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We study rain initiation time in warm clouds; clouds where droplets grow by vapor condensation
and coalescence due to collisions. These growth mechanisms are accompanied by raindrop loss due
to fallout. We present a mean-field model of droplet growth in warm clouds. The model allows
for an effective numerical simulation. We apply the numerical scheme that is conservative in
water mass and keeps accurate count of the number of droplets, to study how the rain initiation
time depends on different parameters. In particular, we show that the rain initiation time depends
non-monotonically, actually it has a minimum, on the number of cloud condensation nuclei. We
also present a simple model that allows one to estimate the rain initiation time for turbulent
clouds with an inhomogeneous concentration of cloud condensation nuclei. We argue that over-
seeding even a part of a cloud by small hygroscopic nuclei one can substantially delay the onset of
precipitation. This work was done together with Dr. Michael G. Stepanov and is accepted by the
Journal of Applied Meteorology.
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1. Introduction

Strepsiades: Tell me, do you think Zeus always rains
new water down

Or does the sun draw the old up to be re-used?
Amynias: I don’t know and I don’t care.

Strepsiades: How do you expect to get your money if you
know nothing

Of meteorology?

Aristophanes, CLOUDS, trans.
Moses Hadas, New York
Bantam Books, 1962, p. 136.

Water vapor evaporates from the land or sea, and the moist air, warmed by heat from
the ground, rises up and cools. Eventually, the vapor condenses on aerosols into micron-
size droplets. These droplets collect more vapor until they reach diameters of about 10
to 20 micrometers. Then they are heavy enough to be significantly influenced by gravity,
and their growth continues by coalescence due to collisions. Finally they form raindrops
(millimeter-size drops), that are pulled back to earth by gravity. Droplets of fine drizzle are
200 micrometers or so in diameter, and fall at about half a meter per second. Those with
diameters of about a millimeter plunge earthwards at about nine meters per second. This
is how rainfall occurs in warm clouds' (Pruppacher and Klett, 1997; Seinfeld and Pandis,
1998).

1  Warm clouds are clouds without ice particles in them. Temperatures in such clouds reach sometimes
even below —10°C, therefore a part of the meteorological community considers this designation some-
what inappropriate (Pruppacher and Klett, 1997).



Processes of vapor condensation on cloud condensation nuclei* (CCN) and droplet
growth by coalescence due to collisions can be modelled by the equation for the local
distribution of droplets over sizes, n(r,t,a) (cm™) and the water vapor density, M(r,t)
(g-cm—3). These variables depend on supersaturation® s, air velocity u(r,t) and velocities
of cloud particles v(r,t,a). Thus to equations describing evolutions of the water vapor
content and the local distribution of droplets over sizes one must also add the equation
that describes the temperature changes (determines s) and Navier-Stokes equations for
the velocities. Such a system cannot be possibly solved numerically with any meaningful
resolution, neither presently, nor in a foreseeable future. One of the obstacles to a deeper
understanding of rainfall phenomena is it’s multi-scale nature. Relevant scales enclose those
of warm and cold fronts* stretching over hundreds of kilometers, of individual clouds - a few
kilometers across, of tiny eddies - perhaps a few centimeters across and the viscous scale
of the order of millimeters. The spatial structure of the fields involved is very complicated,
particularly due to cloud turbulence. Reynold’s number in clouds ranges between 10 —10°.

Our aim in this thesis is to formulate some mean-field model which does not contain
spatial arguments at all. The requirements to this model are that it must give the correct
qualitative relations between the parameters and reasonable quantitative description (at
least within the order of magnitude) of the real-world timescales.

We use the model to study the evolution of the local distribution of droplets over
sizes, n(a,t) starting from micron sizes all the way to the moment when droplet fallout sig-
nificantly decreases the water content in the cloud. We call this moment the rain initiation
time and study how that time depends on initial vapor content and CCN concentration.
Our model demonstrates non-monotonic dependence of the rain initiation time on CCN
concentration.

We also give an application of this model to an inhomogeneous case (described in
Chapter 5), where we show that one can increase the rain initiation time even for a cloud
only partially seeded by hygroscopic aerosols. We estimate such seeding is practical. Post-

poning precipitation of Mediterranean maritime clouds is very valuable to Israel, since then

2 Cloud condensation nuclei are hygroscopic aerosol particles, i.e. aerosol particles that have a tendency
to absorb moisture from humid air. They can serve as nuclei of atmospheric cloud droplets (AMS
Glossary, 2000).

3 Supersaturation is the condition existing in a given portion of the atmosphere (or other space) when
the relative humidity is greater than 100%, that is, when it contains more water vapor than is needed
to produce saturation with respect to a plane surface of pure water or pure ice (AMS Glossary, 2000).
Here we define supersaturation as s = 1 — Mo /M, where My, is the saturated water vapor density.

4 Front in meteorology is the interface or transition zone between two air masses of different density
(AMS Glossary, 2000).



these clouds would rain over mainland, instead of raining over the sea!
Beyond the scope of our model are effects related to spatial inhomogeneities and
fluctuations of the fields. According to the two basic phenomena involved (condensation

and collisions), the main effects are:
e mixing and diffusion of water vapor, heat and droplets, and
e the influence of cloud turbulence on collisions.

We briefly address the first phenomenon in Chapter 5 considering inhomogeneously seeded
clouds. We do not consider here the controversial subject of collision enhancement by
turbulence giving in Chapter 4 references to the relevant literature.

The structure of the text is the following: in Chapter 2 we introduce the ”full cloud
model” and give orders of magnitude of changes of relevant variables, also we introduce
our mean-field model. Following in Chapter 3 we consider the mean-field model including
only collisions in droplet growth, while in Chapter 4 we consider ab initio the growth of
droplets in clouds including both condensation and collisions mechanisms. Chapter 5 is a

study of inhomogeneously seeded clouds with estimates on it’s practical aspects.



2. Growth model of droplets in warm clouds

2.1 A realistic cloud

Description of growth of droplets up to precipitation stages in clouds is not a task of cloud
microphysics alone. The essence of the complexity of cloud modelling was well expressed by
B. J. Mason in his book The Physics of Clouds ! about fifty years ago. Mason emphasizes
that for a full description of clouds it is important to recognize that the micro-physical
processes (nucleation processes, vapor diffusion, collection, breakup and fallout of droplets,
ice enhancement and melting ?) are largely controlled by the atmospheric motions, which
Mason calls cloud dynamics. More specifically cloud dynamics is the application of fluid
dynamics principles to the air motions in clouds and their immediate environments. Hence
a quite realistic description?® of cloud formation and rain initiation time, can be represented

with the following set of equations

aa_j‘f + (u- V)M — kV2M = —4dnksM / an(a)da, (2.1)
‘3—;‘ + (u-V)u—vViu=—Vp+f+ Bgl, (2.2)
aa—::+(u-V)T—mTv2T: - [aa—]‘fﬂu-V)M], (23)
P+ (v Vpaa) = 22 21

+ / da’ {K (“"2“('2,7/(5)2”(“") ~ K(d, a)n(a')n(a)] , (2.4)
%—‘t’+(v-V)v:(u—v)/T+g. (2.5)

Water vapor density M (r,t) changes (2.1) by air induced diffusion and convection, and con-

densation on surfaces of CCN and water droplets (see Section 2.2 for details). Air velocity

1 See preface to the first edition, B. J. Mason, The Physics of Clouds (Clarendon Press, Oxford 1971).
2 The later two are not relevant for warm clouds.
3 Here electrical and chemical effects are neglected.



2.2 Introduction of the mean-field model

u(r,t) is described by the Navier-Stokes equation (2.2) including atmospheric pressure p,
buoyancy forces SgT (3 is the coefficient linking density changes with temperature changes)
and f forces that can not be expressed like pressure changes or buoyancy forces (usually
originating from cloud boundary conditions). Temperature 7'(r,t) is modelled with the
advection-diffusion equation (2.3); it is convected and diffused by air (k7 is the thermal
diffusivity) and decreased due to condensation (L, is the latent heat of evaporation of water
per unit mass, c is the heat capacity of humid air at constant pressure). The evolution of
the local droplet distribution over sizes n(r,t,a) is given by (2.4) and explained below in
Section 2.2. The last of this set of equations (2.5) describes the evolution of the velocity of
a cloud particle v(r, ¢, a) through air under the influence of gravity. Note that in clouds it
can be typically assumed V-u(r,¢) = 0 and V-v(r, ¢,a) = 0, since both velocities are much
smaller than the corresponding sound velocity. Notations of used variables are represented
in Table A.1.

Clouds among themselves differ in shape, size and characteristic values of M(r,t),
u(r,t), T'(r,t), n(r,a,t) and v(r,a,t). Warm precipitating clouds have water vapor den-

3

sities are between 1 — 1072 g-cm™2. Cloud particles range from characteristic sizes of

condensation nuclei (> 1072 ym) to precipitation particles (< 1 mm for raindrops). Con-
centrations of cloud particles in warm precipitating clouds are between 10°® — 10® cm™3.
The range of relevant cloud-air motion varies from the characteristic size of turbulent ed-
dies which are small enough to decay directly through viscous dissipation (> 1072 cm),
since it is these eddies that define the characteristic shearing rates for turbulent aerosol co-
agulation processes, to motion of scales large at least as the cloud itself (> 1 km). Reynold’s
number of clouds range between 10° — 10°. Thus there are seven orders of magnitude in
scales of eddy sizes, two orders of magnitude in concentration of cloud particles, six orders
of magnitude in cloud particle sizes, two order of magnitude in water vapor change and one
order of magnitude in temperature change and etc. Hence nine interacting and strongly
fluctuating fields (M (r,t), u(r,t), T(r,t), n(r,t,a) and v(r,t,a)) define this realistic cloud

model, that awaits a new generation of computers.

2.2 Introduction of the mean-field model

In warm clouds, droplets grow by vapor condensation on cloud condensation nuclei (CCN)
and by coalescence due to collisions until as raindrops they fall out of the cloud, see e.g.
Pruppacher and Klett (1997). Those processes we modelled by the equation for the local

distribution of droplets over sizes, n(r,t,a) = n(a) (2.4) and the water vapor density,



2.2 Introduction of the mean-field model

M(r,t) (g-cm3) (2.1). The first term in the right-hand side of (2.4) is due to condensation
which changes the droplet size a according to da®/dt = 2ks where s is supersaturation and
the effective diffusion rate k (depending on M) is given by (13.28) from Pruppacher and
Klett (1997): k' =k Y(po/M) + k7' (LMyy/RT)?. Here « is vapor diffusivity and p is
thermal conductivity, £ is the latent heat of condensation, M, is the molecular weight of
water, R is molar gas constant, po = 1 g-cm 2 is the density of liquid water. This equation
for the condensational droplet growth neglects curvature and solute effects which is valid for
sufficiently large droplets (over one micron). The second term in the rhs of (2.4) describes
coalescence due to collisions, here a” = (a®—a’®)!/? is the size of the droplet that produces
the droplet of size a upon coalescence with the droplet of size a’. The collision kernel
is the product of the target area and the relative velocity of droplets upon the contact:
K(a,a')~7(a+a')*Av. According to the recent precise measurements (Beard et al, 2002)
the coalescence efficiency® for minimally charged cloud drops of 55-105 um radius, in a
radius ratio range of 0.5 to 1.0, freely falling in air, is likely to be greater than 95%. Since
this is the relevant interval of droplet sizes of our problem, we put coalescence efficiency to
be unity in our calculations.

At present the description of the full system of equations, shown at the begin-
ning of this chapter, is impossible to model numerically, therefore we spatially aver-
aged equations (2.1) and (2.4) and in this way obtained from them a closed pair. Su-
persaturation was taken as a constant parameter’. The analytic averaging was done
by Falkovich et al (1999), by introducing a correction factor to the collision kernel
K(ay,a3) — (K(a1,a2)n(ar)n(az))/{n(a)){(n(asz)). However this correction is negligible
for gravity dominated collisions and was not used here. Basically we replaced the mean of

a product with a product of means®.

4  Coalescence efficiency - the fraction of all collisions between water drops of a specified size that results
in actual merging of the two drops into a single larger drop (AMS Glossary, 2000).

5 Supersaturation changes with temperature and temperature changes are slow (see Section 2.1).

6 There also is another problem of neglecting correlations in (2.4). The two-particle probabilities
ns (a1, a2) are replaced via the multiplication of one-particle probabilities n(ai)n(az). The assump-
tion is that there is no prehistory of colliding droplets. It is a very good assumption since usually
droplets are "born” at distant, ”independent” places and do not influence each other prior to their
collision (Pruppacher and Klet, 1997).



3. Growth by gravitational collisions

Collisions are negligible for micron-size droplets (Pruppacher and Klett, 1997) for the
parameters typical for warm precipitating clouds (sM/py = 107 through 10~ and
10° < n = [n(a)da < 10°m~2). Droplets larger than couple of microns, have negligi-
ble Brownian motion and the collision kernel in still air is dominantly due to gravitational
settling:

Ky(a, @) =(a+0)? E(a, ") |ug(0) —y(d) | (3.)

where u, is the fall velocity of droplets and E is the collision efficiency - the fraction of
all water drops in the path of a falling larger drop that make contact with the larger drop
(AMS Glossary, 2000).

3.1 The fall velocity

Once formed, cloud particles immediately begin to move under the action of gravity and
frictional forces, the latter arising from their motion through air. The fall velocity u, is
determined by the balance of gravity force 4mgpoa®/3 and the drag F(u,,a). The drag
force depends on the Reynolds number of the flow around the droplet, Re, =ug4a/v. When
Re, is of order unity or less, ' = 67vpau, and uy, = g7 where p is the air density and
7 = (2/9)(po/p)(a®/v) is the so called Stokes time. We use u, = g7 for a < 40 pm
and take uy(a) from the measurements of Gunn and Kinzer (1949) for a > 50 pm with
a smooth interpolation for 40 um < a < 50 pum, as shown in Figure 3.1. The dotted
straight lines have slopes 2, 1 and 1/2. One can see that u,  a* at a < 40 ym. There
is an intermediate interval with an approximately linear law u, o a for 40 pm < a <
400 pm. When Re, > 1 one may expect F' pa2u§ as long as droplet remains spherical;
that gives u, o \/W. Square-root law can be distinguished between 400 pym and
1 mm, while the growth of uy(a) saturates at larger a due to shape distortions. Gunn and
Kinzer’s measurement even though done fifty years ago, is still one of the most accurate and

representative ones (Pruppacher and Klet, 1997). They measured distilled water droplets



3.2 Collision efficiency

in stagnant air at 760 mm pressure (sea level), temperature 20°C and relative humidity
50%, with accuracy better than 0.7%. Fall velocities for larger drops depend significantly
on pressure, therefore at cloud heights fall velocities of those drops differ from Gunn’s and
Kinzer’s values. However drops we consider are small enough so that their measurements,
even though done at 760 mm pressure, are good enough.

Also interesting to note is that the drag on rigid spheres and on water drops falling
in air coincides well for drop radii below 500 pum (Pruppacher and Klet, 1997). At larger
sizes, the drag on drops progressively increases above that for rigid spheres. In order to
explain this behavior one must consider their internal circulation, their distortion from a
spherical shape and their oscillations, however these drops are already beyond our domain

of relevant sizes.

3.2 Collision efficiency

Although in principle the collision problem is a many-body problem, droplet concentrations
in natural clouds are low enough that only the interaction of pairs of droplets need to be
considered. It is experimentally verified that the shape-distortions which may occur when
the drops are in close proximity may thus be considered of secondary importance in most
cases of interest.

The essential piece of information to be extracted from a study of the collision model
described above is the effective cross-section for the collisions of the two spheres - the
collision efficiency. Assuming the initial vertical separation for unequal droplets is large
enough, so that they fall independently in the beginning, the only parameters which could
play a role in the interaction process are ai, as, the kinematics viscosity, the air and
water density, the gravity acceleration and the horizontal offset of droplets; thus E =
E(as/ai1,a1, R,,). For equal droplets, this condition must be altered slightly - there one
starts with a vertical separation such that hydrodynamical interaction between droplets is
at a threshold.

As a consequence of the tendency for deflection by viscous forces from the collision
trajectory, one can anticipate that generally E < 1 (expect for as/a; — 1, see below).
Since the forces of deflection must become less effective as the inertia of spheres increases,
E should be a monotonic increasing function of a;. For the same reason, E also should
be a monotonic increasing function of as/aq, at least for as/a; < 1. The situation for
as/a;, approaching unity is not obvious, there the relative approach velocity decreases so

that small forces of deflection have a relatively long time to operate and hence to prevent



3.2 Collision efficiency
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Figure 3.1: Terminal fall velocity u, as a function of cloud droplet radius a, obtained by inter-
polating Gunn’s and Kinzer’s measurements and extrapolating the laminar part by Stokes flow
formula. Measurements were done in 1949, at 760 mm pressure, temperature 20°C and relative
humidity 50%, with accuracy better than 0.7%.

a collision, on the other hand, there is a possibility of wake capture as the trailing sphere
falls into the wake of a leading sphere, and thus encounters less resistance to motion than
the latter.

Hydrodynamic interaction between approaching droplets is accounted in K, by the
collision efficiency E, whose values at the 750 mbar altitude we take from Pinsky et al
(2001). Pinsky et al (2001) developed an approach to calculate the collision efficiency within
a wide range of Reynolds numbers (from 0 to 100) corresponding to drops up to 300 pm
radii. They calculated collision efficiency at different heights 1000, 750 and 500 mbar.
They showed that the collision efficiency and the collision kernel increase significantly with
height. This increase of the collision kernel is by 90% caused by the increase of the collision
efficiency and 10% by the increased swept volume. This is because of the high sensitivity

of collision efficiency on the relative drop-drop velocity.



3.3 Droplet distribution over sizes

3.3 Droplet distribution over sizes

It is of practical use to be able to predict the time left before rain starts given the knowledge
of droplet distribution at a given instant. Such distributions can be measured with high
accuracy by optical and other methods. Drop size distributions measured in many different
types of clouds under a variety of meteorological conditions often exhibit a characteristic
shape (Pruppacher and Klett, 1997). Generally the concentration rises sharply from low
value maximum, and then decreases gently toward larger sizes, causing the distribution
to be positively skewed with a long tail toward the larger sizes. We approximate such
a shape with half-Gaussian n(a,0) = 6(a — ay) exp(—(a — ap)?/2a?) where 0 is a step
function. We thus characterize the initial distribution by two parameters: the first moment
P = [an(a,0)da/n (mean radius) and the width o (¢ = [ a’n(a,0)da/n — P?). Since
we mainly consider narrow initial distributions (¢ < P), the rain initiation time does not
depend substantially on the initial shape. We have checked that using for comparison the
more commonly applied Weibull distribution (see Liu and Hallett, 1997; Liu et al, 2002)
(Ao)|[(a — ag)/o]* Lexp{[(a — ap)/o]*}, for 1 < X < 4.

3.4 Modelling purely gravitational collisions in still air

We start from purely gravitational collisions in a still air that is solve the space-homogenous
version of (2.4) with no condensation term:

dn(a) _ ug(a)
o~ "7

(Kol an(@n(@)
+/da[ S K,(d/, a)n(d')n(a)

(3.2)

The first term in the rhs of (3.2) models the loss of droplets falling with the settling velocity
ug from the cloud of the vertical size L. Since L are generally very large (from hundreds
meters to kilometers) and u,4(a) grows with a (see Figure 3.1 below), fallout is relevant only
for sufficiently large drops (called raindrops) with sizes of millimeter or more. The collision
(Smoluchowsky) term describes the propagation of distribution towards large sizes. The
asymptotic law of propagation depends on the scaling of K,(a, a’). If the collision kernel is
a homogeneous function of degree « [that is K,(€a,&a’) = £*Ky4(a,a’)] one can show that
for a larger/smaller than three the propagation is accelerating/decelerating while for o = 3
it is exponential Ina o ¢ (see van Dongen and Ernst, 1988; Zakharov et al, 1991). Our

numerics show, however, that the intervals of sizes a where « is approximately a constant

10



3.5 Numerics

are too short for definite self-similarity of the propagation to form both for narrow and wide
initial distributions. This is due to complexity of both functions, u4(a) and E(a,a’). We
thus focus on the most salient feature of the propagation, namely study how the amount of
liquid water left in the cloud depends on time. Specifically we study the fraction of water
left, W = [ n(a,t)a®da/ [ n(a,0)a® da, relative to the value at the beginning. The decrease

of that amount is due to a concerted action of collisions producing large drops and fallout.

3.5 Numerics

The droplets radii space was discretized, i.e. the droplets size distribution n(a,t) was
presented as the set of concentrations n;(t) of droplets with radius a;. The grid of radii
was taken approximately exponential at sizes that are much larger than the size of initial
condensation nuclei, with 256 points in unit interval of natural logarithm. The collision
term in Smoluchowsky equation was treated as follows: let the radius (af + a2)'/® of the
droplet resulted from merging of the two with radii a; and a; to be in between of two radii
ar and ag4q from the grid. Then the collision results in decreasing of n; and n; by quantity
dN that is determined by the collision kernel, while the concentrations ny; and ng,; are
increased in such a way that sum of their change is d/V and the whole amount of water in

droplets is conserved in coalescence:

on; = on; = —dN = —0ng — 0ng41,

apdny, + ap 1 0ngr = (@ + a3)dN,

nper = AN(a} +a? — a}) /(0 — o).

Sni = dN(al,, — ol +a?)/(al,, — al) . (3.3

The total amount of water in droplets and that left the cloud was a conserved quantity,
up to 10~% accuracy, during the whole simulation. In sections that deal with condensation
as well, the conserved quantity is the sum of total mass of vapor, water in droplets and
water that left the cloud. Note that our scheme automatically keeps the numbers positive:
if dN is greater than either n; or n;, then we choose dN = min{n;,n,}, so that n, and
n; are also not negative after every elementary collision process. Let us stress that our
scheme ! conserves total mass of water and keeps accurate count of the number of droplets
(comparing to the non-conservative scheme of Berry and Reinhardt (1974) and the scheme

of Bott (1998) which was conservative only in mass and needed special choice of the time

1 Program code can be seen at http://tesla.rcub.bg.ac.yu/~vucma/mit42.c

11



3.6 Results

step to keep positivity). The minimal time step needed for our calculations was estimated
from characteristic timescales of our problem to be 0.1 s. We have checked that the decrease
of the time step below dt = 0.05 s does not change the results, the figures below all
correspond to that dt.

3.6 Results

We used the following values of the parameters v = 0.15cm? - s, p = 1g-cm ™3, py =
1.2-103%g-cm 3,9 = 980cm - s 2. The graphs W (¢) are shown at Figures 3.3 and 3.4
(for L = 2 km) and they are qualitatively the same both for narrow and wide initial
distributions. At the initial stage, W decreases slowly due to the loss of drizzle. After
large raindrops appear, loss accelerates. At every curve, the star marks the moment when
respective |d?W/dt?| are maximal (see Figure 3.4). After that moment, the cloud looses
water fast so it is natural to take ¢, as the beginning of rain. Figure 3.2 shows how the
mass distribution over sizes, m(a) o< a®n(a) evolves with time (for P = 16.7 ym, o = 1 um,
L = 2 km). One can see the appearance of secondary peaks and distribution propagating
to large a. The moment ¢, seems to correspond to the highest value of the envelope of
the curves m(a,t) of the coalescence-produced drops. One can see from Figure 3.2 that
the peak at mass distribution is around 200 microns and most of the droplets are below
500 microns at ¢ = t,. The same character of the evolution W (¢) can be seen in the next
section for the ab initio simulations of (2.4, 2.1).

The rain initiation time ¢, defined in that way is presented in Figures 3.6 and 3.7
against the width and the mean radius of the initial distribution. Note the dramatic
increase in t, with decreasing o for P = 13 ym. The mean droplet radius P = 14 um is
sometimes empirically introduced as the minimal size required for the onset of precipitation
(Rosenfeld and Gutman, 1994). Figures 3.6 and 3.7 support that observation, they indeed
show that ¢, grows fast when P decreases below that size but only for very narrow initial
distributions and of course there is no clear-cut threshold as ¢.(P) is a smooth (though
steep) function. The timescales (from tens of minutes to hours) are in agreement with the
data obtained before (see Pruppacher and Klett, 1997, Chapter 15; and Seinfeld, J. and
S. Pandis, 1998, Chapter 15 and the references therein). Figure 3.7 also shows that for
15 pm < P, the function ¢,(P) can be well-approximated by a power law ¢, oc P~7 with
v =~ 3. The rain initiation time depends on the cloud vertical size almost logarithmically as
shown in Figure 3.8, we do not have an explanation for this functional form. Let us stress

that the dependence on cloud vertical size is given assuming all other parameters are fixed.

12



3.6 Results

Here we treated the position and the width of the distribution as given at the be-
ginning of the collision stage. However the distribution is itself a product of condensation

stage so we now turn to the consideration of the condensation-collision mean field model.

13



3.6 Results
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Figure 3.2: Mass density of water shown at different moments in time, and as a function of

droplet radii a. Rain initiation time is t, ~ 1500 s. Notice how with the evolution of time the

largest amount of droplets moves from small radii to larger ones.
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Figure 3.3: Fraction of water left in the cloud as a function of time. The mean droplet radius
of the initial distribution n(a) is P = 13 pym. Different curves correspond to different widths o of
the initial distribution n(a). Fallout of water from the cloud begins with a drizzle, which is later
replaced by a faster fallout. The moments when this crossover happens are denoted with crosses
and represent rain initiation times.
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3.6 Results
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of fraction of the water left in the cloud for o = 7.5 pm and 1.0 pm respectively. Fallout of water
from the cloud starts with a drizzle, which later is replaced by a faster fallout. The moments

when this crossover happens are denoted with crosses, and represent rain initiation times.
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Figure 3.5: Fraction of water left in the cloud as a function of time for the width of the initial
distribution n(a): o = 0.3 um. Different curves correspond to different mean radii P of this
distribution. Initial drizzle is later replaced by a faster fallout of water from the cloud. The

moments when this change happens are denoted with crosses and represent rain initiation times.
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Figure 3.6: Rain initiation time as function of the width o of the initial distribution n(a), for
different mean radii P of this distribution. Notice a dramatic increase in t, with decreasing o for
P =13 pm. The mean droplet radius P = 14 pm is empirically introduced as the minimal size

required for the onset of precipitation (Rosenfeld and Gutman, 1994).
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Figure 3.7: Rain initiation time as function of the mean radius P of the initial distribution
n(a) for different widths o this distribution. For 15 pym < P, the function t.(P) can be well-
approximated by a power law t, « P~7 with v =~ 3.
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Figure 3.8: Rain initiation time as function of the cloud vertical size L for the
radius P = 18.8 pm and the width o =1 pm) of the initial distribution n(a).
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4. Condensation and collisions

We consider now the growth of droplets by condensation and collisions:

on(a)  ksM 0 n(a) ug(a)
ot  po Oa a —n(a)T (41)
[E@ @)
+/da[ s K(d,a)n(d)n(a)| |
aa—]\f = —47T5M/£/cm(a)da. (4.2)

The system (4.1, 4.2) is our mean-field model where the only memory of spatial inhomo-
geneities is the fallout term. Without this term, it has a form of balance relations preserving
the total water content (vapor plus droplets) Wi (t) = M(t) + 4mpy [ n(a, t)a® da/3. As we
show here, this model gives the rain initiation times with reasonable quantitative values
and proper qualitative behavior upon the change of parameters. Let us discuss first how
t. depends on the CCN number ng = [ n(a, 0) da. Here, the most important feature is the
existence of the minimum in the function ¢.(ng). That can be explained by the competi-
tion between condensation, collisions and vapor depletion. Since condensation slows down
and coalescence accelerates as the size of droplets grow then there exists a crossover size
a.. With a certain degree of simplification, one can say that the growth until a. is due to
condensation and after that due to collisions.

Since collisional growth accelerates with the size, an order-of-magnitude estimate for
the rain initiation time is the time of condensational grows until a.. When the CCN number
is low enough it does not influence condensation yet the collisions are more frequent for
higher number of droplets. That means that increasing ny from low values we decrease
the crossover size a. (collisions take over earlier) and thus decrease the time needed for
droplet growth. Such a decrease of t, with ny must go until we consider the CCN number
which is large enough for vapor depletion to play the role. Vapor depletion starts to affect
condensation when the amount of water in droplets is getting comparable to that in vapor,

1/3

which corresponds to the droplet size ag ~ (M /ngpy)/°. When droplets grow comparable

to ag vapor depletion slows and then stops condensation. The question now is which size,
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4.1 Numerics

a. or ag, decays faster with ngy. Let us give a rough estimate for a.. Collisions change the
concentration n(a) on a timescale of order 1/ [ K (a, a;)n(a)da;. Assuming that during the
growth until a. the total number of droplets did not change much (since condensation was
the leading mechanism) and that all droplets have comparable sizes, we get a. determined
by the implicit relation K (a.)ng ~ ksM/poa?. Note that for all mechanisms of collision
(Brownian, gravitational and turbulent) the collision kernel K (a) grows faster than a? so

that a. decreases with ny slower than n, 13,

That means that for sufficiently small nq,
aq > a. and vapor depletion is indeed irrelevant. However, for sufficiently high ng, a. is
getting comparable to a; and the decrease of t, with ng stops. If one takes the initial
concentration even larger so that a. > a4 then vapor depletion stops condensation earlier
than sizes reach a.; collisions are slower for droplets of the smaller sizes so that the overall
time of droplet growth is getting larger. The concentration n. that corresponds to the

minimal time can be found from the (implicit) relation ag ~ a.:
(M/ncpo)_l/?’K[(M/ncpo)l/?’) ~ Ks. (4.3)

That tells that n, oc M and if the kernel is homogeneous, K  a®, then n, o 53/ . One
can argue that for small concentrations (generally for maritime clouds), ny < n,, times of
condensation and collision stages are comparable. Therefore, ¢, is a function of the product
Ms. For a homogeneous kernel, ¢, oc n~%/(+®) () s)~®/(?>*2)  For large concentrations
(generally for continental clouds), ng > n., the rain initiation time is mainly determined

by collisions so it is getting independent of the supersaturation and ¢, o n(()a_3)/ S Mo/,

4.1 Numerics

Let us illustrate now the non-monotonic dependence of the rain initiation time of the CCN
number by numerically solving (4.1, 4.2). Remark that in the effective kinetic model of
McGraw and Liu (2003, 2004) the barrier-crossing rate was observed to increase with CCN
and then decrease after some value. We substitute K = K, and start from CCN (i.e. initial
droplets) uniformly distributed between 1 and 2 microns. We take k = ky = 0.25cm? - 571,
T = 300K, £ = 4-10*J/mol and R = 8.3J- mol™!-K~*. We obtain the rain initiation
time (defined by the maximum of d?Wr/dt?) as a function of the CCN concentration ny
for different values of the supersaturation s and the vapor content M.

The grid of radii was approximately exponential at sizes that are much larger than
the size of initial condensation nuclei (with 200 points in unit interval of natural logarithm).

The condensation of vapor was taken into account by working on evolving grid of radii a;(?)
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4.2 Results

keeping conserved the total mass of water in droplets and vapor. Collisions were modelled
according to (3.3) described above. Note that the numerical scheme we employ here has
an additional advantage (comparing to those described in Pruppacher and Klett, 1997;
Berry and Reinhardt, 1974; Bott, 1998) of accounting simultaneously for condensation and
collisions while respecting conservation laws. We used the time step dt = 0.01 s during the
condensation phase, on a later stage (dominated by coalescence) dt = 0.1 s was enough.

The same grid is used for condensation and coalescence.

4.2 Results

Those results are presented in Figure 4.1 for L = 1 km. The solitary point at the lower
part corresponds to M = 6 g- m 3, s = 1/60. The three solid lines correspond to M = 3 g
m~? and respectively to s = 0.0173, 0.0086, 0.0043, from bottom to top. The three dashed
lines correspond to M = 1.5 g- m~3 and respectively to s = 0.0196, 0.0076, 0.0038, from
bottom to top.

We see that indeed the graphs t.(ng) all have minima. The position of the minimum
is proportional to M as expected and approximately proportional to s~!/2 which would
correspond to o ~ 7 in this interval of sizes. We see that the left parts of different curves
with the same value of the product sk approach each other as ny decreases. Indeed, middle

1 while lower dashed line

dashed line and upper solid line correspond to k = 4-10"%cm?- s~
and middle solid line have k = 2-107%cm? - s7'. To the right of the minima, the curves
with different s but the same M approach each other as ngy increases. That supports the
previous conclusions on the respective roles of condensation and collisions in determining
the rain initiation time. Note that the ascending parts of the curves (growth of ¢, with
no) together with Figure 3.7 correspond to the so-called second aerosol indirect effect®
(Squires, 1958). Being interested in the qualitative (non-monotonic) dependence t,(n)
we disregarded here the turbulence contribution into the collision rate (see e.g. Saffman
and Turner, 1956; Maxey, 1987; Squires and Eaton, 1991; Sundaram and Collins, 1997;
Shaw et al, 1998; Reade and Collins, 2000; Grits et al, 2000; Vaillancourt and Yau, 2000;
Kostinski and Shaw, 2001; Falkovich et al, 2002; Falkovich and Pumir, 2004; Collins and
Keswani, 2004; Wang et al 2005; Franklin et al, 2005 and the references therein). For the

parameters considered here, turbulence with the rms velocity gradient A < 15s~! can only

slightly diminish ¢, and cannot change the qualitative form of the dependence ¢.(n) . We

1 Second aerosol indirect effect - the effect that smaller cloud droplets can decrease precipitation efficiency.
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Figure 4.1: Rain initiation time t, as function of CCN concentration ng for different values of
supersaturation s and water vapor density M. Notice that all t.(ng) functions have a minimum.
The characteristic cloud size is L = 1 km. The solitary point at the lower part corresponds to
M =6 gm=3, s = 1/60. The three solid lines correspond to M = 3 g- m~* and respectively to
s = 0.0173, 0.0086, 0.0043, from bottom to top. The three dashed lines correspond to M = 1.5
g- m—3 and respectively to s = 0.0196, 0.0076, 0.0038, from bottom to top.

also disregard regular vertical inhomogeneity of supersaturation due to temperature profile
which does not broaden n(a) much even with the account of turbulence-induced random
fluctuations (Korolev, 1995; Turitsyn, 2003). Spatial inhomogeneities in vapor density M
due to mixing of humid and dry air remains a controversial subject (see. e.g Pruppacher
and Klett, 1997; Baker et al, 1980) and probably can be neglected in cloud cores. We

address the turbulent mixing of vapor in Chapter 5 considering partially seeded clouds.
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5. Delaying rain by hygroscopic

over-seeding

That the rain time is a non-monotonic function of the concentration of droplets may provide
a partial explanation for the conflicting observations of the effect of hygroscopic seeding.
By seeding clouds with hygroscopic aerosol particles one can vary the number of cloud
condensation nuclei and thus the number of small droplets at the beginning of the cloud

formation.

5.1 Seeding suppresses and accelerates precipitation

It was observed that seeding clouds with hygroscopic aerosol particles in some cases sup-
presses precipitation (see e.g. Rosenfeld et al, 2001), while in other cases enhances and
accelerates it (Cotton and Pielke, 1995; Mather, 1991), see also Bruintjes (1999) for a
recent review.

Rosenfeld et al (2001) have observed that the effect of dust on cloud properties is to
inhibit precipitation, contrary to theoretical models, which predicted that rainfall would
be enhanced. Using satellite and aircraft observations they showed that clouds forming
within desert dust contain small droplets and produce little precipitation by drop coales-
cence. They measured the size distribution and chemically analyzed individual Saharan
dust particles collected in the dust storm. The detrimental impact of dust on rainfall was
smaller than that caused by smoke from biomass burning or anthropogenic air pollution,
but the large abundance of desert dust in the atmosphere rendered it important. The au-
thors concluded that the reduction of precipitation from clouds affected by desert dust can
cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to
further decrease of precipitation. Furthermore, anthropogenic changes of land use exposing
the topsoil can initiate such a desertification feedback process.

Mather (1991) ”spotted” a storm whose microphysical characteristic were recognized
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5.2 Postponing rain

as so unusual against an extensive microphysical database, that some explanation was
needed for the apparent errant behavior of this storm. The probable cause was attributed
to emissions from a Kraft paper mill 10 km south of the storm’s position. The mill had
undergone an expansion program that had quadrupled its output of paper products. Using
the radar characteristics of this unusual storm as a guide, a search of one season of radar
data revealed the existence of five other similar storms, all within about 30 km of the
paper mill. These records indicated that the storms apparently modified by the paper mill
tended to last longer, grow taller, and rain harder than any other storms recorded that day.
The most singular feature of the modified storms was the appearance of large (> 4 mm)
drops at the most common sampling level (—10°C), indicating an accelerated or enhanced

coalescence precipitation formation process.

5.2 Postponing rain

It is often desirable to postpone rain, for instance to bring precipitation inland from the
sea. The fact that ¢, grows with n when ny > n, suggests the idea of over-seeding to delay
rain. This is considered to be unpractical: “It would be necessary to treat all portions of a
target cloud because, once precipitation appeared anywhere in it, the raindrops ...would
be circulated throughout the cloud ...by turbulence” (Dennis, 1980). We think that this
conclusion ignores another, positive aspect of cloud turbulence, namely the mixing and
homogenization of partially seeded cloud during the condensation stage. We describe briefly
how it works for two cases.

Consider first seeding a part of the cloud comparable to its size L.. Note that we do
not consider here adding ultra-giant nuclei, we assume seeded CCN to be comparable in size
to those naturally present. Two fluid parcels at first increase their distance exponentially
(since the air velocity on such lengths can be considered spatially smooth), therefore the
rms difference of vapor concentrations decreases exponentially (it behaves as one over the
square root of the volume). Later, at times t* > t§ = L?/e (e is the energy dissipation
rate in turbulence), the squared distance between two fluid parcels grows according to the
Richardson law as €t®, so the rms difference of vapor concentrations between seeded and

94 To see how different rates of condensation interplay

unseeded parts decreases as t~
with turbulent mixing we generalize the mean-field system (4.1, 4.2) describing seeded and
unseeded parts by their respective ni,n, and 1y = s1M;, x5 = s9M, and link them by
adding the term that models the decay of the difference: dz;/dt = ... — (z; — z;)t(t +

to)"2(9/4). Note that at ¢t < t, we have dz;/dt o« —(z; — z;)t that gives exponential
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5.2 Postponing rain

decrease of the rms difference of vapor concentrations, while at ¢ > t; the rms difference of
vapor concentrations changes as dz;/dt o< —(x; — ;) /t, which corresponds to the estimate
obtained from Richardson law.

As a crude model, we assume two parts to evolve separately until t = 2t,, then we
treat the cloud as well-mixed and allow for the collisions between droplets from different
parts. That actually underestimates the effect of seeding and can be considered as giving
the lower bound for the time before rain. The results of simulations are shown in Figure 5.1
for ty =180s, L =1 km and A = 15 s L. It is seen from Figure 5.1A that the total water
content Wr changes similarly to what was shown in Figures 3.3 and 3.4 and the rain
initiation time is again determined by the maximum of d?Wr/dt?>. The respective times
are shown against ng = (n; + n2)/2 by boxes in Figure 5.1B. The time increase is less than
for homogeneously seeded one, but it is still substantial. The fraction of the cloud still
unmixed after the time ¢ decreases by the Poisson law exp(—t/t;). Taking n; = 100 cm™®
one sees that for a time delay of 10 min one needs to seed by ny ~ 3000 cm™3.

Second, consider seeding by N particles a small part of the cloud which (unseeded)
had some ny and would rain after t,. After time ¢, the seeds spread into the area of size
(et3)'/2 with the concentration inside the mixed region decaying as n(t,) = N(et®)=%/2 (for
stratiform clouds one gets N(et®)™!). To have an effect of seeding, one needs n(t,) > ny
which requires N > 10! for ng = 50 cm™3, t, = 10 min and € = 10 cm? - s73. With
sub-micron particles weighing 10~'* g that would mean hundreds of kilograms, which is

still practical.
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5.2 Postponing rain
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Figure 5.1: Fraction of water left in the cloud as a function of time is shown in (A). The asterisk
signs mark rain initiation times t., times when the slow drizzle fallout of water from the cloud
is replaced by a more rapid one. Rain initiation time t, as a function of CCN concentration
ng is shown in (B). The lower part (boxes) corresponds to a half-seeded cloud (the half-sum of
concentrations is used as abscissa) while the upper part (filled circles) corresponds to an unseeded
one. The time increase for a half-seeded cloud is less than for homogeneously seeded one, but it

is still substantial. Notice that seeding a bit can accelerate rain, but taking e.g. ny = 100 cm™3

3

and seeding with ny ~ 3000 cm™° would cause a postponement of rain of about 10 min.
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6. Summary

We believe that our main result is a simple mean-field model (4.1, 4.2) which demonstrates
non-monotonic dependence of the rain initiation time on CCN concentration. As the CCN
concentration increases, the rain initiation time first decreases and then grows as shown in
Figures 4.1, 5.1. The modification of this model for an inhomogeneous case, described in
Section 5, shows that one can increase the rain initiation time even for a cloud partially
seeded by hygroscopic aerosols. We estimate that such seeding is practical. Possible ap-
plication would be to postpone the rain initiation time of maritime clouds, so that they

precipitate over mainland of Israel and not over the Mediterranean sea, as usually happens.
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Appendix A Table of definitions of variables

Quantity Units Description
a cm Droplet radius
c J- K-t Heat capacity of dry air at constant pressure
f N Boundary driven forces
g cm-s 2 Acceleration of gravity
K cm?-s71 Collision kernel
L cm Cloud vertical size
L J-mol ™! Latent heat of condensation
L, Jg ! Latent heat of evaporation of water per unit mass
M g-cm ™3 Water vapor density

My g-mol ! Molecular weight of water
n(a) cm ? Distribution of droplet sizes in a unit volume
P Pa Athmospheric pressure
P cm Mean radius of the initial distribution n(a)
r cm Spatial coordinate
R J-mol~ 1K1 Universal gas constant
R., # Reynold’s number
s # Supersaturation
t S Time
1 s Rain initiation time
T K Temperature
u cm- st Air velocity
u, cm- 571 Terminal fall velocity
v cm- s Cloud particle velocity
w # Relative amount of water in the cloud
B K-t Coefficient linking density changes with temperature changes
K cm?-s! Water vapor diffusivity
K cm?-s ! Thermal conductivity
v cm?-s71 Kinematic air viscosity
P g-cm 3 Air density
00 g-cm 3 Liquid water density
o cm Width of the initial distribution n(a)

Table A.1: Definitions of variables
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