[hep-th] Predavanje D. Polyakova u Matematičkom institutu SANU

Branko Dragovich dragovich at ipb.ac.rs
Tue Oct 9 16:58:19 CEST 2018


Poštovane keleginice i kolege,

Prof. Dmitri Polyakov, koji je učestvovao na par naših skupova iz
savremene matematičke fizike i koji je sin Aleksandra Polyakova (čuvenog
u teoriji struna i kvantnoj teoriji polja), držaće u ovaj četvrtak
predavanje u Matematičkom institutu SANU (Kneza Mihaila 36, treći 
sprat). Videti
obaveštenje niže.  Nedavno mu je publikovana knjiga
https://www.amazon.com/String-Fields-Higher-Number-Theory/dp/9813233397 
.

Pozivate se da ovom predavanju prisustvujete.

Pozdrav,
Branko Dragović


-------- Original Message --------
Subject: [seminar-geometrija] Predavanje 11 oktobar
Date: 2018-10-07 09:57
 From: stanan at turing.mi.sanu.ac.rs
To: seminargeometrija at foo.pharmacy.bg.ac.rs

Seminar "Geometrija,obrazovanje i vizualizacija sa primenama"
Četvrtak 11.10.2018. 17.15h sala 301f (Matematički Institut)

Predavač: Dmitri Polyakov
Center for Theoretical Physics, College of Physical Science and
Technology Sichuan University, Chengdu 6100064, China;
Institute of Information Transmission Problems (IITP) Moscow, Russia

Predavanje: "Exact Formula for a Number of Restricted Partitions from
Conformal Field Theory"

Apstract:
"A partition of  a number N  of length p is a decomposition
$N=n_1+...+n_p$,where $0<n_1\leq{n_2}...\leq{n_p}$, $1\leq{p}\leq{N}$.
Finding an exact formula for a number of such partitions is a
long-standing problem in number theory. For a total number of partitions 
,
various approximations are known, such as Ramanujan-Hardy formula, as 
well
as its improvements.
If the length $p$  is fixed (restricted partitions) the problem becomes
even more complicated, and no exact solution to it has been known. In my
talk, I show how to derive exact analytic formula for the number of
restricted partitions from  correlators
of  irregular vertex operators in conformal field theory (CFT), that I
will describe in the talk.

-- 
Institute of Physics, University of Belgrade
               and
Mathematical Institute of the Serbian Academy
of Sciences and Arts, Belgrade, Serbia
http://www.ipb.ac.rs/~dragovich


More information about the hep-th mailing list