[phys4phys] Seminar Fizickog fakulteta
Mirzeta Savic
mirzetas at ff.bg.ac.rs
Wed Feb 14 12:04:36 CET 2024
Семинар Физичког факултета
Ппонедељак 19.02. у 11:00 у сали 665, III спрат, Студентски трг 12.
Милан Радовић, Photon Science Division, Paul Scherrer Institut, CH-5232
Villigen PSI. Switzerland
"Tuning Metal-Insulator Transition and Magnetism of Transition Metal Oxides"
Апстракт:
Transition Metal Oxides (TMOs) exhibit unique and multifunctional
physical phenomena directly related to the spin and orbital degrees of
freedom of the transition metal d-states and their interplay with the
lattice. Controlling the electronic structure of thin layers of TMOs is
a crucial first step towards designing heterostructures where new phases
and phenomena, including the metal-insulator transition (MIT), emerge.
One compelling approach to alter the physical properties of TMOs is to
utilize their iso-structure suppleness, which permits the realization of
heterostructures.
Firstly, the control of the Metal-Insulator Transition (MIT) via a
dimensionality crossover will be presented [1]. The Resonant Inelastic
X-ray Scattering (RIXS) study on CaVO3 demonstrated that MIT is
susceptible to electronic bandwidth and the local site environment. This
work signifies a precise and sophisticated manipulation of the
electronic properties of TMOs. The induced ferromagnetic order in thin
NdNiO3 (NNO) films, heterostructures with a magnetic layer, shows that a
proximity effect can modify its physical properties. The yielded
ferromagnetism concurrently adapts the electronic structure of the NNO
while suppressing the Metal-Insulator Transition (MIT). This result adds
another pathway of controllability, demonstrating how magnetic
interactions can be harnessed to influence the electronic behavior of
TMOs [2].Finally, the 2D electronic system at the SrTiO3 (STO) surface
will be discussed as the insulator state's breakdown and the consequence
of the induced MIT [3,4].
All three outcomes demonstrate functional approaches to manipulating the
properties and phases, both electronic and magnetic, in TMOs. This
manipulation is achieved by precisely controlling parameters such as
strain, dimensionality, and proximity to magnetic layers. These findings
underscore the potential of TMOs as quantum materials with versatile
applications in emerging technologies.
References
[1] Daniel E. McNally, Xingye Lu, Jonathan Pelliciari, Sophie Beck,
Marcus Dantz, Muntaser Naamneh, Tian Shang, Marisa Medarde, Christof W.
Schneider, Vladimir N. Strocov, Ekaterina V. Pomjakushina, Claude
Ederer, Milan Radovic and Thorsten Schmitt, Electronic localization in
CaVO3 films via bandwidth control, npj Quantum Materials 4:6 (2019).
[2] M, Caputo, Z. Ristic, R. S. Dhaka, T. Das, Z. Wang, C. E. Matt, N.
C. Plumb, E. B. Guedes, J. Jandke, M. Naamneh, A. Zakharova, M. Medarde,
M. Shi, L. Patthey, J. Mesot, C. Piamonteze, M. Radovic, Proximity
-Induced Novel Ferromagnetism Accompanied with Resolute Metallicity in
NdNiO3 Heterostructure, Advanced Science 8, 2101516 (2021).
[3] A. F. Santander-Syro, F. Fortuna, C. Bareille, T. C. Rodel, G.
Landolt, N. C. Plumb, J. H. Dil, and M. Radovic, Giant spin splitting of
the two-dimensional electron gas at the surface of SrTiO3, Nature
Materials, 13, 1085–1090 (2014).
[4] Eduardo B. Guedes, Stefan Mu, W. H. Brito, Marco Caputo, Hang Li,
Nicholas C. Plumb,J. Hugo Dil, and Milan Radovic, Universal Structural
Influence on the 2D Electron Gas at SrTiO3 Surfaces, Advanced Science 8,
2100602 (2021)
More information about the phys4phys
mailing list