z + h)]

cosh [kh]
eik·r

∫

dr′φ(r′, z = 0, t)e−ik·r′

, (D.3)

where φ(r′, z = 0, t) is the exact potential at the plane z = 0. Using

φ(x, y, z, t) = φ(x, y, η(x, y, t), t) + [z − η(x, y, t)]
∂φ(x, y, z, t)

∂z
|z=η(x,y,t) + O[(z − η)2],

we find

φ(x, y, z = 0, t) = ψ(x, y, t) − η(x, y, t)
∂φ0(x, y, z, t)

∂z
[z = 0] + O(η2). (D.4)
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Substituting the above into Eq. (D.3) we obtain that the second order contribution to the

potential is

φ1 = −
∫

dk123

(2π)4
δ (k1 − k2 − k3)

cosh [|k1|(z + h)]

cosh [|k1|h]
exp [ik1 · r] |k2| tanh (|k2|h) ψ2η3,

where we use the same shorthand notation as in Section 1.6.1. In the approximation of the

infinitely deep fluid, h → ∞, the above expression reproduces the result given in [113] (there

is however a sign difference in the expressions - our sign can be verified by checking that the

boundary condition φ(x, y, η(x, y), t) = ψ(x, y, t) is satisfied in the considered order). Using

the above expression we find that the first, the second and the third order contributions to the

velocity field of the floaters are given respectively by

v0 = ∇ψ = i

∫

dk1

(2π)2
k1 exp [ik1 · r] ψ1,

v1 = − ∂φ0

∂z

∣

∣

∣

∣

z=0

∇η = −i

∫

dk12

(2π)4
exp [i(k1 + k2) · r] |k1| tanh [|k1|h] k2ψ1η2,

v2 = −∇η

(

η
∂2φ0

∂z2

∣

∣

∣

∣

z=0

+
∂φ1

∂z

∣

∣

∣

∣

z=0

)

= − i

2

∫

dk123

(2π)6
ei(k1+k2+k3)·rψ1η2η3

×
(

|k1|2k2 + |k1|2k3 − 2
√

k2
1 + k2

2|k1|k3

)

, (D.5)

where we introduced the following shorthand notation k ≡ |k| tanh(|k|h). The above expression

is equivalent to Eq. (1.10) used in the main text.
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E Calculation of the clustering rate of surface waves

In this Section we provide the calculation of λ to the fourth order in wave amplitude, based

on the calculation of the different contributions λi, see (1.3)-(1.5). Some parts of this analysis

deal with the same objects as those considered in [4, 104], however our analysis is different and

it uses specific properties of surface waves. Below we provide a more detailed calculation, as

compared to the short articles [4] and [104].

The general structure of the calculation is as follows. After one substitutes the expression

(1.10) for the velocity into λi, one finds the expression for λ as a sum of the terms involving

products of two, three and four fields. The latter terms are of the fourth order in wave amplitude

already in the Gaussian approximation. Thus for them one can directly use Wick’s theorem

to express the answer in terms of the pair correlation functions given by Eqs. (1.13). As an

example of such a computation, below we calculate λ4 that contains the terms with four fields

only. Also the calculation of λ4 presents separate interest as will become clear in the end of the

next subsection.

E.1 Calculation of λ4

We consider the contribution λ4 to λ. To calculate λ4 to the fourth order in wave amplitude we

may assume Gaussian non-interacting waves and use Wick’s theorem to decouple the averages.

Employing identities like 〈vα(t1)∂α∂βw(t)〉 = −〈(∂βvα(t1)) (∂αw(t))〉, that follow by integration

by parts, one finds

λ4 = −
∫ ∞

0

dt

∫ t

0

dt1

∫ t1

0

dt2

[

〈

w(0)
∂w(t)

∂xα

〉

〈vα(t1)w(t2)〉 +

〈

w(0)
∂vα(t1)

∂xβ

〉〈

w(t)
∂vβ(t2)

∂xα

〉

+

〈

∂w(0)

∂xα

∂w(t)

∂xβ

〉

〈vα(t1)vβ(t2)〉 +

〈

w(t2)
∂w(t)

∂xα

〉

〈vα(t1)w(0)〉
]

. (E.1)

Here we do not assume isotropy of the waves. Isotropy would make terms like 〈vα(t1)w(t2)〉

vanish. In the considered order, v = ∇ψ is a potential field and spectral representation of the
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pair-correlation function gives

〈ψ(0)ψ(t)〉 =

∫

dk

(2π)2
E(k) cos (Ωkt) ⇒ 〈vα(0)vβ(t)〉 =

∫

dk

(2π)2
kαkβE(k) cos (Ωkt) ,

where E(k) is expressible in terms on n(k) in Eqs. (1.13). Similar expressions hold for other

correlation functions in (E.1). Note that the potentiality of surface waves, holding in the

Gaussian approximation, makes the velocity spectrum vanish at k = 0 even if E(k = 0) $= 0

[cf. [4, 104]]. We find

λ4 =

∫

dkdqE(k)E(q)

(2π)4

∫ ∞

0

dt

∫ t

0

dt1

∫ t1

0

dt2

[

k4q2(k · q) sin [Ωkt] sin [Ωq(t1 − t2)]

−k2q2(k · q)2 cos [Ωkt1] cos [Ωq(t − t2)] − k4(k · q)2 cos [Ωkt] cos [Ωq(t1 − t2)]

+k4q2(k · q) sin [Ωk(t − t2)] sin [Ωqt1]

]

. (E.2)

To calculate the time-integrals we represent the products of trigonometric functions above as

sums or differences of cosine functions and use

∫ ∞

0

dt

∫ t

0

dt1

∫ t1

0

dt2 cos(at + bt1 + ct2)=− πδ(a)

b(b + c)
+

πδ(a + b)

bc
−πδ(a + b + c)

c(b + c)
, b $= −c,

∫ ∞

0

dt

∫ t

0

dt1

∫ t1

0

dt2 cos(at − bt1 + bt2)=−πδ′(a)

b
+

πδ(a)

b2
− πδ(a − b)

b2
. (E.3)

All terms which are supported only at the zero frequency in the frequency representation

(δ−functions or their derivatives) are also supported only at the zero wavenumber, since the

dispersion relation of surface waves vanishes at k = 0 only. As a result, due to the presence

of positive powers of k in (E.2), these terms vanish (similarly to the vanishing of the velocity

spectrum at k = 0 shown above). It is then easy to see that the first and the fourth terms in

λ4 (having the same dependence on the wavevectors) cancel each other, while the second and

the third terms give

λ4 =

∫

dkdq

(2π)4
E(k)E(q)k2(k · q)2(k2 − q2)

(

πδ(Ωk − Ωq)

2Ω2
q

)

. (E.4)
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Since for the surface waves the equality of the frequencies of two waves implies the equality

of their wavelengths, then the above terms cancel each other, λ4 = 0. This reproduces in

a simple way the result of [4] which says that in the Gaussian approximation λ vanishes for

potential waves having the property that the equality of the frequencies implies the equality of

the wavelengths.

E.2 Reduction to terms involving interactions and the zero fre-

quency field

Having shown λ4 = 0, let us consider λ2 and λ3. The calculation of the terms in λ2 and λ3 that

contain products of four fields can be done along the same lines as the calculation of λ4 in the

previous subsection. The calculations are brought in Appendix E.5 and they show that these

terms vanish identically, just like λ4. One is left with (see Eq. (E.18) from Appendix E.5):

λ =
1

2

∫

k2
1k

2
2dk12dω

(2π)5
〈ψ1(ω)ψ2(ω = 0)〉

−
∫

dk123dω12

(2π)8
|k1|k2

3(k1 · k2 + k2
2)〈ψ1(ω1)η2(ω2)ψ3(ω = 0)〉

−
∫

dk123dω123

(2π)9
k2

1k
2
2(k2 · k3)〈ψ1(ω1)ψ2(ω2)ψ3(ω3)〉

iπ[δ(ω2) − δ(ω1)]

ω3
, (E.5)

where shorthand notation dωijl = dωidωjdωl... is employed and Fourier representation of the

fields over the frequency is used. To calculate the above terms to the fourth order in wave

amplitude, one needs to account for the nonlinear wave interactions. The calculation is facili-

tated by observing that the terms in Eq. (E.5) are special: they all contain the field amplitude

at the zero frequency, ψ(k, ω = 0). Note that the value of the random wave field at the zero

frequency plays an important role also in the diffusion of the passive scalar. In that problem if

the field vanishes at the zero frequency field, there is no turbulent diffusion at the order ε2, see

[2, 52, 107].

We assume that the force that sustains the stationary wave turbulence vanishes at the zero

frequency [note however that the first term on the RHS of Eq. (E.5) vanishes in the Gaussian

approximation independently of this assumption, cf. [4] and [104]]. Then the nonzero value of

ψ(k, ω = 0) is solely due to the presence of nonlinear wave interactions. As a result, ψ(k, ω = 0)
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is of at least second order in wave amplitude. Below we derive the corresponding expression for

ψ(k, ω = 0) in terms of the higher order terms. Substituting the resulting expressions into the

correlation functions will already allow the use of Wick’s theorem to complete the calculation.

E.3 The expression for ψ

To calculate λ we need to know ψ(k, ω = 0) to the third order in wave amplitude. Consider

the dynamical equation on the surface elevation η, see [9, 113],

∂η

∂t
=

∂φ

∂z
[z = η] −∇η∇φ[z = η]. (E.6)

To order ε2, the equation reads

∂η

∂t
=

∂φ0

∂z
[z = 0] + η

∂2φ0

∂z2
[z = 0] +

∂φ1

∂z
−∇η∇φ0[z = 0] + O(η3), (E.7)

where φ0 and φ1 are the terms of the expansion of the potential with respect to the surface

elevation, see Appendix D and [113]. Using the expressions for φi, performing the Fourier

transform over space and time coordinates, and setting the frequency ω = 0, we find

0= |k|ψ(k, ω = 0)+

∫

dk1dω

(2π)3
k2

1ψ(k1, ω)η(k−k1,−ω)

−
∫

dk1dω

(2π)3
|k| |k1|ψ(k1, ω)η(k−k1,−ω)+

∫

dk1dω

(2π)3
k1 · (k−k1)ψ(k1, ω)η(k−k1,−ω),

where we neglected terms of order ε3. It follows that in this order ψ(k, ω = 0) is given by

ψ(k, ω = 0) =

∫

dk1dω

(2π)3

(

|k1|−
k1 · k
|k|

)

ψ(k1, ω)η(k − k1,−ω). (E.8)

The physical meaning of the above representation is that the zero frequency field arises due to

the nonlinear interactions only, and in the lowest order it can be represented as a result of a

single wave scattering. The above formula suffices in order to calculate the last two terms in

Eq. (E.5). Indeed, after we substitute into these terms the above expression for ψ(k, ω = 0), we

obtain correlation function of already four fields, which can be again calculated using Wick’s
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theorem. The corresponding calculation is straightforward but cumbersome and it is brought

in Appendix F. As a result of the calculation one finds that these terms vanish identically so

one is left with

λ =
1

2

∫

k2
1k

2
2dk12dω

(2π)5
〈ψ1(ω)ψ2(ω = 0)〉. (E.9)

To calculate the above quadratic term we again use the fact that it involves ψ(k, ω = 0) by

slightly modifying the above computation.

E.4 Calculation of the quadratic term

To calculate the RHS of Eq. (E.9) we note that it is sufficient to know ψ(k1, ω) at an arbi-

trarily small but finite ω where the forcing is again negligible and one can use the dynamic

equation (E.6) without the force. The Fourier transform of (E.7) taken now at a small but

finite frequency, neglecting terms of order ε3, gives

iωη(k, ω) = |k|ψ(k, ω) +

∫

dk1dω1

(2π)3
k2

1ψ1(ω1)η(k − k1, ω − ω1) −
∫

dk1dω1

(2π)3
|k| |k1|ψ1(ω)

×η(k − k1, ω − ω1) +

∫

dk1dω1

(2π)3
k1 · (k − k1)ψ1(ω)η(k − k1, ω − ω1). (E.10)

This gives

ψ(k, ω) =
iωη(k, ω)

|k|
+

∫

dk1dω1

(2π)3

(

|k1|−
k1 · k
|k|

)

ψ(k1, ω1)η(k − k1, ω − ω1) + O(η3).

It follows that Eq. (E.9) can be written as

λ =
1

2

∫

k2
1k

2
2dk12

(2π)4

∫

dω

2π

〈[

iωη(k1, ω)

|k1|
+

∫

dk3dω1

(2π)3

(

|k3|−
k3 · k1

|k1|

)

ψ(k3, ω1)

×η(k1 − k3, ω − ω1) + O(η3)

]

ψ(k2, ω = 0)

〉

=
1

2

∫

k2
1k

2
2dk12

(2π)4

∫

dω1

2π

〈[

∫

dk3dω3

(2π)3

×
(

|k3|−
k3 · k1

|k1|

)

ψ(k3, ω3)η(k1 − k3, ω1 − ω3) + O(η3)

]

ψ(k2, ω = 0)

〉

, (E.11)
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where we used that ω〈η(k1, ω)ψ(k2, ω = 0)〉 ∝ ωδ(ω) = 0. Next, using that ψ(k, ω = 0) is by

itself of order ε2, see the previous subsection, we conclude that in fact the O(η3) term in the

above expression can be neglected. The physical reason for the possibility of such a neglect is

that the quadratic term in fact contains correlations of two low-frequency fields where each one

of them is of the order ε2. In the remaining expression, using Eq. (E.8), taking the integral

over ω3 and omitting the terms supported at the zero frequency, we find

λ =
1

8

∫

dk13

(2π)3
(k1 + k3)

4

(

|k3|−
k3 · (k1 + k3)

|k1 + k3|

)

[n3n−1δ(Ω−1 − Ω3)

+n−3n1δ(Ω1 − Ω−3)]

(

|k3|− |k1| +
k2

1 − k2
3

|k1 + k3|

)

= 0. (E.12)

The vanishing of the above expression can be easily verified by noting that the δ−functions

imply k1 = k3. Thus we obtain that the sum of Lyapunov exponents for weakly interacting

surface waves is identically zero at fourth order in wave amplitude.

E.5 Calculation of terms in λ involving products of four fields

Here we calculate those terms in λ2 and λ3 that contain products of four fields and allow for

the direct use of Wick’s theorem. We first consider λ2 in (1.3).

E.6 Calculation of the fourth-order terms in λ2

Using the explicit form of the surface velocity (1.10) we get

2λ2 =

∫

k2
1k

2
2dk12dt

(2π)4
〈ψ1(0)ψ2(t)〉 − 2

∫

dk123dt

(2π)6
k2

3(k1 · k2 + k2
2)〈ψ1(0)η2(0)ψ3(t)〉|k1|

−
∫

dk1234dt

(2π)8
〈ψ1(0)η2(0)η3(0)ψ4(t)〉k2

4

(

|k1|2(k1 · k2 + k2
2 + k2 · k3)

+

(

|k1|2 − 2
√

k2
1 + k2

2|k1|
)

(k1 · k3 + k2 · k3 + k2
3)

)

+

∫

dk1234dt

(2π)8
〈ψ1(0)η2(0)ψ3(t)η4(t)〉|k1| |k3|(k1 · k2+k2

2)(k3 · k4+k2
4).
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We note that the third term above, that can be decomposed by Wick’s theorem, vanishes

because it is supported at the zero frequency ω4 imposing k4 = 0. The last term can also be

analyzed using Wick’s theorem. Noting that the pair-correlations are supported at the zero

sum of the involved wavenumbers, we find that the last term equals

∫

dk1234dt

(2π)8
[〈ψ1(0)ψ3(t)〉〈η2(0)η4(t)〉 + 〈ψ1(0)η4(t)〉〈η2(0)ψ3(t)〉]

×|k1| |k3|(k1 · k2 + k2
2)(k3 · k4 + k2

4) . (E.13)

Using the correlation functions from Eq. (1.13) and noting the vanishing of the terms containing

δ−functions supported at the zero frequency, we can write (E.13) as

∫

dk12

(2π)3

[

|k1|
2
(k1 · k2 + k2

2)
2

(

Ω1k2

4k1Ω2

)

[n1n−2δ(Ω1 − Ω−2) + n−1n2δ(Ω−1 − Ω2)]

−1

4
|k1| |k2|(k1 · k2 + k2

2)(k1 · k2 + k2
1) [n1n−2δ(Ω1 − Ω−2) + n−1n2δ(Ω−1 − Ω2)]

]

= 0,

where we introduced the shorthand notation: n(±ki, t) = n±i(t) and Ω±ki
= Ω±i. Above we

used that for surface waves Ωk is an increasing function of |k| and that δ−functions imply

Ω1 = Ω2 and k2
1 = k2

2. We find that λ2 can be written as

λ2 =

∫

dk12dt

2(2π)4
k2

1k
2
2〈ψ1(0)ψ2(t)〉

−
∫

dk123dt

(2π)6
|k1|k2

3(k1 · k2 + k2
2)〈ψ1(0)η2(0)ψ3(t)〉. (E.14)

The calculation of the above terms demands the account of the interactions. We now consider

the terms in λ3 that can be calculated by the direct use of Wick’s theorem.

126



E Calculation of the clustering rate of surface waves

E.7 Calculation of the fourth-order terms in λ3

We consider λ3 from (1.3). Using the expression (1.10) for the velocity, we obtain

λ3 = −
∫

dk123

(2π)6
k2

1k
2
2(k2 · k3)

∫ ∞

0

dt

∫ t

0

dt1〈ψ1(0)ψ2(t)ψ3(t1)〉

+

∫

dk1234

(2π)8

∫ ∞

0

dt

∫ t

0

dt1

[

|k1|(k1 · k2 + k2
2)k

2
3〈ψ1(0)η2(0)ψ3(t)ψ4(t1)〉

×(k3 · k4) + k2
1|k2|(k2 · k3 + k2

3)(k2 · k4 + k3 · k4)〈ψ1(0)ψ2(t)η3(t)ψ4(t1)〉

+k2
1k

2
2(k2 · k4)|k3|〈ψ1(0)ψ2(t)ψ3(t1)η4(t1)〉

]

. (E.15)

One can use Wick’s theorem for the last three terms. Employing the identity

∫ ∞

0

dt

∫ t

0

dt1 exp[iω1t + iω2t1] =
iπ[δ(ω1) − δ(ω1 + ω2)]

ω2
, (E.16)

one finds that part of the obtained terms contain δ−functions supported at the zero frequency

and they vanish because of the vanishing of the integrand there. Let us consider the rest of the

terms. For the first of the fourth-order terms in (E.15) one finds

∫

dk12

(2π)4
|k1|

{

|k1|2(k1 · k2 + k2
2)

[

n−1n2δ(Ω−1 − Ω2)

Ω2
+

n−2n1δ(Ω−2 − Ω1)

Ω−2

]

−k2
2(k1 · k2 + k2

2)

[

n−1n2δ(Ω−1 − Ω2)

Ω−1
+

n−2n1δ(Ω−2 − Ω1)

Ω1

]}

Ω1π

4k1
(k1 · k2) = 0,

where the equality of the frequencies implies the equality of the wavelengths. Analogously, for

the second Gaussian term one finds

∫

Ω2|k2|dk23

(4π)3k2

{

|k2|2(k2 · k3+k2
3)

2

[

n−3n2δ(Ω−3−Ω2)

Ω−3
+

n−2n3δ(Ω−2−Ω3)

Ω3

]

−k2
3(k2 · k3 + k2

3)(k2 · k3 + k2
2)

[

n−3n2δ(Ω−3 − Ω2)

Ω2
+

n−2n3δ(Ω−2 − Ω3)

Ω−2

]}

= 0.
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Finally, the third Gaussian term contains only δ−functions supported at the zero frequencies,

so it also produces zero. We conclude that λ3 can be written as

λ3 = −
∫

dk123

(2π)6
k2

1k
2
2(k2 · k3)

∫ ∞

0

dt

∫ t

0

dt1〈ψ1(0)ψ2(t)ψ3(t1)〉. (E.17)

E.8 Summary

As a result of the calculation in the previous subsections, adding equations (E.14) and (E.17),

one can write λ as a sum over the terms which calculation involves the wave interactions. Using

Fourier representation over the frequency one finds

λ =
1

2

∫

k2
1k

2
2dk12dω

(2π)5
〈ψ1(ω)ψ2(ω = 0)〉

−
∫

dk123dω12

(2π)8
|k1|k2

3(k1 · k2 + k2
2)〈ψ1(ω1)η2(ω2)ψ3(ω = 0)〉

−
∫

dk123dω123

(2π)9
k2

1k
2
2(k2 · k3)〈ψ1(ω1)ψ2(ω2)ψ3(ω3)〉

iπ[δ(ω2) − δ(ω1)]

ω3
, (E.18)

where we introduced shorthand notation dωijl = dωidωjdωl... and used in the last term the

identity (E.16) and the proportionality of the correlation function to δ(ω1 + ω2 + ω3).
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F Interaction terms containing the products of three fields

To calculate the interaction terms of the third order we use (E.8), Wick’s decomposition and

Fourier transformed version of (1.13). The second term in (E.18) can be written with the help

of (E.8) as

−
∫

dk1234dω123

(2π)11
|k1|k2

3(k1 · k2 + k2
2)

(

|k4|−
k4 · k3

|k3|

)

〈ψ(k1, ω1)η(k2, ω2)ψ(k4, ω3)

η(k3 − k4,−ω3)〉 = −
∫

dk12dω1

(2π)3
|k1|(k1 + k2)

2(k1 · k2 + k2
2)

(

|k1|−
k1 · (k1 + k2)

|k1 + k2|

)

(

Ω1|k2|
4Ω2|k1|

)

[n1δ(ω1 + Ω1) + n−1δ(ω1 − Ω−1)] [n2δ(−ω1 + Ω2) + n−2δ(ω1 + Ω−2)]

+
1

4

∫

dk12dω1

(2π)3
|k1|(k1 + k2)

2(k1 · k2 + k2
2)

(

|k2|−
k2 · (k1 + k2)

|k1 + k2|

)

× [n1δ(ω1 + Ω1) − n−1δ(ω1 − Ω−1)] [n−2δ(ω1 + Ω−2) − n2δ(ω1 − Ω2)] , (F.1)

where to show that the remaining contraction vanishes, one should use that 〈ψ(k, ω = 0)〉 is

representable as an integral over 〈ψ(k, t)η(k′, t)〉 which in the Gaussian approximation vanishes

by (1.13). Using Ω−k = Ωk and noting that the terms supported at Ωk = 0 vanish, one may

rewrite the above as

−1

4

∫

dk12

(2π)3
|k1|(k1 + k2)

2(k1 · k2 + k2
2)

(

|k1|−
k1 · (k1 + k2)

|k1 + k2|

)[

n1n−2δ(Ω1 − Ω−2)

+n−1n2δ(Ω2 − Ω−1)

]

+
1

4

∫

dk12

(2π)3
|k1|(k1 + k2)

2(k1 · k2 + k2
2)

(

|k2|−
k2 · (k1 + k2)

|k1 + k2|

)

× [n1n−2δ(Ω1 − Ω−2) + n−1n2δ(Ω2 − Ω−1)] =
1

4

∫

dk12

(2π)3
|k1|(k1 + k2)

2(k1 · k2 + k2
2)

(

|k2|− |k1| +
k2

1 − k2
2

|k1 + k2|

)[

n1n−2δ(Ω1 − Ω−2) + n−1n2δ(Ω2 − Ω−1)

]

= 0, (F.2)

where we used that δ−functions imply Ω1 = Ω2 and k1 = k2. Let us now consider the last term

in (E.18) that can be written as

iπ

∫

dk123dω23

ω3(2π)9
k2

1k
2
2k3 · (k2 − k1)〈ψ(k1, ω = 0)ψ(k2, ω2)ψ(k3, ω3)〉. (F.3)
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Substituting (E.8) we find

iπ

∫

dk1234dω234k2
1k

2
2k3 ·(k2 − k1)

ω3(2π)12

(

|k4|−
k4 · k1

|k1|

)

〈η(k1 − k4,−ω4)ψ(k2, ω2)ψ(k3, ω3)

×ψ(k4, ω4)〉 = iπ

∫

dk23dω3

ω3(2π)4
(k2 + k3)

2k2
2k3 · (2k2 + k3)

(

|k3|−
k3 · (k2 + k3)

|k2 + k3|

)

Ω3

4i|k3|

× [n2δ(ω3 − Ω2) − n−2δ(ω3 + Ω−2)] [n3δ(ω3 + Ω3) + n−3δ(ω3 − Ω−3)] + iπ

∫

dk23dω3

ω3(2π)4

×(k2 + k3)
2k2

2k3 · (2k2 + k3)

(

|k2|−
k2 · (k2 + k3)

|k2 + k3|

)

(

Ω2

4i|k2|

)

× [n2δ(ω3 − Ω2) + n−2δ(ω3 + Ω−2)] [n3δ(ω3 + Ω3) − n−3δ(ω3 − Ω−3)] , (F.4)

where the term involving the contraction 〈η(k1−k4,−ω4)ψ(k4, ω4)〉 corresponding to 〈ψ(k, ω =

0)〉, vanishes as was shown in the analysis of the previous term, where we omitted the terms

supported at the zero frequency. Taking the integral over ω3, omitting the terms supported at

the zero frequency, we find

iπ

∫

dk23

(2π)4
(k2 + k3)

2k2
2k3 · (2k2 + k3)

(

|k3|−
k3 · (k2 + k3)

|k2 + k3|

)

×
[

n2n−3δ(Ω2 − Ω−3)

4i|k3|
+

n−2n3δ(Ω−2 − Ω3)

4i|k3|

]

+ iπ

∫

dk23

(2π)4

×(k2 + k3)
2k2

2k3 · (2k2 + k3)

(

|k2|−
k2 · (k2 + k3)

|k2 + k3|

)

×
[

−n−2n3δ(Ω3 − Ω−2)

4i|k2|
− n2n−3δ(Ω2 − Ω−3)

4i|k2|

]

= 0, (F.5)

where zero is obtained in the same way as with the previous term. The result of this appendix

is that λ can be written as

λ =
1

2

∫

k2
1k

2
2dk12

(2π)4

∫

dω

2π
〈ψ(k1, ω)ψ(k2, ω = 0)〉. (F.6)
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G Continuity of the PDF of particle-velocity gradient for St = St∗

To prove the continuity of the PDF P(x, α) for St = St∗ we first notice that the limit St → St∗

is equivalent to w̃ → 0. The limit w̃ → 0 of the solution Eq. (2.9) in the small-Stokes number

regime is p(x) = C1f(x)I0,w(x), where

f(x) =
(w − x)m−1

(w + x)m+1x2
exp

[

−ν − ∆ν

2x

]

, (G.1)

where I0,w(x) is the characteristic function of the interval (0, w). To study the limit of the

solution Eq. (2.11), let us consider the limits p1(x) and p2(x) when w̃ → 0. The latter is easily

obtained as

p2(x) ∼ exp

[

(ν − ∆ν)π

4w̃

]

f(x) . (G.2)

Now let us rewrite p1(x) as

p1 =
|w − x|m−1

|w + x|m+1(x2 + w̃2)
exp

[

−n arctan

(

w̃

x

)]

×
∫ x

−w

|w + y|m+1(ν − 2y)dy

|y − w|m−1(w2 − y2)
exp

[

n arctan

(

w̃

y

)]

. (G.3)

As w̃ → 0, then p1(x) = O(1) if x < 0 and

p1(x) ∼ 2 exp

[

(ν − ∆ν)π

4w̃

]

w̃2f(x) , (G.4)

for x > 0. To obtain the last asymptotic one takes into account that the main contribution in

the integral (G.3) is brought by the right small vicinity of y = 0, say (0, s) and apply

∫ s

0

exp

[

−1

δ
arctan

(y

δ

)

]

dy ∼
∫ s

0

exp
(

− y

δ2

)

∼ δ2 , (G.5)
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for all s > 0 and small δ. The continuity of the solution of Eq. (2.8) in the limit w̃ → 0 is

therefore guaranteed by the conditions

C =
C1

2w̃2 exp [ν − ∆νπ/(4w̃)]
, C2 = 2Cw̃2 . (G.6)

This conditions are indeed equivalent to the normalization conditions

∫

p(x)dx = 1 ,

∫

q(x)dx = 0 , (G.7)

where q = − [C + (1/(4τ 2) + s0/τ − x2)p]. To this notice that Eq. (2.8) can be written as

{[

s2

τ 2
−

(

1

4τ 2
− x2

)2
]

p + Cx2

}

x

+ νq = 0 . (G.8)

It follows that

∫ x

−x

q(y)dy = −1

ν

[

s2

τ 2
−

(

1

4τ 2
− x2

)2
]

[p(x) − p(−x)] . (G.9)

Thus, the second condition in Eq. (G.7) is equivalent to

lim
x→∞

x4 [p(x) − p(−x)] = 0 . (G.10)

According to Eq. (2.11) p(x) is written as the sum of p1 and p2, whose asymptotic behavior is

p1(x) ∼ 1

x2
+

P+
1

x4
, x → ∞ , p1(x) ∼ 1

x2
+

P−
1

x4
, x → −∞ , and (G.11)

p2(x) ∼ P+
2

x4
, x → ∞ , p1(x) ∼ P−

2

x4
, x → −∞ . (G.12)

Notice that P−
2 = 0, P+

2 = exp[(ν − ∆ν)π/4w̃]. Thus Eq. (G.10) becomes

C2 =
C(P+

1 − P−
1 )

P+
2

. (G.13)
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In the limit w̃ → 0,

P−
1 = o(P+

1 ) , P+
1 ∼ 2w̃2P+

2 , (G.14)

and we obtain

C2 ∼ 2w̃2C , (G.15)

which implies the continuity of PDF. Normalization of p(x) in the limit w̃ → 0 is equivalent to

the first condition in Eq. (2.8).
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H The derivation of Lyapunov moments

The behavior of the Lyapunov moments γn, defined as 〈Rn〉 ∼ exp(γnt) is determined by a

closed system of 2(n + 1) equations

d

dt
〈Rn−iV i〉 = (n − i)〈Rn−i−1V i+1〉 − i

τ
〈Rn−iV i〉 +

i

τ
(α + s0)〈Rn−i+1V i−1〉 , (H.1)

d

dt
〈αRn−iV i〉 = (n − i)〈αRn−i−1V i+1〉 −

(

i

τ
+ ν

)

〈αRn−iV i〉 − i

τ
s0〈αRn−i+1V i−1〉 , (H.2)

where i = 0, 1, · · · , n. The n-th Lyapunov moment γn is the largest solution of this system of

this system

det





A C

D B



 = 0 , (H.3)

here A and B are tri-diagonal matrices with the elements

Ai,i = γn + i/τ i = 1, n

Ai,i−1 = −is0/τ i = 2, n

Ai,i+1 = i − n i = 1, n − 1

Bi,i = γn + ν + i/τ i = 1, n

Bi,i−1 = is0/τ i = 2, n

Bi,i+1 = i − n i = 1, n − 1

(H.4)

and C and D are sub-diagonal matrices with the elements Ci,i−1 = −i/τ for i = 2, n and

Di,i−1 = i(s2
0 − s2)/τ for i = 2, n.

In the limit St → 0 one recovers the Lyapunov moments of fluid tracers [43]:

γn =

√

(ν

2

)2

+ s2(n2 − n) − ν

2
. (H.5)

Notice that for fluid tracers the sign of the separation R is preserved, and hence the moments

〈Rn〉 and 〈|R|n〉 coincide. The asymptotic linear behavior of γn for large n is the hallmark of

the presence of an upper bound for velocity gradients.
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