[phys4phys] Seminar Fizickog fakulteta

Mirzeta Savic mirzetas at ff.bg.ac.rs
Wed Feb 14 12:04:36 CET 2024


Семинар Физичког факултета
Ппонедељак 19.02. у 11:00 у сали 665, III спрат, Студентски трг 12.

Милан Радовић, Photon Science Division, Paul Scherrer Institut, CH-5232 
Villigen PSI. Switzerland
"Tuning Metal-Insulator Transition and Magnetism of Transition Metal Oxides"

Апстракт:

Transition Metal Oxides (TMOs) exhibit unique and multifunctional 
physical phenomena directly related to the spin and orbital degrees of 
freedom of the transition metal d-states and their interplay with the 
lattice. Controlling the electronic structure of thin layers of TMOs is 
a crucial first step towards designing heterostructures where new phases 
and phenomena, including the metal-insulator transition (MIT), emerge. 
One compelling approach to alter the physical properties of TMOs is to 
utilize their iso-structure suppleness, which permits the realization of 
heterostructures.

Firstly, the control of the Metal-Insulator Transition (MIT) via a 
dimensionality crossover will be presented [1]. The Resonant Inelastic 
X-ray Scattering (RIXS) study on CaVO3 demonstrated that MIT is 
susceptible to electronic bandwidth and the local site environment. This 
work signifies a precise and sophisticated manipulation of the 
electronic properties of TMOs. The induced ferromagnetic order in thin 
NdNiO3 (NNO) films, heterostructures with a magnetic layer, shows that a 
proximity effect can modify its physical properties. The yielded 
ferromagnetism concurrently adapts the electronic structure of the NNO 
while suppressing the Metal-Insulator Transition (MIT). This result adds 
another pathway of controllability, demonstrating how magnetic 
interactions can be harnessed to influence the electronic behavior of 
TMOs [2].Finally, the 2D electronic system at the SrTiO3 (STO) surface 
will be discussed as the insulator state's breakdown and the consequence 
of the induced MIT [3,4].

All three outcomes demonstrate functional approaches to manipulating the 
properties and phases, both electronic and magnetic, in TMOs. This 
manipulation is achieved by precisely controlling parameters such as 
strain, dimensionality, and proximity to magnetic layers. These findings 
underscore the potential of TMOs as quantum materials with versatile 
applications in emerging technologies.

References
[1] Daniel E. McNally, Xingye Lu, Jonathan Pelliciari, Sophie Beck, 
Marcus Dantz, Muntaser Naamneh, Tian Shang, Marisa Medarde, Christof W. 
Schneider, Vladimir N. Strocov, Ekaterina V. Pomjakushina, Claude 
Ederer, Milan Radovic and Thorsten Schmitt, Electronic localization in 
CaVO3 films via bandwidth control, npj Quantum Materials 4:6 (2019).

[2] M, Caputo, Z. Ristic, R. S. Dhaka, T. Das, Z. Wang, C. E. Matt, N. 
C. Plumb, E. B. Guedes, J. Jandke, M. Naamneh, A. Zakharova, M. Medarde, 
M. Shi, L. Patthey, J. Mesot, C. Piamonteze, M. Radovic, Proximity 
-Induced Novel Ferromagnetism Accompanied with Resolute Metallicity in 
NdNiO3 Heterostructure, Advanced Science 8, 2101516 (2021).

[3] A. F. Santander-Syro, F. Fortuna, C. Bareille, T. C. Rodel, G. 
Landolt, N. C. Plumb, J. H. Dil, and M. Radovic, Giant spin splitting of 
the two-dimensional electron gas at the surface of SrTiO3, Nature 
Materials, 13, 1085–1090 (2014).

[4] Eduardo B. Guedes, Stefan Mu, W. H. Brito, Marco Caputo, Hang Li, 
Nicholas C. Plumb,J. Hugo Dil, and Milan Radovic, Universal Structural 
Influence on the 2D Electron Gas at SrTiO3 Surfaces, Advanced Science 8, 
2100602 (2021)


More information about the phys4phys mailing list