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Dynamical energy loss formalism allows generating state-of-the-art suppression predictions in finite size 
QCD medium, employing a sophisticated model of high-p⊥ parton interactions with QGP. We here 
report a major step of introducing medium evolution in the formalism though 1 + 1D Bjorken (“B”) 
expansion, while preserving all complex features of the original dynamical energy loss framework. We 
use this framework to provide joint R A A and v2 predictions, for the first time within the dynamical 
energy loss formalism in evolving QCD medium. The predictions are generated for a wide range of 
high p⊥ observables, i.e. for all types of probes (both light and heavy) and for all centrality regions 
in both Pb + Pb and Xe + Xe collisions at the LHC. Where experimental data are available, DREENA-B 
framework leads to a good joint agreement with v2 and R A A data. Such agreement is encouraging, i.e. 
may lead us closer to resolving v2 puzzle (difficulty of previous models to jointly explain R A A and v2
data), though this still remains to be thoroughly tested by including state-of-the-art medium evolution 
within DREENA framework. While introducing medium evolution significantly changes v2 predictions, 
R A A predictions remain robust and moreover in a good agreement with the experimental data; R A A

observable is therefore suitable for calibrating parton-medium interaction model, independently from the 
medium evolution. Finally, for heavy flavor, we observe a strikingly similar signature of the dead-cone 
effect on both R A A and v2 - we also provide a simple analytical understanding behind this result. Overall, 
the results presented here indicate that DREENA framework is a reliable tool for QGP tomography.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is by now established that quark-gluon plasma (QGP), be-
ing a new state of matter [1,2] consisting of interacting quarks, 
antiquarks and gluons, is created in ultra-relativistic heavy ion col-
lisions at the Relativistic Heavy Ion Collider (RHIC) and the Large 
Hadron Collider (LHC). Energy loss of rare high p⊥ particles, which 
are created in such collisions and which transverse QGP, is consid-
ered to be an excellent probe of this form of matter [3–6]. Such 
energy loss is reflected through different observables, most im-
portantly angular averaged (R A A ) [7–14] and angular differential 
(v2) [15–22] nuclear modification factor, which can be measured 
and predicted for both light and heavy flavor probes. Therefore, 
comparing a comprehensive set of predictions, created under the 
same model and parameter set, with the corresponding experi-
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mental data, allows for systematical investigation of QCD medium 
properties, i.e. QGP tomography.

We previously showed that the dynamical energy loss formal-
ism [23–25] provides an excellent tool for such tomography. In 
particular, we demonstrated that the formalism shows a very good 
agreement [27–30] with a wide range of R A A data, coming from 
different experiments, collision energies, probes and centralities. 
Recently, we also used this formalism to generate first v2 pre-
dictions, within DREENA-C framework [26], where DREENA stands 
for Dynamical Radiative and Elastic ENergy loss Approach, and 
“C” denotes constant temperature QCD medium. These predictions 
were compared jointly with R A A and v2 data, showing a very 
good agreement with R A A data, while visibly overestimating v2
data. This overestimation also clearly differentiates the dynamical 
energy loss from other models, which systematically underesti-
mated the v2 data, leading to the so called v2 puzzle [31–33]. 
On the other hand, it is also clear that v2 predictions have to 
be further improved - in particular v2 was shown to be sensi-
tive to medium evolution, while in DREENA-C medium evolution 
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was introduced in the simplest form, through constant medium 
temperature. This problem then motivated us to introduce medium 
evolution in DREENA framework.

While several existing energy loss approaches already contain 
a sophisticated medium evolution, they employ simplified par-
ton energy loss models. On the other hand, our dynamical energy 
loss formalism corresponds to the opposite “limit”, where constant 
(mean) medium temperature was assumed, combined with a so-
phisticated model of parton-medium interactions, which includes: 
i) QCD medium composed of dynamical (i.e. moving) scattering 
centers, which is contrary to the widely used static scattering 
centers approximation, ii) finite size QCD medium, iii) finite tem-
perature QCD medium, modeled by generalized HTL approach [34,
35], naturally regularizing all infrared and ultraviolet divergen-
cies [23–25,36]. iv) collisional [25] and radiative [23] energy losses, 
calculated within the same theoretical framework, v) finite parton 
mass, making the formalism applicable to both light and heavy fla-
vor, vi) finite magnetic [37] mass and running coupling [27].

Note that we have previously showed that all the ingredients 
stated above are important for accurately describing experimental 
data [38]. Consequently, introducing medium evolution in the dy-
namical energy loss, is a major step in the model development, as 
all components in the model have to be preserved, and no addi-
tional simplifications should be used in the numerical procedure. 
In addition to developing the energy loss expressions with chang-
ing temperature, we also wanted to develop a framework that can 
efficiently generate a set of predictions for all types of probes and 
all centrality regions. That is, we think that for a model to be real-
istically compared with experimental data, the comparison should 
be done for a comprehensive set of light and heavy flavor experi-
mental data, through the same numerical framework and the same 
parameter set. To implement this principle, we also had to develop 
a numerical framework that can efficiently (i.e. in a reasonably 
short time frame) generate such predictions, which will be pre-
sented in this paper.

We will start the task of introducing the medium evolution in 
the dynamical energy loss formalism with DREENA-B framework 
presented here, where “B” stands for Bjorken. In this framework, 
QCD medium is modeled by the ideal hydrodynamical 1 + 1D
Bjorken expansion [39], which has a simple analytical form of tem-
perature (T ) dependence. This simple T dependence will be used 
as an intermediate between constant (mean) temperature DREENA-
C framework and the full evolution QGP tomography tool. While, 
on one hand, inclusion of Bjorken expansion in DREENA frame-
work is a major task (having in mind complexity of our model, see 
above), it on the other hand significantly simplifies the numeri-
cal procedure compared to full medium evolutions. This will then 
allow step-by-step development of full QGP tomography frame-
work, and assessing improvements in the predictions when, within 
the same theoretical framework, one is transitioning towards more 
complex QGP evolution models within the dynamical energy loss 
framework.

2. Computational framework

To calculate the quenched spectra of hadrons, we use the 
generic pQCD convolution, while the assumptions are provided 
in [27]:

E f d3σ

dp3
f

= Eid3σ(Q )

dp3
i

⊗ P (Ei → E f )

⊗ D(Q → H Q ) ⊗ f (H Q → e, J/ψ), (1)

where “i” and “f”, respectively, correspond to “initial” and “final”, 
Q denotes quarks and gluons (partons). Eid3σ(Q )/dp3

i denotes 

the initial parton spectrum, computed at next to leading order [40]
for light and heavy partons. D(Q → H Q ) is the fragmentation 
function of parton Q to hadron H Q ; for charged hadrons, D and 
B mesons we use DSS [41], BCFY [42] and KLP [43] fragmentation 
functions, respectively. P (Ei → E f ) is the energy loss probability, 
generalized to include both radiative and collisional energy loss in 
a realistic finite size dynamical QCD medium in which the tem-
perature is changing, as well as running coupling, path-length and 
multi-gluon fluctuations. In below expressions, running coupling 
is introduced according to [27], where the temperature T now 
changes with proper time τ ; the temperature dependence along 
the jet path is taken according to the ideal hydrodynamical 1 + 1D
Bjorken expansion [39]. Partons travel different paths in the QCD 
medium, which is taken into account through path length fluc-
tuations [44]. Multi-gluon fluctuations take into account that the 
energy loss is a distribution, and are included according to [27,45]
(for radiative energy loss) and [44,46] (for collisional energy loss).

The dynamical energy loss formalism was originally developed 
for constant temperature QCD medium, as described in detail 
in [23–25]. We have now derived collisional and radiative en-
ergy loss expressions for the medium in which the temperature 
is changing along the jet path; detailed calculations will be pre-
sented elsewhere, while the main results are summarized below.

For the collisional energy loss, we obtain the following analyti-
cal expression:

dEcol

dτ
= 2C R

π v2
αS(E T )αS(μ

2
E(T ))

∞∫
0

neq(|�k|, T )d|�k|
⎛
⎜⎝

|�k|/(1+v)∫
0

d|�q|
v|�q|∫

−v|�q|
ωdω

+
|�q|max∫

|�k|/(1+v)

d|�q|
v|�q|∫

|�q|−2|�k|

ωdω

⎞
⎟⎠

(
|�L(q, T )|2 (2|�k| + ω)2 − |�q|2

2

+ |�T (q, T )|2 (|�q|2 − ω2)((2|�k| + ω)2 + |�q|2)
4|�q|4 (v2|�q|2 − ω2)

)
.

(2)

Here E is initial jet energy, τ is the proper time, T is the temper-
ature of the medium, αS is running coupling [27] and C R = 4

3 . k
is the 4-momentum of the incoming medium parton, v is the ve-
locity of the incoming jet and q = (ω, �q) is the 4-momentum of 
the gluon. neq(|�k|, T ) = N

e|�k|/T −1
+ N f

e|�k|/T +1
is the equilibrium mo-

mentum distribution [47] at temperature T including quarks and 
gluons (N and N f are the number of colors and flavors, respec-
tively). �L(T ) and �T (T ) are effective longitudinal and transverse 
gluon propagators [48]:

�−1
L (T ) = �q2 + μE(T )2(1 + ω

2|�q| ln |ω − |�q|
ω + |�q| |), (3)

�−1
T (T ) = ω2 − �q2 − μE(T )2

2

− (ω2 − �q2)μE(T )2

2�q2
(1 + ω

2|�q| ln |ω − |�q|
ω + |�q| |), (4)

while the electric screening (the Debye mass) μE (T ) can be ob-
tained by self-consistently solving the expression [49] (n f is num-
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ber of the effective degrees of freedom, 	Q C D is perturbative QCD 
scale):

μE(T )2

	2
Q C D

ln

(
μE(T )2

	2
Q C D

)
= 1 + n f /6

11 − 2/3 n f

(
4π T

	Q C D

)2

. (5)

The gluon radiation spectrum takes the following form:

dNrad

dxdτ
=

∫
d2k

π

d2q

π

2 C R C2(G) T

x

αs(E T )αs(
k2+χ(T )

x )

π

× μE(T )2 − μM(T )2

(q2 + μM(T )2)(q2 + μE(T )2)

×
(

1 − cos
(k+q)2 + χ(T )

xE+ τ

)
(k+q)

(k+q)2 + χ(T )

×
(

(k+q)

(k+q)2 + χ(T )
− k

k2 + χ(T )

)
, (6)

where C2(G) = 3 and μM(T ) is magnetic screening. k and q are 
transverse momenta of radiated and exchanged (virtual) gluon, re-
spectively. χ(T ) ≡ M2x2 + mE (T )2/2, where x is the longitudinal 
momentum fraction of the jet carried away by the emitted gluon, 
M is the mass of the quark or gluon jet and mg(T ) = μE (T )/

√
2

is effective gluon mass in finite temperature QCD medium [36]. 
We also recently abolished the soft-gluon approximation [50], for 
which we however showed that it does not significantly affect the 
model results; consequently, this improvement is not included in 
DREENA-B, but can be straightforwardly implemented in the future 
DREENA developments, if needed.

Note that, as a result of introducing medium evolution, the dy-
namical energy loss formalism now explicitly contains changing 
temperature in the energy loss expression. This is contrary to most 
of the other models, in which temperature evolution is introduced 
indirectly, through transport coefficient q̂ or gluon rapidity den-
sity dNg

dy (see [51] and references therein). This feature makes the 
dynamical energy loss a natural framework to incorporate diverse 
temperature profiles as a starting point for QGP tomography. As 
the first (major) step, we will below numerically implement this 
possibility through Bjorken 1 + 1D expansion [39].

Regarding the numerical procedure, computation efficiency of 
the algorithm implemented in DREENA-C framework [26] was al-
ready two orders of magnitude higher with respect to the ba-
sic (unoptimized) brute-force approach applied in [27]. However, 
straightforward adaptation of the DREENA-C code to the case of 
the Bjorken type evolving medium was not sufficient. This was 
dominantly due to additional integration over proper time τ , 
which increased the calculation time for more than two orders of 
magnitude. The computation of e.g. radiative energy losses alone, 
for a single probe, took around 10 hours on the available computer 
resources (a high performance workstation). Taking into account 
that it requires ∼ 103 such runs to produce the results presented in 
this paper, it is evident that a substantial computational speedup 
was necessary.

The main algorithmic tool that we used to optimize the cal-
culation was a combination of sampling and tabulating various 
intermediate computation values and their subsequent interpola-
tion. We used nonuniform adaptive grids of the sampling points, 
denser in the parts of the parameter volume where the sam-
pled function changed rapidly. Similarly, the parameters used for 
the numerical integration (the number of quasi-Monte Carlo sam-
pling points and the required accuracy) were also suitably varied 
throughout the parameter space. Finally, while the computation in 
DREENA-C was performed in a software for symbolic computation, 
the new algorithm was redeveloped in C programming language. 

The combined effect of all these improvements was a computa-
tional speedup of almost three orders of magnitude, which was a 
necessary prerequisite for both current practical applicability and 
future developments of DREENA framework.

Regarding the parameters, we implement Bjorken 1 + 1D ex-
pansion [39], with commonly used τ0 = 0.6 fm [52,53], and ini-
tial temperatures for different centralities calculated according to 
T0 ∼ (dNch/dy/A⊥)1/3 [54], where dNch/dy is charged multiplicity 
and A⊥ is overlap area (based on the Glauber model nuclear over-
lap function) for specific collision system and centrality. We use 
this equation, starting from T0 = 500 MeV in 5.02 TeV Pb + Pb
most central collisions at the LHC, which is estimated based on 
average medium temperature of 348 MeV in these collisions, and 
QCD transition temperature of Tc ≈ 150 MeV [55]. Note that the 
average medium temperature of 348 MeV in most central 5.02 TeV 
Pb + Pb collisions comes from [28] the effective temperature (Tef f ) 
of 304 MeV for 0-40% centrality 2.76 TeV Pb+Pb collisions at the 
LHC [56] experiments (as extracted by ALICE). Once T0s for most 
central Pb + Pb collisions are fixed, T0 for both different central-
ities and different collision systems (Xe + Xe and Pb + Pb) are 
obtained from the expression above.

Other parameters used in the calculation remain the same as in 
DREENA-C [26]. In particular, the path-length distributions for both 
Xe + Xe and Pb + Pb are calculated following the procedure de-
scribed in [57], with an additional hard sphere restriction r < R A

in the Woods-Saxon nuclear density distribution to regulate the 
path lengths in the peripheral collisions. Note that the path-length 
distributions for Pb + Pb are explicitly provided in [26]; we have 
also checked that, for each centrality, our obtained eccentricities 
remain within the standard deviation of the corresponding Glauber 
Monte Carlo results [58]. For Xe + Xe, it is straightforward to show 
that Xe + Xe and Pb + Pb distributions are the same up to rescall-
ing factor (A1/3, where A is atomic mass number), as we discussed 
in [59]. Furthermore, the path-length distributions correspond to 
geometric quantity, and are therefore the same for all types of 
partons (light and heavy). For QGP, we take 	Q C D = 0.2 GeV and 
n f = 3. As noted above, temperature dependent Debye mass μE (T )

is obtained from [49]. For light quarks and gluons, we, respec-
tively, assume that their effective masses are M ≈μE(T )/

√
6 and 

mg ≈ μE (T )/
√

2 [36]. The charm and bottom masses are M =1.2
GeV and M =4.75 GeV, respectively. Magnetic to electric mass ra-
tio is extracted from non-perturbative calculations [60,61], leading 
to 0.4 < μM/μE < 0.6 - this range of screening masses leads to 
presented uncertainty in the predictions. We note that no fitting 
parameters are used in the calculations, that is, all the parameters 
correspond to standard literature values.

3. Results and discussion

In this section, we will present joint R A A and v2 predictions 
for light (charged hadrons) and heavy (D and B mesons) flavor in 
Pb + Pb and Xe + Xe collisions at the LHC, obtained by DREENA-B 
framework. Based on the path-length distributions from Figure 1 
in [26], we will, in Figs. 1 to 2, show R A A and v2 predictions for 
light and heavy flavor, in 5.02 TeV Pb + Pb and 5.44 TeV Xe + Xe
collisions, at different centralities. We start by presenting charged 
hadrons predictions, where R A A data are available for both Pb + Pb
and Xe + Xe, while v2 data exist for Pb + Pb collisions. Com-
parison of our joint predictions with experimental data is shown 
in Fig. 1, where 1st and 2nd columns correspond, respectively, to 
R A A and v2 predictions at Pb + Pb, while 3rd and 4th columns 
present equivalent predictions/data for Xe + Xe collisions at the 
LHC. From this figure, we see that DREENA-B is able to well ex-
plain joint R A A and v2 data. For 5.44 TeV Xe + Xe collisions at the 
LHC, we observe good agreement of our predictions with prelim-
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Fig. 1. First column: R A A vs. p⊥ predictions are compared with 5.02 TeV Pb + Pb ALICE [7], ATLAS [8] and CMS [9] h± experimental data. Second column: Equivalent comparison 
for v2 vs. p⊥ (data [15–17]). Third column: R A A vs. p⊥ predictions are compared with 5.44 TeV Xe + Xe ALICE [62], ATLAS [63] and CMS [64] preliminary data. Fourth column:
Equivalent predictions for v2 vs. p⊥ . ALICE, ATLAS and CMS data are respectively represented by red circles, green triangles and blue squares, while centrality regions are 
indicated in the relevant subfigures. Full and dashed curves correspond to, respectively, DREENA-B and DREENA-C frameworks. The gray band boundaries correspond to 
μM/μE = 0.4 and μM/μE = 0.6.
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Fig. 2. First column: Theoretical predictions for D and B meson R A A vs. p⊥ are compared with the available 5.02 TeV Pb + Pb ALICE [10] (red circles) D meson experimental 
data. Second column: v2 vs. p⊥ predictions are compared with 5.02 TeV Pb + Pb ALICE [19] (red circles) and CMS [20] (blue squares) D meson experimental data. Third and 
fourth column: Heavy flavor R A A and v2 vs. p⊥ predictions are, respectively, provided for 5.44 TeV Xe + Xe collisions at the LHC. First to third row, respectively, correspond 
to 0 − 10%, 10 − 30% and 30 − 50% centrality regions. The gray band boundaries correspond to μM/μE = 0.4 and μM/μE = 0.6.

inary R A A data from ALICE, ATLAS and CMS data (where we note 
that these predictions were generated, and posted on arXiv, be-
fore the data became available), except for high centrality regions, 
where our predictions do not agree with ALICE (and also partially 
with ATLAS) data; however, note that in these regions ALICE, AT-
LAS and CMS data also do not agree with each other.

Furthermore, comparison of predictions obtained with DREENA-
B and DREENA-C frameworks in Fig. 1, allows to directly assess 
the importance of inclusion of medium evolution on different ob-
servables, as the main difference between these two frameworks 
is that DREENA-B contains Bjorken evolution, while DREENA-C ac-
counts for evolution in the simplest form (through constant mean 
temperature). We see that inclusion of Bjorken evolution has a 
negligible effect on R A A , while having a significant effect on v2. 
That is, it keeps R A A almost unchanged, while significantly de-
creasing v2. Consequently, small effect on R A A , supports the fact 
that R A A is weakly sensitive to medium evolution, making R A A an 
excellent probe of jet-medium interactions in QGP; i.e. in QGP to-
mography, R A A can be used to calibrate parton medium interaction 
models. On the other hand, medium evolution clearly influences v2
predictions, in line with previous conclusions [65,66]; this sensitiv-
ity makes v2 an ideal probe to constrain QGP medium parameters 
also from the point of high p⊥ measurements (in addition to con-
straining them from low p⊥ predictions and data).

In Fig. 2, we provide joint predictions for D and B meson R A A
(left panel) and v2 (right panel) predictions for both 5.02 TeV 
Pb + Pb and 5.44 TeV Xe + Xe collisions at the LHC. Predictions 
are compared with the available experimental data. For D mesons, 
we again observe good joint agreement with the available R A A and 
v2 data. For B mesons (where the experimental data are yet to be-
come available), we predict a notable suppression (see also [27,

67]), which is consistent with non-prompt J/� R A A measure-
ments [68] (indirect probe of b quark suppression). Additionally, 
we predict non-zero v2 for higher centrality regions. This does not 
necessarily mean that heavy B meson flows, since we here show 
predictions for high p⊥ , and flow is inherently connected with 
low p⊥ v2. On the other hand, high p⊥ v2 is connected with the 
difference in the B meson suppression for different (in-plane and 
out-of-plane) directions, leading to our predictions of non zero v2
for high p⊥ B mesons. Additionally, by comparing D and B meson 
v2s in Fig. 2, we observe that their difference is large and that it 
qualitatively exhibits the same dependence on p⊥ as R A A . This v2
comparison therefore presents additional important prediction of 
the heavy flavor dead-cone effect in QGP, where a strikingly simi-
lar signature of this effect is observed for R A A and v2.

The predicted similarity between R A A and v2 dead-cone effects 
can be analytically understood by using simple scaling arguments. 
Fractional energy loss can be estimated as [26]

�E/E ∼ ηT a Lb, (7)

where a, b are proportionality factors, T and L are, respectively, the 
average temperature of the medium and the average path-length 
traversed by the jet. η is a proportionality factor that depends on 
initial jet mass M and transverse momentum p⊥ .

Under the assumption of small fractional energy loss, we can 
make the following estimate [26]:

R A A ≈ 1 − ξ(M, p⊥)T a Lb,

v2 ≈ ξ(M, p⊥)
(T a Lb−1�L − T a−1Lb�T )

2
, (8)
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where �L and �T are, respectively, changes in average path-
lengths and average temperatures along out-of-plane and in-plane 
directions. ξ = (n − 2)η/2, where n is the steepness of the initial 
momentum distribution function.

The difference between R A A and v2 for D and B mesons then 
becomes:

R B
A A − R D

A A ≈ (ξ(Mc, p⊥) − ξ(Mb, p⊥)) T a Lb,

v D
2 − v B

2 ≈ (ξ(Mc, p⊥) − ξ(Mb, p⊥))

× (T a Lb−1�L − T a−1Lb�T )

2
, (9)

where Mc and Mb are charm and bottom quark masses respec-
tively. From Eq. (9), we see the same mass dependent prefactor for 
both R A A and v2 comparison, intuitively explaining our predicted 
dead-cone effect similarity for high-p⊥ R A A and v2.

4. Summary

Overall, we see that comprehensive joint R A A and v2 predic-
tions, obtained with our DREENA-B framework, lead to a good 
agreement with all available light and heavy flavor data. This is, 
to our knowledge, the first study to provide such comprehensive 
predictions for high p⊥ observables. In the context of v2 puzzle, 
this study presents a significant development, as the other mod-
els were not able to achieve this agreement without introducing 
new phenomena [69]. However, for more definite conclusions, the 
inclusion of more complex QGP evolution within DREENA frame-
work is needed, which is our main ongoing - but highly non-trivial 
- task, due to the complexity of underlying energy loss formalism.

As an outlook, for Xe + Xe, we also showed an extensive set 
of predictions for both R A A and v2, for different flavors and cen-
tralities, to be compared with the upcoming experimental data. 
Reasonable agreement with these data would present a strong ar-
gument that the dynamical energy loss formalism can provide a 
reliable tool for precision QGP tomography. Moreover, such com-
parison between predictions and experimental data can also con-
firm interesting new patterns in suppression data, such as our 
prediction of strikingly similar signature of the dead-cone effect 
between R A A and v2 data.
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We propose a scheme for investigating the nonequilibrium aspects of small-polaron physics using an array
of superconducting qubits and microwave resonators. This system, which can be realized with transmon or
gatemon qubits, serves as an analog simulator for a lattice model describing a nonlocal coupling of a quantum
particle (excitation) to dispersionless phonons. We study its dynamics following an excitation-phonon (qubit-
resonator) interaction quench using a numerically exact approach based on a Chebyshev-moment expansion of
the time-evolution operator of the system. We thereby glean heretofore unavailable insights into the process of
the small-polaron formation resulting from strongly momentum-dependent excitation-phonon interactions, most
prominently about its inherent dynamical timescale. To further characterize this complex process, we evaluate
the excitation-phonon entanglement entropy and show that initially prepared bare-excitation Bloch states here
dynamically evolve into small-polaron states that are close to being maximally entangled. Finally, by computing
the dynamical variances of the phonon position and momentum quadratures, we demonstrate a pronounced
non-Gaussian character of the latter states, with a strong antisqueezing in both quadratures.

DOI: 10.1103/PhysRevB.99.134308

I. INTRODUCTION

Recent progress in superconducting (SC) circuits [1,2]
has enabled significant strides in the realm of analog quan-
tum simulation [3]. An overwhelming majority of propos-
als for simulating various physical systems using SC cir-
cuits is based on arrays of transmon qubits and microwave
resonators in state-of-the-art circuit quantum electrodynam-
ics (circuit-QED) setups [4,5]. Examples include simulators
of quantum spin- and spin-boson-type systems, interacting
fermions/bosons, topological states of matter, to name but
a few [6–8]. In particular, SC simulators of small-polaron
(SP) models [9–11] have proven superior to their counterparts
based on trapped ions [12,13], cold polar molecules [14,15],
and Rydberg atoms/ions [16]. Yet, the existing theoretical
proposals for simulating SP physics—not only those based on
SC circuits—solely address its static aspects.

The SP concept captures the physical situation often found
in narrow-band semiconductors and insulators, where the
motion of an itinerant excitation—an excess charge carrier
(electron, hole) or an exciton—may get hindered by a poten-
tial well resulting from the host-crystal lattice displacements
[17]. The ensuing SP formation [18], accompanied by the
phonon “dressing” of the excitation and an increase in its
effective band mass, represents the most striking consequence
of strong, short-ranged excitation-phonon (e-ph) coupling
[19]. Yet, some important issues—e.g., how long it takes
for a SP quasiparticle to form following an e-ph interaction
quench (i.e., a sudden switching-on of the e-ph interaction in
a previously uncoupled system)—remain ill-understood as of
this writing [20,21]. On the theoretical side, this fundamental
issue remains unresolved even in the simplest case of purely
local e-ph coupling captured by the time-honored Holstein

model [22–24]. On the experimental side, studies of the dy-
namics of polaron formation became possible with advances
in ultrafast time-resolved spectroscopies, typically yielding
formation times of less than a picosecond [25].

The compelling need to understand the microscopic mech-
anisms of charge-carrier transport in complex electronic ma-
terials, such as crystalline organic semiconductors [26,27],
semiconducting counterparts of graphene [28], or cuprates
[29,30], prompted investigations of models with strongly
momentum-dependent (nonlocal) e-ph interactions [31]. Such
interactions, whose corresponding vertex functions have ex-
plicit dependence on both the excitation and phonon quasi-
momenta, are exemplified by the Peierls-type coupling (also
known as Su-Schrieffer-Heeger or off-diagonal coupling [32])
that accounts for the dependence of effective excitation hop-
ping amplitudes upon phonon states [33,34]. Aside from their
significance for describing transport properties of materials,
such couplings have fundamental importance. Namely, they
do not obey the Gerlach-Löwen theorem, a formal result that
rules out the existence of nonanalytical features in the ground-
state-related single-particle properties for certain classes of
coupled e-ph models [35].

In this paper, motivated by the aforementioned dearth
of studies pertaining to the dynamics of SP formation, we
explore this complex phenomenon using an analog simulator
that consists of SC qubits and microwave resonators. Adjacent
qubits are coupled in this system through a coupler circuit that
contains three Josephson junctions (JJs). This system, based
on transmon qubits, was proposed in the past by one of us and
collaborators for the purpose of simulating static properties
of SPs that originate from nonlocal e-ph interactions [10].
Apart from transmons, this system can also be realized with
semiconductor-nanowire-based gatemon qubits [36–38].
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We analyze the time evolution of SP states ensuing from
initially prepared bare-excitation Bloch states with different
quasimomenta. We do so by combining exact numerical diag-
onalization of the effective e-ph Hamiltonian of the system
and the Chebyshev-propagator method [39,40] for comput-
ing its dynamics. We determine how the SP formation time
after an e-ph interaction quench depends on the initial bare-
excitation quasimomentum and the e-ph coupling strength.
We then further characterize SP formation by evaluating the
e-ph entanglement entropy and showing that at the onset of the
SP regime it reaches values close to those of maximally entan-
gled states. In addition, we evaluate the dynamical variances
of the phonon position and momentum quadratures in SP
states and demonstrate their pronounced non-Gaussian char-
acter, with a substantial antisqueezing in both quadratures.
Our findings can be verified in the proposed simulator—once
realized—by measuring the photon number and the attendant
squeezing in the resonators.

The remainder of this paper is organized as follows. In
Sec. II we present the layout of our analog simulator and
its underlying Hamiltonian. Section II B is set aside for the
effective e-ph Hamiltonian of the system, followed by a dis-
cussion of typical parameter regimes and the salient features
of the SP ground state of the system. In Sec. III we provide
a brief outline of the strategy that we employ to study the
system dynamics and introduce some relevant timescales in
the problem at hand. In Sec. IV we present the obtained results
for the SP formation time, as well as those found for the
e-ph entanglement entropy and the dynamical variances of
the phonon position and momentum quadratures. We sum-
marize the paper and conclude with some general remarks
in Sec. V. Some involved mathematical derivations, as well
as a description of basic aspects of the numerical method
used and our own implementation thereof, are relegated to
Appendices A–C.

II. SYSTEM AND ITS HAMILTONIAN

A. Layout of the analog simulator

The proposed simulator, depicted in Fig. 1, consists of SC
qubits (Qn) with the energy splitting εz, microwave resonators
(Rn) with the photon frequency ωc, and coupler circuits (Bn)
with three JJs (n = 1, . . . , N). Through the Jordan-Wigner
mapping [41] the pseudospin-1/2 degree of freedom of qubits,
represented by the operators σn, plays the role of a spinless-
fermion excitation; photons in the resonators, created by the
operators a†

n, mimic dispersionless phonons. The nth repeating
unit of this system is described by the Hamiltonian Hn =
H0

n + HJ
n . Its noninteracting part H0

n reads

H0
n = εz

2
σ z

n + h̄ωca†
nan. (1)

The Josephson energy of the coupler circuit Bn [42], a gener-
alization of a SQUID loop, is given by

HJ
n = −

3∑
i=1

Ei
J cos ϕi

n, (2)

FIG. 1. Schematic diagram of the analog-simulator circuit con-
taining SC qubits Qn (with charging and Josephson energies Es

C

and Es
J , respectively), resonators Rn, and coupler circuits Bn with

three Josephson junctions (n = 1, . . . , N). φl
n and φu

n are total fluxes
threading the lower and upper loops of Bn, respectively. Qubit Qn

interacts with its neighbors through circuits Bn−1 and Bn.

where ϕi
n are the respective phase drops on the three JJs and

Ei
J their corresponding Josephson energies; we henceforth

assume that E1
J = E2

J ≡ EJ and E3
J = EJb �= EJ .

The qubit and resonator degrees of freedom are coupled
through the flux of the resonator modes that pierces the upper
loops of coupler circuits. The Josephson-coupling energy of
the latter circuits, as demonstrated in what follows, can be
expressed as an XY -type (flip-flop) coupling between adjacent
qubits with the coupling strength that dynamically depends
on the resonator (i.e., photon) degrees of freedom. As a
result, this indirect inductive-coupling mechanism effectively
gives rise to a qubit-resonator interaction. In addition, coupler
circuits are also driven by a microwave radiation (ac flux)
and subject to an external dc flux. The required ac fluxes
can be generated by microwave-pumped control wires situated
in the vicinity of the respective loops, while the dc flux can
be supplied through currents in appropriately placed separate
control wires.

Let φu
n and φl

n be the respective total magnetic fluxes in
the upper and lower loops of Bn (cf. Fig. 1), both expressed
in units of �0/2π , where �0 ≡ hc/(2e) is the flux quantum.
The upper-loop flux φu

n includes the ac-driving contribution
π cos(ω0t ) and one that stems from the resonator modes, i.e.,

φu
n = π cos(ω0t ) + φn,res, (3)

where φn,res is given by

φn,res = δθ [(an+1 + a†
n+1) − (an + a†

n)]. (4)

Here δθ = [2eAeff/(h̄d0c)](h̄ωc/C0)1/2, where Aeff is the ef-
fective coupling area, C0 the capacitance of the resonator,
and d0 the effective spacing in the resonator [43]. The lower-
loop flux φl

n also comprises an ac contribution given by
−(π/2) cos(ω0t ), with the same frequency as the ac part of
φu

n but a different amplitude. In addition, it includes a dc part
φdc—apart from ω0 the only tunable parameter in the system
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and its main experimental knob. Thus, φl
n is given by

φl
n = −π

2
cos(ω0t ) + φdc. (5)

It should be stressed that the amplitudes of the two ac-driving
terms are chosen in such a way as to ensure that the phase
drops ϕ3

n on the bottom JJs do not have an explicit time
dependence [10].

The time dependence of the ac-driving terms makes it
natural to carry out further analysis in the rotating frame of
the drive. While this change of frames leads to a shift in the
phonon frequency (ωc → δω ≡ ωc − ω0), it also renders the
Josephson-coupling term time dependent. Yet, it can easily be
shown that this time dependence can be neglected due to its
rapidly oscillating character. The remaining part of that term
reads

H̄J
n = −2

[
tr − 1

2 EJJ1(π/2)φn,res
]

cos(ϕn − ϕn+1). (6)

Here ϕn is the gauge-invariant phase variable of the SC island
of the nth qubit [1], Jn(x) are Bessel functions of the first
kind, and tr = (EJb/2)(1 + cos φdc), where EJb is chosen to
be given by 2EJJ0(π/2).

In the regime of relevance for transmon/gatemon
qubits (Es

J � Es
C , where Es

C and Es
J are the charging

and Josephson energies of a single qubit, respectively)
cos(ϕn − ϕn+1) can be expanded up to the second or-
der in ϕn − ϕn+1. By switching to the pseudospin oper-
ators σn, it can be recast (up to an immaterial additive
constant) as δϕ2

0 [σ+
n σ−

n+1 + σ−
n σ+

n+1 − (σ z
n + σ z

n+1)/2]. Here
δϕ2

0 ≡ (2Es
C/Es

J )1/2, hence δϕ2
0 ∼ 0.15 for a typical trans-

mon (Es
J/Es

C ∼ 100) and δϕ2
0 ∼ 0.28 for a typical gatemon

(Es
J/Es

C ∼ 25).
While the original proposal for simulating SP physics with

strongly momentum-dependent e-ph interactions (Ref. [10])
envisioned the use of transmons—the most widely used type
of SC qubits, with superior coherence properties—it is worth-
while to stress that the system under consideration can also
be realized with gatemon qubits [36–38]. The gatemon is
a superconductor–normal-metal–superconductor-type device
where an electrostatic gate depletes carriers in a semiconduct-
ing weak-link region. This allows one to tune the energy of
its JJ, and in turn control the qubit frequency [36]. Because
it does not require an external-flux control, this gate-voltage-
controlled counterpart of the transmon has a reduced dissipa-
tion by a resistive control line and is particularly suitable for
use in an external magnetic field.

Both types of SC qubits under consideration have some
advantages with regard to their use in the proposed analog
simulator. On the one hand, the fact that gatemons do not
require external-flux control makes them the prefferred choice
for our present purposes, where the use of external mag-
netic fluxes is essential (recall Sec. II above). On the other
hand, some other aspects, e.g., their larger anharmonicity (see
Sec. IV B below) and slightly better coherence properties (for
a comparison of coherence properties of various SC-qubit
types, see Ref. [2]) favor the use of transmons. For the sake of
completeness, it is worthwhile to add that analog simulators
of nonlocal e-ph couplings based on other types of SC qubits,
e.g., flux qubits that have large anharmonicities, can also

be envisaged, as previously proposed for the local-coupling
Holstein model [11].

B. Effective coupled excitation-phonon Hamiltonian

It is pertinent to switch at this point to the spinless-fermion
representation of the qubit (pseudospin-1/2) degrees of free-
dom. The underlying Jordan-Wigner transformation implies
that [41]

σ z
n → 2c†

ncn − 1,

σ+
n σ−

n+1 + σ−
n σ+

n+1 → c†
ncn+1 + H.c. (7)

As a consequence, the noninteracting (free) part Hf of the
effective system Hamiltonian, to be denoted as Heff = Hf +
He-ph in the following, includes the excitation-hopping and
free-phonon terms

Hf = −t0(φdc)
N∑

n=1

(c†
ncn+1 + H.c.) + h̄δω

N∑
n=1

a†
nan, (8)

where t0(φdc) ≡ 2δϕ2
0 tr (φdc) is the φdc-dependent bare-

excitation-hopping integral. (Note that the σ z
n terms from H0

n
and H̄J

n are omitted as they correspond to a constant band-
energy offset for spinless fermions.) Similarly, the interacting
part of Heff captures two different mechanisms of nonlocal
e-ph interaction and is given by

He-ph = gh̄δωl−1
0

N∑
n=1

[(c†
ncn+1 + H.c.)(un+1 − un)

− c†
ncn(un+1 − un−1)], (9)

where g is the dimensionless coupling strength and un ≡
l0(an + a†

n) the local Einstein-phonon displacement at site n,
with l0 being the phonon zero-point length. The first term of
He-ph corresponds to the Peierls e-ph coupling mechanism,
which captures the lowest-order (linear) dependence of the
excitation hopping amplitude between sites n and n + 1 on
the difference un+1 − un of the respective phonon displace-
ments [34,44]. The other one is the breathing-mode term [30],
a density-displacement-type mechanism which accounts for
the antisymmetric coupling of the excitation density c†

ncn at
site n with the phonon displacements on the adjacent sites
n ± 1. In other words, it captures a nonlocal phonon-induced
modulation of the excitation’s on-site energy (by contrast to
Holstein coupling which describes the local phonon-induced
modulation of the same energy).

By transforming the e-ph coupling Hamiltonian to its
generic momentum-space form

He-ph = N−1/2
∑
k,q

γe-ph(k, q)c†
k+qck (a†

−q + aq), (10)

it is straightforward to verify that its corresponding vertex
function is given by

γe-ph(k, q) = 2igh̄δω[sin k + sin q − sin(k + q)], (11)

where quasimomenta are expressed in units of the inverse lat-
tice period. Because this vertex function depends on both the
excitation (k) and phonon (q) quasimomenta the Hamiltonian
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Heff does not belong to the realm of validity of the Gerlach-
Löwen theorem [35]. As demonstrated in Ref. [10] its ground
state displays a level-crossing-type sharp transition at a critical
value of the effective coupling strength λeff ≡ 2g2h̄δω/t0.
While for λeff < λc

eff the ground state is the (nondegenerate)
K = 0 eigenvalue of the total quasimomentum operator

Ktot =
∑

k

kc†
kck +

∑
q

qa†
qaq, (12)

for λeff � λc
eff it is twofold degenerate and corresponds to

K = ±Kgs (where Kgs �= 0 and saturates at π/2 for suffi-
ciently large λeff). In this regime the single-particle dispersion
corresponding to the SP Bloch band has mutually symmetric
minima at two nonzero quasimomenta, which are here incom-
mensurate with the period of the underlying lattice, a rare
occurrence in other physical systems [45].

Aside from a nonanalyticity in the ground-state energy of
the system, the aforementioned sharp transition is manifested
by analogous features in the ground-state quasiparticle residue
(spectral weight) Zgs ≡ Zk=Kgs , where Zk ≡ |〈k|ψk〉|2 is the
module squared of the overlap between the bare-excitation
Bloch state

|k〉 = c†
k |0〉e ⊗ |0〉ph (13)

and the (dressed) Bloch state |ψk〉 of the coupled e-ph system
corresponding to the same quasimomentum (K = k). [Note
that |0〉e and |0〉ph on the right-hand side (RHS) of the
last equation stand for the excitation and phonon vacuum
states, respectively.] Another quantity characterizing the SP
ground state, which shows a nonanalyticity at λeff = λc

eff,
is the phonon-number expectation value in the ground state
|ψgs〉 ≡ |ψK=Kgs〉:

N̄ph = 〈ψgs|
N∑

n=1

a†
nan|ψgs〉. (14)

The system at hand has another peculiar property, namely,
it is straightforward to demonstrate that the k = 0 bare-
excitation Bloch state |k=0〉 [cf. Eq. (13)] is an eigenstate
of Heff for an arbitrary λeff, a direct consequence of the fact
that the e-ph vertex function [cf. Eq. (11)] has the property
that γe-ph(k = 0, q) = 0 for any q. In particular, for λeff < λc

eff
this state represents the ground state of Heff.

The relation between the dimensionless coupling strength
g and the system-specific parameters reads

gh̄δω = δϕ2
0EJJ1(π/2)δθ. (15)

It is worthwhile to notice that g does not depend on the tunable
system parameters (ω0, φdc) and we specify it by fixing the
product of δϕ2

0 and EJ on the RHS of the last equation:
δϕ2

0EJ/2π h̄ = 100 GHz. Given that the typical magnitude of
δϕ2

0 is twice as large for gatemons compared to transmons, in a
transmon-based realization of this system EJ should be taken
twice as large to retain the same coupling strength and make
further discussion completely general. Unlike g, λeff inherits
its dependence on φdc from t0 and is therefore externally
tunable:

λeff(φdc) = g
J1(π/2)δθ

J0(π/2)(1 + cos φdc)
. (16)

For a typical resonator δθ ∼ 3.5 × 10−3. Likewise, for δω we
take δω/2π = 200–300 MHz. Consequently, for δω/2π =
200 MHz (300 MHz) we obtain λc

eff ≈ 0.83 (0.72).

III. DYNAMICS OF SMALL-POLARON FORMATION

A. Interaction quench and initial-state preparation

We study the system dynamics after an e-ph (qubit-
resonator) interaction quench at t = 0, assuming that the
system was initially prepared in the bare-excitation Bloch
state |k=k0〉 with quasimomentum k0. Given that an abrupt
change from a bare excitation to a heavily dressed one here
takes place for λeff = λc

eff, a variation of φdc from slightly
below its critical value to slightly above it is equivalent to an
interaction quench in this system.

The initial bare-excitation states can be prepared using a
general protocol based on an external driving and the Rabi
coupling between the vacuum state and the desired Bloch state
[9]. The corresponding preparation time is given by τprep =
π h̄/(2βp), where βp is the microwave-pumping amplitude.
(Note that an analogous result holds in the case of preparing
dressed Bloch states, e.g., a SP ground state, except that
in that case the last expression for τprep requires another
multiplicative factor of Z−1

gs .) For a typical pumping ampli-
tude βp/(2π h̄) = 10 MHz, we obtain τprep = 25 ns, which
is a three orders of magnitude shorter time than currently
achievable decoherence times T2 of the relevant classes of SC
qubits [2].

B. Relevant quantities and timescales

In accordance with the discrete translational symmetry
of the system under consideration, its effective Hamilto-
nian commutes with the total quasimomentum operator [cf.
Eq. (12)], i.e., [Heff, Ktot] = 0. Therefore, the system evolves
within the eigensubspace of Heff that corresponds to the eigen-
value K = k0 of Ktot. We compute its state |ψ (t )〉 at time t
for a simulator with N = 9 qubits by combining Lanczos-type
exact diagonalization [46] of Heff in a symmetry-adapted basis
of the truncated Hilbert space of the system (for details, see
Appendix A) and the Chebyshev-propagator method [39,40].
The latter relies on expansions of time-evolution operators
into finite series of Chebyshev polynomials of the first kind
(for general details of this approach and our numerical imple-
mentation thereof, see Appendix C).

The knowledge of the state |ψ (t )〉 of the system at time t
allows us to evaluate quantities characterizing the ensuing po-
laronic character of the dressed excitation. One such quantity
is the probability for the system to remain in the initial state
|k=k0〉 at time t , given by

Pk0 (t ) = |〈ψ (t )|k=k0〉|2. (17)

This quantity, more precisely the matrix element
〈ψ (t )|k=k0〉, is closely related (up to a Fourier transform to
the frequency domain) to the momentum-frequency resolved
spectral function, a dynamical response function that can be
extracted in systems of the present type using a generalization
of the Ramsey interference protocol [10]. Another relevant
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FIG. 2. Expected phonon number after an e-ph interaction
quench at t = 0 for k0 = π/2. Inset: the probability to remain in the
initial bare-excitation Bloch state.

quantity is the expected total phonon number:

nph(t ) = 〈ψ (t )|
N∑

n=1

a†
nan|ψ (t )〉. (18)

This observable provides a direct quantitative characterization
of the dynamical dressing of an excitation by virtual phonons.
In our analog simulator, nph(t ) is amenable to measurement
by extracting the photon number on the resonators (for details,
see Sec. IV B below).

It is judicious to express the evolution time in units of
a timescale closely related to the bare-excitation hopping
amplitude t0(φdc). Because the latter here depends on the
experimental knob φdc by design, we choose this timescale to
be set by the critical value φc

dc = 0.972π of φdc for δω/2π =
300 MHz. Thus, the chosen characteristic timescale is τe,c ≡
h̄/t0(φc

dc) ≈ 0.44 ns.
One of the most important characteristics of the SP forma-

tion process, yet often elusive in solid-state systems exhibiting
polaronic behavior [25], is its associated dynamical timescale
τsp. It is pertinent to define it as the time at which the
phonon dressing (i.e., the phonon-number expectation value)
of an initially bare excitation becomes equal to that of the
corresponding SP ground state. In other words, τsp is defined
by the condition

nph(t = τsp) = N̄ph, (19)

where N̄ph was defined in Eq. (14) above. This ground-state
phonon number is in the range 3.9–5.1 (1.8–2) for δω/2π =
200 MHz (300 MHz).

IV. RESULTS AND DISCUSSION

A. Time dependence of nph and Pk0=π/2

Typical results of our numerical calculations of nph(t ) and
Pk0=π/2(t ) are presented in Fig. 2. They reflect the fact that
the system was initially prepared in the |k0=π/2〉 state, which
is not an eigenstate of the system Hamiltonian Heff after the
quench. In fact, for the concrete choice of parameter values
used, this state is a superposition of a multitude of eigenstates

FIG. 3. SP formation time τsp for varying initial bare-excitation
quasimomenta k0 within the Brillouin zone and different choices of
values for φdc and δω.

of this Hamiltonian, among which the SP ground state with
Kgs = π/2 has a weight of only around 0.16. This explains
the presence of dynamical recurrences at later times, i.e., a
complex oscillatory behavior resulting from the interference
of the quantum evolutions of all these eigenstates.

It is instructive to add, for completeness, that our ground-
state calculations show that for λeff = λc

eff, i.e., at the onset
of strong-coupling regime in the system under consideration,
there are three discrete states (at each K) below the one-
phonon continuum, while for a larger λeff one can find up to
five such states. As a reminder, the one-phonon continuum
in a coupled e-ph system with gapped (optical-like) phonon
modes, such as, e.g., Einstein-like phonons in the system
at hand, originates from the onset of the inelastic-scattering
threshold at the energy Egs + h̄ωph (the minimal energy that a
dressed excitation ought to have in order to be able to emit a
phonon), where Egs is the ground-state energy of the coupled
system and h̄ωph the energy of one phonon (in our simulator
ωph → δω) [19]. The width of this continuum equals the
width of the resulting SP Bloch band. Importantly, the discrete
(bound) states below the one-phonon continuum feature as the
coherent part, i.e., sharp peaks in the momentum-frequency
resolved spectral function [10]. While some details of the
dynamics certainly depend on the concrete form of e-ph
coupling involved, the increasing number of such discrete
(split-off from the continuum) states upon increasing coupling
strength results in more complex system dynamics.

B. Small-polaron formation time

The dependence of the SP formation time τsp on the initial
bare-excitation quasimomentum k0 is illustrated in Fig. 3
(for symmetry-related reasons, it suffices to consider only
quasimomenta in one half of the Brillouin zone, i.e., for 0 �
k0 � π ). τsp clearly shows an upturn for small k0, consistent
with the fact that it ought to diverge (τsp → ∞) as k0 → 0
because the k0 = 0 bare-excitation Bloch state is an exact
eigenstate of Heff. Another important feature that can be
inferred from the obtained results is that τsp depends rather
weakly on k0 for π/2 � k0 � π . This can be contrasted with
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VLADIMIR M. STOJANOVIĆ AND IGOR SALOM PHYSICAL REVIEW B 99, 134308 (2019)

FIG. 4. Dependence of the SP formation time τsp on the effective
coupling strength λeff, shown for δω/2π = 200 MHz and different
initial quasimomenta k0.

the Holstein-polaron case [20], where the analogous dynam-
ical timescale strongly depends on the initial bare-excitation
quasimomentum.

The obtained dependence of τsp on the effective coupling
strength λeff is displayed in Fig. 4. While it may seem sur-
prising that τsp saturates for λeff above a threshold value, this
actually mimics the behavior of the SP indicators (quasipar-
ticle residue, average phonon number) in the ground state. In
that case a regime of saturation also sets in for λeff slightly
above its critical value at which a nonanalyticity occurs in
all ground-state-related quantities [10]. Such a behavior is
in stark contrast with that of the momentum-independent
Holstein coupling, for which the same quantities change
monotonously with the coupling strength.

The variation of the SP formation time—defined by the
condition in Eq. (19)—with the effective coupling strength
λeff (shown in Fig. 4) results from two competing tendencies.
Namely, with increasing λeff phonon dressing of an initially
bare excitation becomes faster. However, the average ground-
state phonon number N̄ph also becomes larger. In Ref. [20],
where the dynamics of the Holstein-polaron formation were
investigated, a regime was observed where the formation time
grows with λeff (for weak coupling, i.e., small λeff) and the one
where it decreases (strong coupling, i.e., large λeff). Despite
the completely different type of e-ph interaction in the system
at hand, we also find such regimes. For our typical system
parameters, the case with δω/2π = 200 MHz (cf. Fig. 4)
corresponds to the latter regime, while the case with δω/2π =
300 MHz (results not shown here) is characterized by a slow
growth of τsp with increasing λeff.

The obtained SP formation times τsp ∼ (1–10) τe,c justify
a posteriori our choice of τe,c as the characteristic timescale
for the system dynamics. These times are of the order of a
few nanoseconds and can be verified in this system through
photon-number measurements. This is done by adding an
ancilla qubit (far-detuned from the resonator modes), which
couples—but exclusively during the measurement itself—to a
resonator [9]. The photon number on that resonator can then
be extracted by means of a standard quantum non-demolition-
measurement readout, which is effectively carried out by

measuring the transition frequency of the qubit [47]. The total
photon number can then be obtained by adding up those found
on individual resonators.

An important issue to address in the context of measuring
the photon states in the resonators is the one pertaining to the
anharmonicity α ≡ E12 − E01 of SC qubits, where Ei j is the
energy difference between states j and i of a single qubit.
The anharmonicity determines the minimal pulse duration
tp ∼ h̄/|α| required to avoid leakage into noncomputational
single-qubit states. For instance, for a typical transmon with a
negative anharmonicity of around 200 MHz, even microwave
pulses with durations on the scale of a few nanoseconds
are known to be sufficiently frequency selective that one
can neglect leakage into higher excited energy levels of the
transmon and effectively treat it as a two-level system [5]. For
gatemons, whose anharmonicity is slightly smaller than that of
transmons [38], similar measurements should also be possible
for all but the very shortest SP formation times found.

C. Dynamical variances of the phonon position
and momentum quadratures

It is plausible to expect that nonlocal e-ph correlations
in this system are reflected through fluctuations within the
phonon subsystem, which can be observed via microwave
photons in the resonators. To this end, we consider the phonon
position and momentum quadratures at an arbitrary, say rth,
site (in our system represented by the photon mode on the
rth resonator), defined by the operators xr ≡ (ar + a†

r )/
√

2
and pr ≡ −i(ar − a†

r )/
√

2, respectively. We compute their
respective dynamical variances Sx(t ) and Sp(t ), given by

Sx(t ) = 〈ψ (t )|x2
r |ψ (t )〉 − 〈ψ (t )|xr |ψ (t )〉2,

Sp(t ) = 〈ψ (t )|p2
r |ψ (t )〉 − 〈ψ (t )|pr |ψ (t )〉2. (20)

(Note that, owing to the discrete translational symmetry of
the system, the latter quantities should not depend on r.)
The explicit expressions for these variances in our chosen
symmetry-adapted basis are provided in Appendix B.

Our numerical evaluation of these dynamical variances
shows that Sx dominates over Sp at all times. For instance, in
the weakest-coupling case that yields SP ground state in the
system at hand, with δω/2π = 300 MHz, and φdc = 0.972π

(shown in Fig. 5, which corresponds to k0 = π/2), one finds
the maximum of Sx(t ) to be around 12. The corresponding
antisqueezing is as large as 13.8 dB.

What can be inferred from Fig. 5 is that the product
Sx(t )Sp(t ) of the two dynamical quadrature variances is con-
sistently much larger than 1/4, which illustrates a pronounced
non-Gaussian character of fluctuations within the phonon
subsystem. This can be ascribed to the nonlocal character of
e-ph interaction in this system, with its attendant retardation
effects [32].

D. Dynamics of the excitation-phonon entanglement buildup
after the quench

It is worthwhile to complement our discussion of the
dynamics of SP formation by evaluating the corresponding
e-ph entanglement entropy. This quantity proved to be very
useful in characterizing ground-state properties of SPs, most
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FIG. 5. Typical time dependence of the dynamical variances
Sx (t ) and Sp(t ). The parameter values are indicated in the plot.

prominently the onset of sharp SP transitions at a critical
e-ph coupling strength, in models with strongly momentum-
dependent e-ph interactions [34]. This motivates us to use the
same quantity in our present investigation of the SP formation
dynamics.

Given that the initial bare-excitation states are of simple-
product (separable) character, the e-ph entanglement entropy
starts its growth from zero at t = 0. The density matrix of our
composite (bipartite) e-ph system at time t is given by

ρe-ph(t ) = |ψ (t )〉〈ψ (t )|. (21)

The reduced (excitation) density matrix, which has the dimen-
sion N × N , is obtained by tracing ρe-ph(t ) over the phonon
basis:

ρe(t ) = Trph[ρe-ph(t )]. (22)

The corresponding e-ph entanglement entropy is defined in
terms of this last reduced density matrix as

SE(t ) = −Tre[ρe(t ) ln ρe(t )]. (23)

The matrix elements of ρe(t ) are computed using Eq. (B25)
(for a detailed derivation of those matrix elements, see Ap-
pendix B 2). The e-ph entanglement entropy in Eq. (23)
can equivalently be expressed in terms of the eigenval-
ues ξn(t ) (n = 1, . . . , N ) of ρe(t ) (note that ξn > 0 and∑N

n=1 ξn = 1):

SE(t ) = −
N∑

n=1

ξn(t ) ln ξn(t ). (24)

Generally speaking, the maximal value that can be reached by
this quantity is

Smax-ent = ln N, (25)

obtained when ξn = N−1 for each n (maximally entangled
states).

Our explicit evaluation of the e-ph entanglement entropy
is illustrated in Figs. 6 and 7, where it is depicted for φdc =
0.975π and two different initial bare-excitation quasimo-
menta (k0 = π/2, π/4) and phonon frequencies (δω/2π =
200, 300 MHz). In particular, Fig. 6 illustrates that the growth

FIG. 6. Time dependence of the e-ph entanglement entropy for
φdc = 0.975π and different choices of values for k0 and δω.

of this entanglement entropy from zero at t = 0 starts with
an abrupt increase in timescales of the order of a few τe,c.
This short-time behavior of the entropy is depicted separately
in Fig. 7, from which we can infer that at short times SE(t )
depends on k0, but is essentially independent of δω. The
abrupt increase of SE(t ) is followed by oscillations at later
times. Those oscillations, which are much more pronounced
for k0 = π/4 than for k0 = π/2, are another manifestation of
the late-time recurrences, akin to those found in nph(t ) and
Pk0=π/2(t ) (recall Sec. IV A).

Another important feature of the e-ph entanglement en-
tropy, which can be inferred from the obtained results, is
that at times t ≈ (2–3)τe,c, coinciding with the corresponding
SP formation times τsp, this quantity indeed reaches values
close to those characterizing maximally entangled states (note
that for N = 9, we have Smax-ent = 2.197). For instance, the
respective maximal values of SE(t ) obtained for the above case
of k0 = π/2 are 2.141 for δω/2π = 200 MHz and 2.115 for
300 MHz. This is consistent with the results of an earlier study
that reached the conclusion that typical SP ground states are
essentially maximally entangled [34].

FIG. 7. Short-time behavior of the e-ph entanglement entropy for
φdc = 0.975π and different choices of values for k0 and δω.
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V. SUMMARY AND CONCLUSIONS

To summarize, in this work we explored the dynamics
of small-polaron formation in the presence of two different
mechanisms of nonlocal excitation-phonon interaction within
the framework of an analog simulator. In this simulator, which
is based on an array of coupled superconducting qubits (trans-
mons or gatemons) and microwave resonators, the pseudospin
degree of freedom of qubits plays the role of spinless-fermion
excitation, while photons in the resonators mimic dispersion-
less phonons. By employing a numerically exact approach—
diagonalization of the effective system Hamiltonian com-
bined with the Chebyshev-propagator method for computing
its dynamics—we determined the formation time of small
polarons that ensue from initially prepared bare-excitation
Bloch states following an excitation-phonon (qubit-resonator)
interaction quench.

We analyzed how this important dynamical timescale de-
pends on the initial bare-excitation quasimomentum and the
effective coupling strength. We then further characterized
the system dynamics by evaluating the excitation-phonon
entanglement entropy and demonstrated its growth from zero
(before the interaction quench) to values close to those inher-
ent to maximally entangled states. Finally, by computing the
dynamical variances of the phonon position and momentum
quadratures we also demonstrated the non-Gaussian character
of small-polaron states resulting from the quench, with a
strong antisqueezing in both quadratures.

The present work constitutes a systematic theoretical study
of the quantum dynamics of small-polaron formation result-
ing from strongly momentum-dependent excitation-phonon
coupling. Such couplings, in their own right, are of utmost
importance for understanding charge-transport mechanisms
in several classes of electronic materials. The advanced mea-
surement capabilities of the proposed superconducting analog
simulator should allow an accurate verification of our quan-
titative predictions. To make contact with previous studies
of the same phenomenon involving other types of polarons,
we compared and contrasted our findings with those per-
taining to the small-polaron formation dynamics in the pres-
ence of purely local (momentum-independent) Holstein-type
excitation-phonon interaction [20,21]. We found, for instance,
that in the system at hand, where excitation-phonon coupling
itself is strongly momentum-dependent, the small-polaron
formation time shows a weaker dependence on the initial
bare-excitation quasimomentum than in the Holstein-polaron
case.

Several directions of future work can be envisioned. Firstly,
the proposed simulator can be utilized for investigations
of further nonequilibrium aspects of small-polaron physics,
which have so far also been discussed only for Holstein-
type excitation-phonon interaction [48–51]. Examples of such
aspects include the small-polaron dynamics in the presence of
an external electric field [48], as well as the dynamics fol-
lowing a strong oscillatory pulse [49]. Furthermore, while the
proposed system serves as a simulator for a one-dimensional
excitation-phonon model, the continuously improving scal-
ability of superconducting-qubit systems should allow one
to fabricate, in the not-too-distant future, a two-dimensional
counterpart of this simulator. Such a system could be used

for studying the effects of dimensionality on the formation
of small-polaron-type quasiparticles; analogous effects have
proven to be quite interesting in the case of Holstein polarons.
Finally, a different type of qubit-resonator arrays, featuring
effective XXZ-type coupling between qubits [52], would al-
low an investigation of intersite bipolarons [53], quasiparticles
closely related to small polarons. Experimental realization of
the proposed system is keenly anticipated.
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APPENDIX A: SYMMETRY-ADAPTED BASIS
AND DETAILS OF EXACT DIAGONALIZATION

The Hilbert space of the coupled e-ph system is spanned
by states |n〉e ⊗ |m〉ph, where |n〉e ≡ c†

n|0〉e corresponds to the
excitation localized at the site n, while

|m〉ph =
N⊗∏
n=1

(b†
n)mn

√
mn!

|0〉ph, (A1)

where m ≡ (m1, . . . , mN ) are the phonon occupation numbers
at different sites. We restrict ourselves to the truncated phonon
Hilbert space that includes states with the total number of
phonons m=∑N

n=1 mn not larger than M, where 0�mn�m.
Accordingly, the total Hilbert space of the system has the
dimension D = DeDph, where De = N and Dph = (M + N )!/
(M!N!).

The dimension of the Hamiltonian matrix to be diago-
nalized can be further reduced by exploiting the discrete
translational symmetry of the system, whose mathematical ex-
pression is the commutation [Heff, Ktot] = 0 of operators Heff

and Ktot . This permits diagonalization of Heff in Hilbert-space
sectors corresponding to the eigensubspaces of Ktot, where
the dimension of each of those K sectors of the total Hilbert
space coincides with that of the truncated phonon space, i.e.,
DK = Dph. To this end, we utilize the symmetry-adapted basis

|K, m〉 = N−1/2
N∑

n=1

eiKn Tn(|1〉e ⊗ |m〉ph), (A2)

with Tn being the (discrete) translation operators whose action
ought to comply with the periodic boundary conditions. The
last equation can be recast as

|K, m〉 = N−1/2
N∑

n=1

eiKn |n〉e ⊗ T ph
n |m〉ph, (A3)

where the operators T ph
n represent the action of discrete

translations in the phonon Hilbert space. Note that, if |m〉ph

is defined by a set of occupation numbers

|m〉ph = |m1, m2, . . . , mN 〉ph, (A4)

134308-8



QUANTUM DYNAMICS OF THE SMALL-POLARON … PHYSICAL REVIEW B 99, 134308 (2019)

then T ph
n |m〉ph ≡ |T ph

n m〉 is given by∣∣T ph
n m

〉 = |mN−n+1, mN−n+2, . . . , mN−n〉ph. (A5)

In general, in terms of the original phonon occupation num-
bers, the rth occupation number in |T ph

n m〉 is given by ms(r,n),
where the site index s(r, n) is defined by

s(r, n) ≡
{

N − n + r, for r � n
r − n, for r > n.

(A6)

Regarding the ground-state calculations, we follow an
established phonon Hilbert-space truncation procedure [23]
whereby the system size (N) and the maximum number of
phonons retained (M) are increased until the convergence
for the ground-state energy and the phonon distribution is
reached. Our adopted convergence criterion is that the relative
error in the ground-state energy and the phonon distribution
upon further increase of N and M is not larger than 10−4. The
adopted criterion is here satisfied for the system size N = 9
(with periodic boundary conditions) and requires the total of
M = 10 phonons.

APPENDIX B: MATRIX ELEMENTS
AND EXPECTATION VALUES

1. Derivation of the matrix elements of relevant observables

In what follows, we first derive the expressions for the
expectation values of a generic observable with respect to
the state |ψ (t )〉 of the system at time t . In view of our use
of the symmetry-adapted basis [cf. Eq. (A2)], we do so by
deriving the matrix elements of the same observables in that
basis. We then specialize to the relevant observables for our
present work, the total phonon (photon) number [defined by
Eq. (18)], as well as the variances of the phonon position
and momentum quadratures corresponding to an arbitrary site
[defined by Eq. (20)].

We start from the decomposition of the state |ψ (t )〉 in the
symmetry-adapted basis [defined in Eq. (A2) above]

|ψ (t )〉 =
∑

m

CK
m(t )|K, m〉, (B1)

where the expansion coefficients CK
m(t ) can be obtained

through our computation of the state evolution. For an arbi-
trary observable A we then have

〈ψ (t )|A|ψ (t )〉 =
∑
m,m′

CK∗
m′ (t )CK

m(t )〈K, m′|A|K, m〉, (B2)

which, with already known expansion coefficients, leaves
us with the task of calculating the matrix elements
〈K, m′| A |K, m〉 for the relevant observables.

Assuming, as is the case for our relevant observables, that
A depends only on phonon operators, it is straightforward to
show, using Eq. (A3), that

〈K, m′| A |K, m〉 = 1

N

N∑
n=1

〈
T ph

n m′∣∣ A
∣∣T ph

n m
〉
, (B3)

where in deriving this last result we made use of the fact that
e〈n′|n〉e = δnn′ . Before embarking on further derivations it is

useful to note that 〈T ph
n m′|T ph

n m〉 is independent of n and
equals 1 if the two sets of phonon occupation numbers, m and
m′, are completely the same, otherwise it evaluates to zero. In
other words, 〈

T ph
n m′∣∣T ph

n m
〉 = δm,m′ . (B4)

In the simplest case, for A = a†
r ar , we first note that

a†
r ar

∣∣T ph
n m

〉 = ms(r,n)

∣∣T ph
n m

〉
, (B5)

where s(i, n) is defined by Eq. (A6). By inserting the last result
into Eq. (B3) and making use of Eq. (B4) we then easily obtain
that

〈K, m′|a†
r ar |K, m〉 = δm,m′

N

N∑
n=1

mn, (B6)

where, owing to the discrete translational symmetry of the
system, the RHS of the last equation does not explicitly
depend on r. [In writing the last equation, we made use
of the fact that

∑N
n=1 ms(r,n) ≡ ∑N

n=1 mn.] By extension, for
A = ∑N

r=1 a†
r ar (total photon number), we get

〈K, m′|
N∑

r=1

a†
r ar |K, m〉 = δm,m′

N∑
n=1

mn. (B7)

Upon inserting the last result into the general equation (B2),
we obtain the desired expectation value

〈ψ (t )|
N∑

r=1

a†
r ar |ψ (t )〉 =

∑
n,m

mn

∣∣CK
m(t )

∣∣2
. (B8)

For A = ar , we first notice that

ar

∣∣T ph
n m

〉 = √
ms(r,n)|T ph

n m(r,−1)〉, (B9)

where |T ph
n m(r,−1)〉 is the vector obtained by changing the rth

occupation number in |T ph
n m〉 from ms(r,n) to ms(r,n) − 1. This

implies that 〈
T ph

n m′∣∣ar

∣∣T ph
n m

〉 = √
ms(r,n) (B10)

provided that the two sets (m and m′) have the same oc-
cupation numbers except at site s(r, n) where m′

s(r,n) should

be equal to ms(r,n) − 1; otherwise, 〈T ph
n m′|ar |T ph

n m〉 = 0. The
desired matrix element 〈K, m′|ar |K, m〉 is obtained by com-
bining Eq. (B10) and the general result in Eq. (B3).

In an analogous fashion, for A = a†
r we obtain〈

T ph
n m′∣∣a†

r

∣∣T ph
n m

〉 = √
ms(r,n) + 1 (B11)

if the two sets (m and m′) have the same occupation numbers
except at site s(r, n) where m′

s(r,n) should be equal to ms(r,n) +
1; otherwise, 〈T ph

n m′| a†
r |T ph

n m〉 = 0. The matrix element
〈K, m′| a†

r |K, m〉 sought for is easily obtained by inserting the
expression in Eq. (B11) into the general equation (B3).

By combining the derived expressions for 〈K, m′|ar |K, m〉
and 〈K, m′|a†

r |K, m〉, we can easily obtain the desired results
for 〈K, m′|xr |K, m〉 and 〈K, m′|pr |K, m〉.

When A=x2
r = (a†

r +ar )2/2 or A= p2
r =−(a†

r −ar )2/2,
we first note that

x2
r ≡ 1

2

[
2a†

r ar + 1 + (a†
r )2 + a2

r

]
, (B12)
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p2
r ≡ 1

2

[
2a†

r ar + 1 − (a†
r )2 − a2

r

]
. (B13)

Repeating the above procedure, to compute the desired matrix
elements 〈K, m′|(a†

r )2|K, m〉 and 〈K, m′|a2
r |K, m〉, we have to

first determine 〈T ph
n m′|(a†

r )2|T ph
n m〉 and 〈T ph

n m′|a2
r |T ph

n m〉. It
is straightforward to show that, for instance,〈

T ph
n m′∣∣(a†

r )2
∣∣T ph

n m
〉 = √

[ms(r,n) + 1][ms(r,n) + 2] (B14)

provided that the two sets (m and m′) have the same oc-
cupation numbers except at site s(r, n) where m′

s(r,n) should
be equal to ms(r,n) + 2; otherwise, 〈K, m′|(a†

r )2|K, m〉 = 0.
Similarly, we have that〈

T ph
n m′∣∣a2

r

∣∣T ph
n m

〉 = √
ms(r,n)[ms(r,n) − 1] (B15)

if the two sets (m and m′) have the same occupation numbers
except at site s(r, n) where m′

s(r,n) should be equal to ms(r,n) −
2; otherwise, 〈T ph

n m′|a2
r |T ph

n m〉 = 0.
With the aid of the expressions for the matrix elements

obtained thus far, and using the general expression in Eq. (B2)
with the coefficients CK

m(t ) obtained from the computation
of the system dynamics, one can straightforwardly obtain
the variances Sx(t ) and Sp(t ) of the position and momentum
quadratures [cf. Eq. (20)].

2. Derivation of the matrix elements of the reduced
density matrix

In what follows, we derive expressions for the matrix ele-
ments of the reduced density matrix assuming that the system
under consideration evolves starting from a bare-excitation
Bloch state with quasimomentum k0 at t = 0.

We make use of our standard symmetry-adapted basis
[cf. Eq. (A3)] for K = k0:

|K = k0, m〉 = N−1/2
N∑

n=1

eik0n|n〉e ⊗ T ph
n |m〉ph (B16)

and start by expanding the state |ψ (t )〉 of the system at time t
with respect to this basis:

|ψ (t )〉 =
∑

m

Ck0
m (t )|k0, m〉. (B17)

The density matrix of our composite (bipartite) e-ph system
at time t is given by Eq. (21) and, using the expansion in
Eq. (B17), can be expressed as

ρe-ph(t ) =
∑
m,m′

Ck0∗
m′ (t )Ck0

m (t )|k0, m〉〈k0, m′|. (B18)

By now making use of Eq. (A3), i.e., its special case for
K = k0, we further obtain

ρe-ph(t ) = N−1
∑
m,m′

N∑
n,n′=1

eik0(n−n′ )Ck0∗
m′ (t )Ck0

m (t )

× |n〉〈n′| ⊗ ∣∣T ph
n m

〉〈
T ph

n′ m′∣∣. (B19)

The reduced excitation density matrix is obtained by trac-
ing the last density matrix over the phonon basis [cf. Eq. (22)].
Let m′′ be the dummy index for the phonon basis states, i.e.,

the set of all phonon occupation-number configurations. Then
we have

ρe(t ) =
∑
m′′

〈m′′|ρe-ph(t )|m′′〉, (B20)

which, by inserting ρe-ph(t ) from Eq. (B19), becomes

ρe(t ) = N−1
∑

m,m′,m′′

N∑
n,n′=1

eik0(n−n′ )Ck0∗
m′ (t )Ck0

m (t )

× 〈
T ph

n′ m′∣∣m′′〉〈m′′∣∣T ph
n m

〉|n〉〈n′|. (B21)

We now note that∑
m′′

〈
T ph

n′ m′∣∣m′′〉〈m′′∣∣T ph
n m

〉 = 〈
T ph

n′ m′∣∣T ph
n m

〉
, (B22)

where we made use of the completeness relation in the phonon
Hilbert space ∑

m′′
|m′′〉〈m′′| = 1. (B23)

Using the result in Eq. (B22), the expression for ρe(t ) in
Eq. (B21) now simplifies to

ρe(t ) = N−1
∑
m,m′

N∑
n,n′=1

eik0(n−n′ )Ck0∗
m′ (t )Ck0

m (t )

× 〈
T ph

n′ m′∣∣T ph
n m

〉|n〉〈n′|. (B24)

From the last equation we readily read off the final expression
for the matrix elements of the reduced excitation density
matrix:

(ρe)nn′ (t ) = N−1eik0(n−n′ )
∑
m,m′

Ck0∗
m′ (t )Ck0

m (t )
〈
m′∣∣T ph

n−n′m
〉
,

(B25)

where we made use of the fact that 〈T ph
n′ m′|T ph

n m〉 ≡
〈m′|T ph

n−n′m〉. It is also useful to note that the final result in
Eq. (B25) can more succinctly be recast as

(ρe)nn′ (t ) = N−1eik0(n−n′ )〈ψ (t )|T ph
n−n′ |ψ (t )〉. (B26)

In order to evaluate the matrix element 〈m′|T ph
n−n′m〉,

it is useful to recall Eqs. (A5) and (A6). Note that
〈T ph

n′ m′|T ph
n m〉 = 1 if all the corresponding phonon occupa-

tion numbers in |T ph
n m〉 and |T ph

n′ m′〉 are the same, otherwise
this matrix element evaluates to zero.

APPENDIX C: CHEBYSHEV-PROPAGATOR
METHOD FOR DYNAMICS

In the following, we briefly recapitulate the essential as-
pects of the computational technique utilized in the present
work, the Chebyshev-propagator method (CPM) [39], fol-
lowed by some basic details of our concrete implementation
thereof. A more detailed introduction into the CPM is pro-
vided in Ref. [40].
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1. Basics of the CPM

For a system described by the Hamiltonian H , the
time-evolution operator U (t + δt, t ) = U (δt ) = e−iHδt can be
expanded in a finite series of NC Chebyshev polynomials of
the first kind Tp(x) = cos(p arccos x) [39,40]:

U (δt ) = e−ibδt

⎡
⎣c0(aδt ) + 2

NC∑
p=1

cp(aδt )Tp(H̃ )

⎤
⎦. (C1)

Here H̃ = (H − b)/a is a rescaled Hamiltonian of the system,
where Emin (Emax) is the minimal (maximal) eigenvalue of H ,
b = (Emax + Emin)/2, and a = (Emax − Emin + ε)/2, with ε =
αc(Emax − Emin) being introduced to ensure that the rescaled
spectrum lies well inside [−1, 1]. The expansion coefficients
are given by

cp(aδt ) =
∫ 1

−1

Tp(x)e−ixt

π
√

1 − x2
dx = (−i)pJp(aδt ), (C2)

where Jp(aδt ) is the pth-order Bessel function of the first
kind. In cases where the system Hamiltonian does not depend
explicitly on time, these expansion coefficients also depend
only on the time step δt (but not explicitly on time t), thus it
is sufficient to compute them only once.

The recurrence relations for the Chebyshev polynomials
[39] can be used to simplify the computation of the state
evolution |ψ (t + δt )〉 = U (δt )|ψ (t )〉 from one point on a time
grid to the next one. The problem is effectively reduced to the
iterative evaluation of vectors |vp〉 ≡ Tp(H̃ )|ψ (t )〉 using the
recursive relation

|vp+1〉 = H̃ |vp〉 − |vp−1〉, (C3)

where |v0〉 = ψ (t ) and |v1〉 = H̃ |v0〉. Evolving the state vec-
tor |ψ (t )〉 from one time step to the next one requires NC

matrix-vector multiplications of a given complex vector with a
sparse Hamiltonian matrix, a step that for the system evolution
from t = 0 to t = t f has to be performed t f /δt times.

Given that the CPM requires only the knowledge of two ex-
tremal eigenvalues of the system Hamiltonian, it is convenient
to combine it with Lanczos-type diagonalization for sparse
matrices [46]. The CPM has by now proven to be superior to
other direct or iterative integration schemes, in terms of both
computational cost and accuracy [54].

2. Implementation details and numerical consistency checks

The results obtained for the system dynamics in this work
were based on calculations performed for a system with N =
9 qubits, with up to M = 20 phonons in the truncated phonon
Hilbert space. Thus, the resulting maximal dimension of the
truncated phonon Hilbert space (as discussed in Appendix A,
this is also the dimension of any K sector of the full Hilbert
space) was D ≈ 107 and to make the storage of the nonzero
matrix elements possible we used the sparse-matrix form.
Reaching the numerical convergence in our dynamics cal-
culations typically required us to use between NC = 9 and
NC = 14 Chebyshev polynomials in the expansion given by
Eq. (C1). In addition, the smallest time step required for
numerical convergence was δt = 0.05τe,c, i.e., up to 20 time
steps were used within the period that corresponds to the
physically meaningful (excitation-hopping) timescale τe,c ≈
0.44 ns. Our runs included those with the total evolution times
t f as large as 100τe,c, i.e., with up to 2000 such time steps.
In our calculations, ε was kept at the fixed value of 10−3

(cf. Appendix C 1).
We carried out our CPM-based dynamics calculations on

an 8-core, 3.5 GHz Intel Xeon CPU E5-1620 machine, with a
total of 32 GB of main memory. The runs that were required
to obtain all the results presented in this paper consumed less
than 250 CPU hours.

The results were checked for consistency whenever it was
possible. In particular, testing for unitarity turned out to be
a good measure of convergence of the CPM. Namely, at
each iteration step the norm of the evolving state vector was
calculated and any deviation from unity larger than 10−4 was
considered a surefire sign that a higher precision (i.e., either
a shorter time step or a larger NC) is needed. Despite the fact
that we maintained this unitarity margin of error to be much
lower than 10−4 throughout our calculations, this was not
always sufficient and additional convergence tests, performed
by increasing computational precision and confirming the
stability of the results, were carried out.

As another internal consistency check, we used the math-
ematical relation between the expectation values of x2

r , p2
r ,

and the phonon-number operator a†
r ar that stems from the

identity x2
r + p2

r = 2a†
r ar + 1. This relation was satisfied by

our data at 10−7 precision, which is a highly nontrivial test as
the expectation values of x2

r and p2
r on one hand, and that of

a†
r ar on the other, were evaluated by completely different and

mutually independent means.
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Vukmirović, C. Bruder, and V. M. Stojanović, ibid. 109, 126407
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Abstract
In this paper, we presented our recently developed Dynamical Radiative and
Elastic ENergy loss Approach (DREENA-C) framework, which is a fully
optimized computational suppression procedure based on our state-of-the-art
dynamical energy loss formalism in constant temperature finite size QCD
medium. With this framework, we have generated, for the first time, joint RAA

and v2 predictions within our dynamical energy loss formalism. The predic-
tions are generated for both light and heavy flavor probes, and different
centrality regions in Pb+Pb collisions at the LHC, and compared with the
available experimental data. While RAA predictions agree with experimental
data, v2 predictions qualitatively agree with, but are quantitatively visibly
above, the experimental data (in disagreement with other models, which
underestimate v2). Consistently with numerical predictions, through simple
analytic analysis, we show that RAA is insensitive to medium evolution (though
highly sensitive to energy loss mechanisms), while v2 is highly sensitive to the
evolution. As a major consequence for precision quark-gluon plasma (QGP)
tomography, this then leaves a possibility to calibrate energy loss models on
RAA data, while using v2 to constrain QGP parameters that are in agreement
with both high and low p⊥ data.
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1. Introduction

Quark-gluon plasma (QGP) is a new state of matter [1, 2] consisting of interacting quarks,
antiquarks and gluons. Such a new state of matter is created in ultra-relativistic heavy ion
collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC). Rare
high momentum probes, which are created in such collisions and which transverse QGP, are
excellent probes of this extreme form of matter [3–5]. Different observables (such as angular
averaged nuclear modification factor RAA and angular anisotropy v2), together with probes
with different masses, probe this medium in a different manner. Therefore, comparing
comprehensive set of joint predictions for different probes and observables, with available
experimental data from different experiments, collision systems and collision energies, allows
investigating properties of QCD medium created in these collisions [6–12].

However, to implement this idea, it is necessary to have a model that realistically describes
high-p⊥ parton interactions with the medium. With this goal in mind, we developed state-of-the-
art dynamical energy loss formalism [13, 14], which includes different important effects (some of
which are unique to this model). Namely, (i) the formalism takes into account finite size, finite
temperature QCD medium consisting of dynamical (that is moving) partons, contrary to the
widely used static scattering approximation and/or medium models with vacuum-like propa-
gators. (ii) The calculations are based on the finite temperature field theory [15, 16], and
generalized HTL approach, in which the infrared divergencies are naturally regulated, so the
model does not have artificial cutoffs. (iii) Both radiative [13] and collisional [17] energy losses
are calculated under the same theoretical framework, applicable to both light and heavy flavor.
(iv) The formalism is generalized to the case of finite magnetic [18] mass and running coupling
[19], and most recently, we also applied first steps towards removing widely used soft-gluon
approximation from radiative energy loss calculations, enhancing the applicability region of this
formalism [20]. This formalism was further integrated into numerical procedure [19], which
includes initial p⊥ distribution of leading partons [21, 22], energy loss with path-length [23, 24]
and multi-gluon [25] fluctuations, and fragmentation functions [26–28], to generate the final
medium modified distribution of high p⊥ hadrons. While all the above effects have to be
included based on theoretical grounds, it is plausible to ask whether all of these ingredients are
necessary for accurately interpreting the experimental data, particularly since other available
approaches [29–33] commonly neglect some—or many—of these effects. To address this
important issue, in [34], we showed that, while abolishing widely used static approximation is
the most important step for accurate suppression predictions, including all other effects is
necessary for a fine agreement with high-p⊥ RAA (and v2, not published) data.

To be able to generate predictions that can reasonably explain the experimental data, all
ingredients stated above have to be preserved (with no additional simplifications used in the
numerical procedure), as all of these ingredients were shown to be important for reliable
theoretical predictions of jet suppression [34]. From computational perspective, it is also
necessary to develop a framework that can efficiently generate wide set of theoretical predictions,
to be compared with a broad range of available (or upcoming) experimental data. We here
present DREENA-C (Dynamical Radiative and Elastic ENergy loss Approach) framework,
which is the first step towards this goal. Due to the complexity of the underlying parton-medium
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interaction model, this first step takes into account the medium evolution in its simplest form,
through mean (constant) medium temperature (thus ‘C’ in DREENA-C framework). In addition
to presenting the necessary baseline to be compared with future redevelopments of the dynamical
energy loss to more fully account for the medium evolution, DREENA-C is also an optimal
numerical framework for studying the medium evolution effects on certain observables. That is,
as this framework takes into account state-of-the-art parton-medium interaction model, but only
rudimental medium evolution, comparison of its predictions with experimental data allows
assessing sensitivity of certain variables to QGP evolution.

DREENA-C framework corresponds to, in its essence, the numerical procedure presented
in [19], with a major new development that the code is now optimized to use minimal
computer resources and produce predictions within more than two orders of magnitude
shorter time compared to [19]. Such step is necessary, as all further improvements of the
framework, necessarily need significantly more computer time and resources. So, without this
development, further improvements, e.g. towards nontrivially evolving QGP medium, would
not be realistically possible. That is, DREENA-C framework, addresses the goal of efficiently
generating predictions for diverse observables.

Exploiting the ability to generate predictions for a wide range of observables, we will
here use DREENA-C framework to, for the first time, present joint RAA and v2 theoretical
predictions within our dynamical energy loss formalism; these predictions will be generated
for different experiments (ALICE, CMS and ATLAS), probes (light and heavy) and exper-
imental conditions (wide range of collision centralities). Note that some of our results cor-
respond to true predictions (some centrality intervals for B and D mesons), while for other
cases, e.g. for charged hadrons, they correspond to postdictions, as the experimental data are
already available. Motivation for generating these predictions is the following: (i) the
theoretical models up to now were not able to jointly explain these data, which is known as v2
puzzle [35, 36]. That is, the models lead to underprediction of v2, unless new phenomena (e.g.
magnetic monopoles) are introduced [37]. (ii) Having this puzzle in mind, and the fact that
other available models employ the complementary approach, i.e. combine simplified energy
loss models with more sophisticated medium evolutions, this work will enable assessing to
what extent state-of-the-art energy loss model, but with simplest QGP evolution, is able to
jointly explain RAA and v2 data. To obtain additional understanding of this important issue, we
will bellow complement DREENA-C predictions with analytical estimates. (iii) DREENA-C
predictions will establish an important baseline for testing how future introduction of the
medium evolution will improve the formalism. Moreover, such step-by-step introduction of
different medium evolution effects in the model will also allow to investigate their importance
in explaining the experimental data, which is highly relevant for QGP tomography.

2. Methods

The DREENA-C framework is a fully optimized numerical procedure, which contains all
ingredients presented in detail in [19]. We below briefly outline the main steps in this procedure.

The quenched spectra of light and heavy flavor observables are calculated according to
the generic pQCD convolution:

s s
= Ä  Ä 

( ) ( ) ( ) ( )
E

p

E Q

p
P E E D Q H

d

d

d

d
. 1

f

f

i

i

i f Q

3

3

3

3

Subscripts i and f correspond, respectively, to ‘initial’ and ‘final’, and Q denotes initial light or
heavy flavor jet. s ( )E Q pd di i

3 3 denotes the initial momentum spectrum, which are computed
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according to [21, 22], ( )P E Ei f is the energy loss probability, computed within the
dynamical energy loss formalism [13, 14], with multi-gluon [25], path-length fluctuations
[24] and running coupling [19]. D(Q→HQ) is the fragmentation function of light and heavy
flavor parton Q to hadron HQ, where for light flavor, D and B mesons we use, DSS [26],
BCFY [27] and KLP [28] fragmentation functions, respectively.

Regarding the numerical procedure, a major new development is that the code is now
optimized, so that it is two orders of magnitude faster compared to the brute-force approach
applied in [19]. Technically, the main optimization method we used was a combination of
tabulation and interpolation of values of intermediary functions that appear at various steps of the
energy loss calculation. This approach significantly reduces the number of necessary integrations.
However, it must be preceded by careful analysis of the behavior of interpolated functions and the
function sampling must be tailored to this behavior, so that effectively no loss of precision is
introduced. Furthermore, in comparison to the computation of [19], different and better suited
methods of numerical integration were used (mostly quasi Monte Carlo integration), producing a
large speedup, higher integration precision and stability of the underlying results. Finally, the code
was parallelized to take advantage of contemporary multi-core workstations. Furthermore, the
optimization also allowed for further improvements of the physical model: (i) due to numerical
constraints, in the previous multi-gluon fluctuation procedure, the number of radiated gluons was
limited to 3. The procedure is now redeveloped to include the arbitrary number of radiated gluons;
the detailed numerical analysis (both from the point of numerical precision and time efficiency)
showed that the optimal limit of gluons to be included in the procedure is 4–5. (ii) Both radiative
and collisional energy losses are now combined gradually along the traversed path of the parton,
unlike in [19], where radiative and collisional losses were accounted separately.

As noted above, we model the medium by assuming a constant average temperature of QGP.
We concentrate on the central rapidity region in 5.02 TeV Pb+Pb collisions at the LHC, though
we note that these predictions will be applicable for 2.76 TeV Pb+Pb collisions as well, since
the predictions for these two collision energies almost overlap [38]. To determine the temperature

for each centrality region in 5.02 TeV Pb+Pb collisions, we use [39, 40] ~ 
^

T T
A L

3
Ng

y

d

d =

^

⎛
⎝⎜

⎞
⎠⎟
/

c
A L

1 3Nch
y

d

d , where
N

y

d

d
g is gluon rapidity density, A⊥ is the overlap area and L is the average size of

the medium for each centrality region. At mid rapidity,
N

y

d

d
g is directly proportional to experi-

mentally measured charged particle multiplicity
h

Nd

d
ch , which is measured for 5.02 TeV Pb+Pb

collisions at the LHC across different centralities [41]. Furthermore, c is a constant, which can be
fixed through ALICE measurement of effective temperature for 0%–20% centrality at 2.76 TeV
Pb+ Pb collisions LHC [42]. For each centrality region, path-length distributions (as well as
overlap area A⊥ and average size of the medium L ) are calculated following the procedure
described in [23], with an additional hard sphere restriction r<RA in the Woods–Saxon nuclear
density distribution to regulate the path lengths in the peripheral collisions.

In numerical calculations, we use no fitting parameters in generating predictions for
comparison with the data, i.e. all the parameters correspond to standard literature values. We
consider a QGP with ΛQCD=0.2 GeV and nf=3. The temperature dependent Debye mass
μE (T) is obtained from [43], while for the light quarks, we assume that their mass is
dominated by the thermal mass m»M 6E , and the gluon mass is m»m 2g E [44]. The
charm (bottom) mass is M=1.2 GeV (M=4.75 GeV). Finite magnetic mass effect is also
included in our framework [18], as various non-perturbative calculations [45, 46] have shown
that magnetic mass μM is different from zero in QCD matter created at the LHC and RHIC.
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Magnetic to electric mass ratio is extracted from these calculations to be 0.4<μM/μE<0.6,
so presented uncertainty in the predictions comes from this range of screening masses ratio.
Note that other uncertainties (e.g. in quark masses or effective temperature), are not included
in this study. However, we have checked that uncertainties in the quark masses lead to small
(up to 4% for p⊥>8 GeV, and decreasing with increasing p⊥) difference in the resulting
predictions. Regarding effective temperature, as this temperature comes with large error bars,
in [47] we presented a detailed study of how this uncertainty affects the RAA calculations. We
found that RAA dependence on T is almost linear (and the same for all parton energies and all
types of flavor) and does not significantly affect the suppression, concluding that uncertainty
in the effective temperature would basically lead to a systematic (constant value) shift in the
predictions, i.e. the results presented in this paper would not be affected by this uncertainty.

3. Results and discussion

In this section, we will present joint RAA and v2 predictions for high p⊥ charged hadrons, D
and B mesons in Pb+Pb collisions at the LHC. In figure 1 we first show probability

Figure 1. Path-length distributions. Probability distributions for hard parton path
lengths in Pb+Pb collisions at =s 5.02NN TeV for (0–10)%–(50–60)% centrality
classes. Solid black curves: the total distributions with all hard partons included are
represented; Dashed red curves: the distributions include only in-plane particles
(f < ∣ ∣ 15 or f -  < ∣∣ ∣ ∣180 15 ); dashed–dotted blue curves: the distributions include
only out-of-plane partons ( f -  < ∣∣ ∣ ∣90 15 ).
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distributions for hard parton path lengths in Pb+ Pb collisions for different centralities,
obtained by the procedure specified in the previous section. For most central collisions, we
observe that in-plane and out-of-plane distributions almost overlap with the total (average)
path-length distributions, as expected. As the centrality increases, in-plane and out-of-plane
distributions start to significantly separate (in different directions) from average path-length
distributions. Having in mind that [48]

»
-
+

( )v
R R

R R

1

2
, 2AA AA

AA AA
2

in out

in out

this leads to the expectation of v2 being small in most central collisions and increasing with
increasing centrality. Regarding the equation (2) above, note that this estimate presents a
conventional way [48–51] to calculate high p⊥ v2, and it leads to exact result if the higher
harmonics v4, v6, etc. are zero at high p⊥, and the opening angle (where RAA

in and RAA
out are

evaluated) goes to zero.
Based on path-length distributions from figure 1, we can now calculate average RAA, as

well as in-plane and out-of-plane RAAs (RAA
in and RAA

out), and consequently v2 for both light and
heavy flavor probes and different centralities. We start by generating predictions for charged
hadrons, where data for both RAA and v2 are available. Comparison of our joint predictions
with experimental data is shown in figure 2, where left and right panels correspond,
respectively, to RAA and v2. We see good agreement with RAA data, which is also robust, i.e.
achieved across wide range of centralities and experiments. Regarding v2, we surprisingly see
that our v2 predictions are visibly above the data. This is in contrast with other energy loss
models which consistently lead to underprediction of v2, where to resolve this, new phe-
nomena (e.g. magnetic monopoles) were introduced [37]. Despite this quantitative dis-
agreement, we see a reasonable qualitative agreement between the model and the data, i.e. the
predictions are just shifted above the data; this will be further discussed below.

In figure 3, we provide predictions for D meson average RAA (left panel) and v2 (right
panel) data, for four different centrality regions. The predictions are compared with the
available 5.02 TeV Pb+Pb experimental data. For average RAA, we observe good agreement
with the data. Regarding v2, we observe similar behavior as for charged hadron: i.e. while we
obtain a reasonable qualitative agreement with the measurements, quantitatively there is again
an unexpected (having in mind predictions of other models) overestimation of the data.
Figure 4 shows equivalent predictions as figure 3, only for B mesons. For RAA, we compare
our predictions with the available B± [58], Bs

0 [59], non-prompt J/Ψ [60, 61] and non-prompt
D0 [62] data. Note that we can compare B meson predictions with these indirect b quark
suppression data, as due to interplay of collisional and radiative energy loss, B meson sup-
pression is almost independent on p⊥ for p⊥>10 GeV [47], so the fragmentation/decay
functions will not play a large role for different types of b quark observables. Also, note that
our predictions are provided for mid-rapidity region; for non-prompt D0 (which are given for

<∣ ∣y 1 ), we see good agreement between our predictions and the data. For B± and non-
prompt J/Ψ, our predictions show qualitatively good agreement, but overprediction of RAA

data. This is expected, having in mind that those data are given for ∣ ∣y 2 , where both
experiments show 30%–50% increase in RAA with decreasing rapidity. Our predictions do not
agree with Bs

0, but these data come with very large error bars. For v2, we predict values
significantly different from zero for all centrality regions, and see that our predictions agree
with the available non-prompt J/Ψ data [61, 63], though we note that these predictions are
given with very large error bars. This does not necessarily mean that heavy B meson flows, as
flow is inherently connected with low p⊥ v2, and here we show predictions for high p⊥. On

J. Phys. G: Nucl. Part. Phys. 46 (2019) 085101 D Zigic et al

6



Figure 2. Joint RAA and v2 predictions for charged hadrons. Left panels: theoretical
predictions for RAA versus p⊥ are compared with ALICE [52] (red circles), CMS [53]
(blue squares) and ATLAS [54] (green triangles) charged hadron experimental data for
5.02 TeV Pb+Pb collisions at the LHC. Right panels: theoretical predictions for v2
versus p⊥ are compared with ALICE [55] (red circles), CMS [56] (blue squares) and
ATLAS [57] (green triangles) charged hadron experimental data for 5.02 TeV Pb+Pb
collisions at the LHC. The gray band boundaries correspond to μM/μE=0.4 and
μM/μE=0.6. Rows 1–7 correspond to, respectively, 0%–5%, 5%–10%, 10%–20%,K,
50%–60% centrality regions.
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the other hand, high p⊥ v2 is connected with the difference in the energy loss (i.e. suppres-
sion) for particles going in different (e.g. in-plane and out-of-plane) directions; this difference
then leads to our predictions of non-zero v2 for high p⊥ B mesons.

Overall, we see that our predicted RAAs agree well with all measured (light and heavy
flavor) data, while our v2 predictions are consistently above the experimental data. Since our
model has sophisticated description of parton-medium interactions, but highly simplified
medium evolution model (through average medium temperature), these robust numerical
results imply the following: (i) RAA is largely insensitive to the medium evolution, in contrast
to its (previously shown [34]) large sensitivity to parton-medium interactions. (ii) v2 is sen-
sitive to the details of medium evolution. These two conclusions have important implications
for QGP tomography, in particular (i) RAA can be used to calibrate parton-medium interaction
models, while (ii) v2 can be used to constrain QGP medium evolution parameters also from
the point of high p⊥ data (in addition to constraining them from low p⊥ predictions/mea-
surements). One should note that insensitivity of RAA and sensitivity of v2 predictions to QGP
evolution were also observed by using very different models and numerical frameworks
[67, 68]. This then clearly suggests that such (in)sensitivity may be a general phenomenon,
but to claim this, one should also gain an analytical understanding, which we provide below.
Furthermore, the numerical results presented above also lead to the following questions,
which are important from the point of future precision QGP tomography: (i) what is the
reason behind the observed overestimation of v2 within DREENA-C framework, and can
expanding medium lead to a better agreement with the experimental data? (ii) Do we expect
that B meson v2 predictions will still be non-zero, once the expanding medium is introduced?

To intuitively approach the issues raised above, we start by noting that, within our
dynamical energy loss formalism, ΔE/E∼Ta and ΔE/E∼Lb, where a b, 1 (ΔE/E is

Figure 3. Joint RAA and v2 predictions for D mesons. Upper panels: theoretical
predictions for RAA versus p⊥ are compared with ALICE [64] (red circles) and CMS
[65] (blue squares) D meson experimental data for 5.02 TeV Pb+Pb collisions at the
LHC. Lower panels: theoretical predictions for v2 versus p⊥ are compared with ALICE
[51] (red circles) and CMS [66] (blue squares) D meson experimental data for 5.02TeV
Pb+Pb collisions at the LHC. The gray band boundaries correspond to μM/μE=0.4
and μM/μE=0.6. First to fourth column correspond to, respectively, 0%–10%, 10%–

30%, 30%–50% and 50%–80% centrality regions.
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fractional energy loss, T is the average temperature of the medium, while L is the average
path-length traversed by the jet). To be more precise, note that both dependencies are close to
linear, though a and b are still significantly different from 1 [38]. However, for the purpose of
this estimate, let us assume that a=b=1, leading to

cD » ( )E E TL, 3

where χ is a proportionality factor.
Another commonly used estimate [25] is that

» -
D -⎛

⎝⎜
⎞
⎠⎟ ( )R

E

E
1

1

2
, 4AA

n 2

where n is the steepness of the initial momentum distribution function (i.e. approximate exponent
of a power-law of initial momentum distribution ^

-p n), and ΔE/E is notably smaller than 1.
In the case when fractional energy loss ΔE/E=1, equation (4) becomes

x» -
- D

» -
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )R

n E

E
TL1

2

2
1 , 5AA

where ξ=(n−2) χ/2.
In the DREENA-C approach, T is constant, and the same in in-plane and out-of-plane

directions, while Lin=L−ΔL and Lout=L+ΔL, leading to

Figure 4. Joint RAA and v2 predictions for B mesons. Upper panels: theoretical
predictions for B meson RAA versus p⊥ are compared with ATLAS [60] (green
triangles), CMS [61] (cyan triangles) non-prompt J/Ψ, and CMS non-prompt D0 [62]
(purple squares), B± [58] (blue diamonds) and Bs

0 [59] (orange stars) experimental data
for 5.02 TeV Pb+Pb collisions at the LHC. Lower panels: theoretical predictions for
B meson v2 versus p⊥ are compared with ATLAS [63] (green triangles) and CMS [61]
(cyan triangles) non-prompt J/Ψ for 5.02TeV Pb+Pb collisions at the LHC. The gray
band boundaries correspond to μM/μE=0.4 and μM/μE=0.6. First to fourth column
correspond to, respectively, 0%–10%, 20%–40%, 40%–80% and 0%–100% centrality
regions.
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If the medium evolves, and by assuming 1+1D Bjorken time evolution [69] (as qua-
litatively sufficient for the early time dynamics [70]), the average temperature along in-plane
will be larger than along out-of-plane direction [71], leading to Tin=T+ΔT and
Tout=T−ΔT (whereΔL/L·ΔT/T=1). By repeating the above procedure in this case, it
is straightforward to obtain

x» - ( )R TL1 8AA
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We see that, while v2 explicitly depends on ΔT and ΔL, RAA does not. Therefore, it
follows that, consistently with previous numerical results, RAA can be only weakly sensitive to
QGP evolution, while v2 is quite sensitive to this evolution; note that this is to our knowledge,
the first time that analytical argument to sensitivity of RAA and v2 to medium evolution is
provided. Moreover, from equations (7) and(9), we see that introduction of temperature
evolution is expected to lower v2 compared to constant T case. Consequently, an accurate/
complete energy loss models, when applied in the context of constant temperature medium
should lead to higher v2 than expected, while introduction of T evolution in such models
would lower the v2 compared to non-evolving case. Based on this, and the fact that previous
theoretical approaches were not able to reach high enough v2 without introducing new
phenomena [37], we argue that accurate description of high-p⊥ parton-medium interactions is
crucial for accurate description of high-p⊥ experimental data. With regards to this, the above
results strongly suggest that the dynamical energy loss formalism has the right features
needed to accurately describe jet-medium interactions in QGP, which is crucial for high
precision QGP tomography.

Regarding the second question mentioned above, for B meson to have v2≈0, it is
straightforward to see that one needs ΔT/T≈ΔL/L. Having in mind that ΔL/L is quite
large for larger centralities (see figure 1), ΔT/T would also have to be about the same
magnitude. We do not expect this to happen, based on our preliminary estimates of the
temperature changes in in-plane and out-of-plane in 1+1D Bjorken expansion scheme [69].
That is, our expectations is that B meson v2 will be smaller than presented here, but still
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significantly larger than zero, at least for large centrality regions. However, this still remains
to be tested in the future with the introduction of full evolution model within our framework.

4. Conclusion

In this paper, we introduced the DREENA-C framework, which is a computational sup-
pression procedure based on our dynamical energy loss formalism in finite size QCD medium
with constant (mean) medium temperature. This approach, which combines a state-of-the-art
energy loss model, but with including QGP evolution in its simplest form, is complementary
to other available models that combine simplified energy loss models with more sophisticated
medium evolutions. As such, DREENA-C can provide an important insight to what extent the
accurate description of high-p⊥ parton-medium interactions versus accurate description of
medium evolution is necessary for accurately explaining high p⊥ RAA and v2 measurements.

We here used the DREENA-C framework to, for the first time, generate joint RAA and v2
predictions for both light and heavy flavor probes and different centrality regions in Pb+Pb
collisions at the LHC, and compare them with the available experimental data. We con-
sistently, through both numerical and analytical calculations, obtained that RAA is sensitive to
the average properties of the medium, while v2 is highly sensitive to the details of the medium
evolution. Analytical calculations brought another advantage of DREENA-C, as they would
likely not be possible in frameworks with more complex medium evolution models, but bring
simple and intuitive predictions/explanations for our results, which is necessary for better
qualitative and quantitative understanding of the obtained results.

Since different medium evolution profiles have both different average properties and
different details of the evolution, in precision QGP tomography, both RAA and v2 have to be
jointly used to extract the QGP properties. The DREENA-C framework presents an optimal
starting point for QGP tomography, as RAA predictions (obtained through DREENA-C) can
be first used to calibrate the energy loss model itself; that is, DREENA-C is fast (which is
important for efficient energy loss calibration), and it does not contain the details of the
medium evolution, which could provide an unwanted background for such a purpose. Once
this crucial step of accurate description and calibration of parton-medium interactions is
achieved, different more-detailed profiles of medium evolution (generated through different
bulk medium models and parameters, with and without event by event fluctuations) can be
tested (through our future advancement of DREENA framework) to assess which of these
profiles provide a simultaneous agreement with both high p⊥ RAA and v2 data, across wide
range of diverse experimental data and without further adjustment of energy loss models. In
this way, QGP parameters can be constrained from both low and high p⊥ measurements.

Furthermore, other approaches face difficulties in jointly explaining RAA and v2 data,
where smaller v2, than experimentally observed, is obtained. In distinction to other approa-
ches, we here obtained an overprediction of v2, where the analytical estimates moreover show
that inclusion of more realistic medium evolution models would lead to better agreement with
the data. This, together with the fact that v2 prediction provided here already qualitatively
(though not quantitatively) agree with the data, indicate an important (and highly non-trivial)
conclusion that accurate description of high-p⊥ parton interactions with QGP is likely the
most important ingredient for generating high-p⊥ predictions. These results therefore strongly
suggest that our dynamical energy loss formalism provides a suitable basis for the QGP
tomography (outlined above), which is our main future goal.
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Oð6Þ algebraic theory of three nonrelativistic quarks bound
by spin-independent interactions

V. Dmitrašinović and Igor Salom*

Institute of Physics, University of Belgrade, Pregrevica 118, Zemun, P.O. Box 57, 11080 Beograd, Serbia

(Received 10 November 2017; published 14 May 2018)

We apply the newly developed theory of permutation-symmetric Oð6Þ hyperspherical harmonics to the
quantum-mechanical problem of three nonrelativistic quarks confined by a spin-independent three-quark
potential. We use our previously derived results to reduce the three-body Schrödinger equation to a set of
coupled ordinary differential equations in the hyper-radius R with coupling coefficients expressed entirely in
terms of (i) a few interaction-dependentOð6Þ expansion coefficients and (ii) Oð6Þ hyperspherical harmonics
matrix elements that have been evaluated in our previous paper. This system of equations allows a solution to
the eigenvalue problem with homogeneous three-quark potentials, the class of which includes a number of
standard Ansätze for the confining potentials, such as the Y- and Δ-string ones. We present analytic formulas
for the K ¼ 2, 3, 4, 5 shell states’ eigenenergies in homogeneous three-body potentials, which we then apply
to the Y and Δ strings as well as the logarithmic confining potentials. We also present numerical results for
power-law pairwise potentials with the exponent ranging between −1 and þ2. In the process, we resolve the
25-year-old Taxil and Richard vs Bowler et al. controversy regarding the ordering of states in the K ¼ 3 shell,
in favor of the former. Finally, we show the first clear difference between the spectra of Δ- and Y-string
potentials, which appears in K ≥ 3 shells. Our results are generally valid, not just for confining potentials but
also for many momentum-independent permutation-symmetric homogenous potentials that need not be
pairwise sums of two-body terms. The potentials that can be treated in this way must be square integrable
under the Oð6Þ hyperangular integral, the class of which, however, does not include the Dirac δ function.

DOI: 10.1103/PhysRevD.97.094011

I. INTRODUCTION

The nonrelativistic three-quark system has been the basis
of our understanding of baryon spectroscopy for more than
50 years; of course, this model also has many limitations,
its nonrelativistic character being just one of several. After
the November 1974 discovery of charmed hadrons, the
nonrelativistic nature stopped being a detriment, at least in
the case of heavy quarks. There are, of course, still only
comparatively few heavy-quark baryons in Particle Data
Group tables, and fewest of all are the triple-heavy ones.
That circumstance will not prevent us from trying to
understand them, however. Indeed, even if there were no
heavy-quark baryons at all, it would still be an important
systematic question to answer, if for no other reason than to
have a definite benchmark against which to compare
relativistic calculations.
Chronologically, at first, all calculations were done with

a harmonic oscillator potential, due to its integrability,
but with passing time, other “more realistic” potentials,
such as the pairwise sum of the Coulomb and linearly rising
two-body potentials plus various forms of “strong hyper-
fine” interactions, have been used in numerical

calculations. Such calculations generally involve uncon-
trolled, sometimes drastic, approximations, such as the
introduction of cutoff(s), due to the contact nature of the
strong hyperfine interactions, thus leaving open many
questions about the level ordering, convergence, and even
existence of energy spectra in such calculations [1].
In this, the third in a series of papers, we show that the

nonrelativistic three-quark problem does have a well-
defined spectrum for a class of (homogeneous) potentials
that includes the “standard” confinement potentials. This
development is based on two previous (sets of) papers:
(1) Refs. [8,9], wherein the three-body permutation sym-
metry-adapted Oð6Þ hyperspherical harmonics were con-
structed, and (2) Ref. [10], wherein we applied the said
permutation symmetry-adapted Oð6Þ hyperspherical har-
monics to the problem of three nonrelativistic identical
particles in a homogeneous potential. Here, we present a
mathematically well-defined method for solving the three-
heavy quarks problem, together with several examples: the
K ¼ 0;…; 5 shells. These examples turn out to be (very)
instructive, as they clearly mark out the region of appli-
cability of our method.
In spite of the huge amount of literature on the

quantum-mechanical three-body bound-state problem, in
which the hyperspherical harmonics play a prominent role,*isalom@ipb.ac.rs
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Refs. [11–14], there are still many open problems related to
the general structure of the three-body bound-state spec-
trum (e.g., the ordering of states, even in the simplest case
of three identical particles). [15] The core of the existing
difficulties can be traced back to the absence of a systematic
construction of permutation-symmetric three-body wave
functions. Until recently, see Refs. [8,9], permutation-
adapted three-body hyperspherical harmonics in three
dimensions were known explicitly only in a few special
cases, such as those with total orbital angular momentum
L ¼ 0, 1, Refs. [13,16].
In this paper, we confine ourselves to the study of

factorizable (into hyper-radial and hyperangular parts)
three-body potentials that are square integrable [17] (in
hyperangles) for technical reasons; for this class of poten-
tials, our method allows closed-form (“analytical”) results,
at sufficiently small values of the grand angular momentum
K (i.e., up to and including the K ≤ 8 shell). Factorizable
potentials include homogenous potentials, which in turn
include pairwise sums of two-body power-law potentials,
such as the linear (confining) “Δ-string,” “Y-string”
[19,20], and Coulomb potentials. Lattice QCD studies
[21–23] suggest that three static quarks potential is a
(linear) combination of the aforementioned three.
Singular potentials, such as the (strong, or electromag-

netic) hyperfine interactions, that include the Dirac δ
function, even though homogeneous, do not fall into the
class of potentials susceptible to this method, as they are
not square integrable; therefore, they require special atten-
tion and will be treated elsewhere. The spin-orbit potentials
generally involve both the spin and the spatial variables for
their permutation invariance, which requires special tech-
niques. Simple inhomogenous potentials can only be
treated numerically, however, using our method.
Strictly speaking, our (present) results are applicable

only to three-equal-heavy quark systems, not one of which
has been created in experiment, thus far (which does not
mean that some are not forthcoming). This condition limits
the method’s applicability to c3 and b3 baryons only. Of
course, in these two cases, there is no flavor multiplicity,
and we may drop the SUFSð6Þ and SUFð3Þ labels.
Nevertheless, we have kept the full SUFSð6Þ and
SUFð3Þ labels, in the hope that in the future the present
methods can and will be extended to (a) two identical and
one distinct heavy-quark systems, such as the c2b and b2c,
and (b) (semi)relativistic three-light quark systems.
This paper is divided into six sections and two

Appendices. After the present Introduction, in Sec. II,
we show how the Schrödinger equation for three particles
in a homogenous/factorizable potential can be reduced to a
single differential equation and an algebraic/numerical
problem for their coupling strengths. In Sec. III, we defined
the Y-string and Δ-string, the QCD Coulomb, and the
logarithmic potentials and calculated the four lowest Oð6Þ
hyperspherical harmonics expansion coefficients that are

relevant to K ≤ 5 shell states. In Sec. IV, we calculate the
K ¼ 2, 3, 4, 5 shells’ level splittings in terms of four
parameters that characterize the three-body potential. In
Sec. V, we discuss our results, and in Sec. VI, we
summarize and draw conclusions. The details of calcula-
tions are shown in Appendix B.

II. THREE-BODY PROBLEM IN
HYPERSPHERICAL COORDINATES

In this section, we shall closely follow the treatment of the
nonrelativistic three-body problem presented in Ref. [10].
The three-body wave functionΨðρ; λÞ can be transcribed

from the Euclidean relative position (Jacobi) vectors
ρ¼ 1ffiffi

2
p ðx1−x2Þ, λ ¼ 1ffiffi

6
p ðx1 þ x2 − 2x3Þ, into hyperspher-

ical coordinates as ΨðR;Ω5Þ, where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ λ2

p
is the

hyper-radius and five angles Ω5 that parametrize a hyper-
sphere in the six-dimensional Euclidean space. Three
(Φi; i ¼ 1, 2, 3) of these five angles (Ω5) are just the
Euler angles associated with the orientation in a three-
dimensional space of a spatial reference frame defined by
the (plane of) three bodies; the remaining two hyperangles
describe the shape of the triangle subtended by three
bodies; they are functions of three independent scalar
three-body variables, e.g., ρ · λ, ρ2, and λ2. As we saw
above, one linear combination of the two variables ρ2 and
λ2 is already taken by the hyper-radius R, so the shape
space is two dimensional, and topologically equivalent to
the surface of a three-dimensional sphere.
There are two traditional ways to parametrize this

sphere: (1) the standard Delves choice [11] of hyperangles
ðχ; θÞ, which somewhat obscures the full S3 permutation
symmetry of the problem, and (2) the Iwai, Ref. [14],
hyperangles ðα;ϕÞ: ðsin αÞ2 ¼ 1 − ð2ρ×λR2 Þ2, tanϕ ¼ ð 2ρ·λ

ρ2−λ2Þ,
reveal the full S3 permutation symmetry of the problem: the
angle α does not change under permutations, so all
permutation properties are encoded in the ϕ dependence
of the wave functions. We shall use the latter choice, as it
leads to permutation-adapted hyperspherical harmonics, as
explained in Refs. [8,9], in which specific hyperspherical
harmonics used here are displayed.
We expand the wave function ΨðR;Ω5Þ in terms

of hyperspherical harmonics YK
½m�ðΩ5Þ, ΨðR;Ω5Þ ¼P

K;½m�ψK
½m�ðRÞYK

½m�ðΩ5Þ, where K together with ½m� ¼
½Q; ν; L; Lz ¼ m� constitutes the complete set of hyper-
spherical quantum numbers: K is the hyperspherical
angular momentum, L is the (total orbital) angular momen-
tum, Lz ¼ m its projection on the z axis, Q is the Abelian
quantum number conjugated with the Iwai angle ϕ, and ν is
the multiplicity label that distinguishes between hyper-
spherical harmonics with the remaining four quantum
numbers that are identical; see Ref. [8,9].
The hyperspherical harmonics turn the Schrödinger

equation into a set of (infinitely) many coupled equations,
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−
1

2μ

�
d2

dR2
þ 5

R
d
dR

−
KðKþ 4Þ

R2
þ 2μE

�
ψK
½m�ðRÞ

þ VeffðRÞ
X
K0;½m0�

CKK0
½m�½m0�ψ

K0
½m0�ðRÞ ¼ 0; ð1Þ

with a hyperangular coupling coefficients matrix CKK0
½m�½m0�

defined by

VeffðRÞCK0K
½m0�½m� ¼ hYK0

½m0�ðΩ5ÞjVðR; α;ϕÞjYK
½m�ðΩ5Þi

¼ VðRÞhYK0
½m0�ðΩ5ÞjVðα;ϕÞjYK

½m�ðΩ5Þi: ð2Þ

Factorizability of the potential is a simplifying assumption
that leads to analytic results in the energy spectrum. It holds
for several physically interesting potentials, such as power-
law ones, but also other homogeneous ones; see Sec. III.
Unfortunately, the sum (and difference) of two factorizable
potentials is generally not factorizable itself.
In Eq. (1), we used the factorizability of the potential

VðR; α;ϕÞ ¼ VðRÞVðα;ϕÞ to reduce this set to one
(common) hyper-radial Schrödinger equation. The hyper-
angular part Vðα;ϕÞ can be expanded in terms of Oð6Þ
hyperspherical harmonics with zero angular momenta
L¼m¼ 0 (due to the rotational invariance of the potential),

Vðα;ϕÞ ¼
X∞
K;Q

v3−bodyK;Q YKQν
00 ðα;ϕÞ; ð3Þ

where

v3−bodyK;Q ¼
Z

YKQν�
00 ðΩ5ÞVðα;ϕÞdΩð5Þ; ð4Þ

leading to

VeffðRÞCK00K0
½m00�½m0�

¼ VðRÞ
X∞
K;Q

v3−bodyK;Q hYK00
½m00�ðΩ5ÞjYKQν

00 ðα;ϕÞjYK0
½m0�ðΩ5Þi

ð5Þ

There is no summation over the multiplicity index in
Eq. (3) because no multiplicity arises for harmonics with

L < 2. Here, we separate out the K ¼ 0 term and absorb the

factor
v3−body
00

π
ffiffi
π

p into the definition of VeffðRÞ ¼ v3−body
00

π
ffiffi
π

p VðRÞ to
find

CK00K0
½m00�½m0� ¼ δK00;K0δ½m00�;½m0� þ π

ffiffiffi
π

p X∞
K>0;Q

v3−bodyK;Q

v3−body00

× hYK00
½m00�ðΩ5ÞjYKQν

00 ðα;ϕÞjYK0
½m0�ðΩ5Þi: ð6Þ

Homogenous potentials, such as the Δ- and Y-string
ones, which are linear in R, and the Coulomb one, see
Sec. III for the definition of these potentials, have the first
coefficient v3−body00 in the hyperspherical harmonic expan-
sion that is generally (at least) 1 order of magnitude larger
than the rest v3−bodyK>0;Q ; see Table I and Fig. 1. This reflects the
fact that, on average, these potentials depend more on the
overall size of the system than on its shape, thus justifying
the adiabatic (perturbative) approach taken in Ref. [6], with
the first term in Eq. (6) taken as the zeroth-order approxi-
mation [24].
In such cases, Eq. (1) decouple, leading to zeroth-order

solutions for ψK
0½m�ðRÞ that are independent of [m] and thus

TABLE I. Expansion coefficients vKQ of the Y- and Δ-string as well as of the Coulomb and logarithmic potentials
in terms of Oð6Þ hyperspherical harmonics YK;0;0

0;0 , for K ¼ 0, 4, 8, 12, respectively, and of the hyperspherical

harmonics Y6;�6;0
0;0 .

ðK;QÞ vKQ (Y-central) vKQ (Y-string) vKQðΔÞ vKQ (Coulomb) vKQ (Log)

(0,0) 8.18 8.22 16.04 20.04 −6.58
(4,0) −0.443 −0.398 −0.445 2.93 −1.21
ð6;�6Þ 0 −0.027 −0.14 1.88 −0.56
(8,0) −0.064 −0.064 −0.04 1.41 −0.33
(12,0) −0.01 −0.01 0 0 −0.17

FIG. 1. The graphs of the ratios vϵ4;0=v
ϵ
00 (green, solid), v

ϵ
6;6=v

ϵ
00

(red, dotted), vϵ8;0=v
ϵ
00 (magenta, short dashes), and vϵ12;0=v

ϵ
00

(blue, long dashes) (listed in the decreasing order) as functions of
the power ϵ in the potential Eq. (22). One can see the tendency of
the higher-order coefficients to diminish with an increasing value
of index K.
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have equal energies within the same K shell and different
energies in different K shells. Two known exceptions are
potentials with the homogeneity degree k ¼ −1; 2, which
lead to “accidental degeneracies” and have to be treated
separately.
The first-order corrections are obtained by diagonaliza-

tion of the block matrices CKK
½m�½m0�, K ¼ 1; 2;…, while the

off-diagonal couplings CKK0
½m�½m0�, K ≠ K0 appear only in the

second-order corrections. Rather than calculating pertur-
bative first-order energy shifts, a better approximation is
obtained when the diagonalized block matrices are plugged
back into Eq. (1), and equations then decouple into a set of
(separate) individual ordinary differential equations in one
variable, which differ only in the value of the effective
coupling constant,

�
d2

dR2
þ 5

R
d
dR

−
KðKþ 4Þ

R2
þ 2μðE − VK

½md�ðRÞÞ
�

× ψK
½md�ðRÞ ¼ 0; ð7Þ

where VK
½md�ðRÞ ¼ CK

½md�VeffðRÞ, with CK
½md� being the eigen-

values of matrix CKK
½m�½m0�.

The spectrum of three-body systems in homogenous
potentials, such as those considered in Refs. [8,9], is now
reduced to finding the eigenvalues of a single differential
operator, just as in the two-body problem with a radial
potential. The matrix elements in Eq. (6) can be readily
evaluated using the permutation-symmetric Oð6Þ hyper-
spherical harmonics and the integrals that are spelled out
in Refs. [8,9].
This is the main (algebraic) result of this section:

combined with the hyperspherical harmonics recently
obtained in Refs. [8,9], it allows one to evaluate the
discrete part of the (energy) spectrum of a three-body
potential as a function of its shape-sphere harmonic
expansion coefficients v3−bodyK;Q . Generally, these matrix
elements obey selection rules: they are subject to the
“triangular” conditions K0 þ K00 ≥ K ≥ jK0 − K00j plus the
condition that K0 þ K00 þ K ¼ 0; 2; 4;…, and the angular
momenta satisfy the selection rules: L0 ¼ L00, m0 ¼ m00.
Moreover, Q is an Abelian (i.e., additive) quantum number
that satisfies the simple selection rule: Q00 ¼ Q0 þQ. That
reduces the sum in Eq. (6) to a finite one, which depends on
a finite number of coefficients v3−bodyK;Q ; for small values of
K, this number is also small.
A matrix such as that in Eq. (6) is generally sparse in the

permutation-symmetric basis, so its diagonalization is not a
serious problem, and for sufficiently small K values, it can
even be accomplished in closed form; for example, for
K ≤ 5, all results depend only on four coefficients (v00, v40,
v6�6, and v80), and there is at most three-state mixing, so
the eigenvalue equations are at most cubic ones, with well-
known solutions. As there is only a small probability that

many states from the K ≥ 6 shells will be observed in the
foreseeable future, we limit ourselves to K ≤ 5 shells here.

III. THREE-BODY SPIN-INDEPENDENT
POTENTIALS

A. Lattice QCD three static quarks potential

Lattice QCD calculations indicate that the confining
interactions among quarks do not depend on the quarks’
spin and flavor degrees of freedom.
There have been several attempts at extracting the three-

quark potential from lattice QCD over the years; see
Refs. [21–23]. They were based on lattices of different
sizes, 123 × 24 at β ¼ 5.7 and 163 × 32 at β ¼ 5.8, 6.0 in
Ref. [21], 163 × 32 at β ¼ 5.8, 6.0 in Ref. [22], and 244 at
β ¼ 5.7, 5.8, 6.0 in Ref. [23]. Moreover, Refs. [21,22] use
the Wilson loop techniques, whereas Ref. [23] uses the
Polyakov loop. Their conclusions also differ markedly:
Ref. [21] “supports the Y Ansatz,” Ref. [22] “finds support
for the Δ Ansatz,” and the most recent Ref. [23] finds that
the “potentials of triangle geometries are clearly different
from the half of the sum of the two-body quark-antiquark
potential,” i.e., suggesting that is not the Δ Ansatz. All of
these indicate that the lattice QCD potential is neither a
pure Y Ansatz nor a pure Δ Ansatz.
A detailed analysis [25] of the Ref. [21] and Ref. [23]

published data in terms of hyperspherical coordinates has
shown that these two groups have calculated the potential
(mostly) in very different geometric configurations, the
overlap of which is small so that neither calculation is
conclusive.
It stands to reason that the definitive QCD prediction is a

linear superposition of the two Ansätze and the QCD
Coulomb term, but at this stage, it is impossible to evaluate
the lattice QCD potential’sOð6Þ expansion coefficients due
to the dearth of evaluated points on the hypersphere.
For this reason, we shall analyze both Ansätze, separately,

in addition to the QCD Coulomb potential, which is a must.
Finally, we shall also consider the logarithmic potential,
which can be thought of as the best homogeneous-potential
approximation to the sum of the Coulomb and the linearly
rising potential.
As stated in Sec. II above, any spin-independent three-

body potential must be invariant under overall (ordinary)
rotations, as it is a scalar; i.e., it contains only the zero-
angular momentum hyperspherical components, which sig-
nificantly simplifies the expansion of the potential in Oð6Þ
hyperspherical harmonics. Below, we shall calculate these
expansion coefficients in several homogeneous potentials.

B. Y-string and other area-dependent potentials

The complexity of the full Y-string potential, defined by

VY-string ¼ σYmin
x0

X3
i¼1

jxi − x0j; ð8Þ
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can best be seen when expressed in terms of three-body
Jacobi (relative) coordinates ρ and λ, as follows. The full
Y-string potential, Eq. (8), consists of the so-called central
Y-string, or “Mercedes Benz-string,” term,

VY-central ¼ σY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðρ2 þ λ2 þ 2jρ × λjÞ

r
; ð9Þ

which is valid when8>>>>><
>>>>>:

2ρ2 −
ffiffiffi
3

p
ρ · λ ≥ −ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 3λ2 − 2

ffiffiffi
3

p
ρ · λ

q
2ρ2 þ ffiffiffi

3
p

ρ · λ ≥ −ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 3λ2 þ 2

ffiffiffi
3

p
ρ · λ

q
3λ2 − ρ2 ≥ − 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 þ 3λ2Þ2 − 12ðρ · λÞ2

p
;

ð10Þ

and three other angle-dependent two-body string, also
called V-string terms; see Eqs. (A1a)–(A1c).
Because of the complexity of conditions in Eqs. (10)

and (A1a)–(A1c) and of the difficulties related to their
implementation in calculations, there was a widespread
lack of use of the full Y-string potential (8) in comparison to
its dominant part, the central Y-string potential VY-central. In
our hyperspherical harmonics approach, however, both the
full Y-string potential and its central part are treated in
the same manner (just as the rest of the potentials) and
present no significant mathematical obstacles. Both the
central and the full Y-string potentials are decomposed
into hyperspherical harmonics, and the resulting decom-
position coefficients turn out close to each other, which
renders VY-central a good approximation to the full Y-string
potential.
However, there is a physical reason that favors retaining

only the central part of the Y-string potential over taking
account of the full potential: namely, the central Y-string
potential VY-central, Eq. (9), has an exact dynamical Oð2Þ
symmetry, unlike the full potential, Eq. (8). To demonstrate
this, we first show that the VY-central is a function of both
Delves-Simonov hyperangles ðχ; θÞ,

VY-centralðR; χ; θÞ ¼ σYR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ð1þ sin 2χj sin θjÞ

r
; ð11Þ

but a function of only one Smith-Iwai hyperangle—the
“polar angle” α,

VY-centralðR; α;ϕÞ ¼ σYR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ð1þ j cos αjÞ

r
: ð12Þ

This independence of the “azimuthal” Smith-Iwai hyper-
angle ϕ means that the associated component Q of the
hyperangular momentum (as in Ref. [8]) is a constant of the
motion. As this is actually a feature of the jρ × λj term
that is proportional to the area of the triangle subtended
by the three quarks, the property is thus shared by all

area-dependent potentials, such as the central part of the Y
string, Refs. [19].
The expansion (3) of the central Y-string potential (12) in

hyperspherical harmonics

VY-centralðR; α;ϕÞ

¼ σYR

ffiffiffi
3

2

r X∞
K¼0;4;…

vYK0Y
K0ν
00 ðα;ϕÞ

≡ VY
effðRÞ

�
1þ vY40

vY00
π
ffiffiffi
π

p
Y40

000ðα;ϕÞ þ � � �
�
; ð13Þ

where vYKQ are defined in Eq. (4), runs over Oð6Þ hyper-
spherical harmonics with K ¼ 0; 4; 8;… and zero value of
the democracy quantum number Q ¼ 0, as well as vanish-
ing angular momentum L ¼ m ¼ 0 [26]. The numerical
values are tabulated in Table I.
On the contrary, the expansion of the full Y-string

potential (8) has additional terms with K ¼ 0ðmod 6Þ,Q ¼
0ðmod 6Þ that spoil the dynamical Oð2Þ symmetry of the
potential in Eq. (9). These terms are much smaller than the
corresponding terms in the Δ-string, QCD Coulomb, and
logarithmic potentials, see Table I, and may therefore be
neglected, in leading approximation, with impunity. In
Appendix A, we illustrate how to evaluate the coefficient
vY-stringK¼6;Q¼�6 and show its value in Table I.

C. QCD Coulomb potential

The QCD Coulomb potential Eq. (14) is attractive in all
three pairs, unlike the electromagnetic one; in terms of
Jacobi vectors, it reads

VCoulomb ¼ −αC
X3
i>j¼1

jxi − xjj−1: ð14Þ

VCoulomb ¼ −αC

0
B@ 1ffiffiffiffiffiffiffi

2ρ2
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
ðρ2 þ 3λ2 − 2

ffiffiffi
3

p
ρ · λÞ

q

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðρ2 þ 3λ2 þ 2

ffiffiffi
3

p
ρ · λÞ

q
1
CA: ð15Þ

The Coulomb potential’s hyperspherical expansion is

VCoulombðR; α;ϕÞ ¼ VCoulombðRÞVCoulombðα;ϕÞ

¼ VCoulombðRÞ
X∞
K;Q

vCoulomb
K;Q YKQν

00 ðα;ϕÞ;

ð16Þ
where VCoulombðRÞ ¼ −αC=R and the expansion coeffi-
cients vCoulomb

K;Q are defined by the Coulomb analog of
Eq. (4) and are tabulated in Table I.
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We note that this and any other permutation-symmetric
sum of two-body potentials (with the sole exception of
the harmonic oscillator) has a specific “triple-periodic”
azimuthal ϕ hyperangular dependence with the angular
period of 2

3
π. That provides additional selection rules for

the “democracy quantum number” Q-dependent terms in
this expansion, besides the K ¼ 0; 4;… rule for Q ¼ 0
terms discussed above:

X∞
KQ

vΔKQY
KQν
00 ðα;ϕÞ ¼

X∞
K¼0;4;…

vΔK0Y
K0ν
00 ðα;ϕÞ

þ
X∞

K;Q¼�6

vΔKQY
KQν
00 ðα;ϕÞ

þ
X∞

K;Q¼�12

vΔKQY
KQν
00 ðα;ϕÞ

þ � � � ð17Þ

Note that the values of all quantum numbers here are
double those in two spatial dimensions (D ¼ 2), [20]. This
has to do with the different integration measures for D ¼ 2
and D ¼ 3 hyperspherical harmonics.

D. Δ-string potential

The Δ-string potential

VΔ ¼ σΔ
X3
i>j¼1

jxi − xjj; ð18Þ

written out in terms of Jacobi vectors reads

VΔ ¼ σΔ

� ffiffiffiffiffiffiffi
2ρ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðρ2 þ 3λ2 − 2

ffiffiffi
3

p
ρ · λÞ

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðρ2 þ 3λ2 þ 2

ffiffiffi
3

p
ρ · λÞ

r �
: ð19Þ

The Δ-string potential (19) in terms of Iwai-Smith
angles reads

VΔðR; α;ϕÞ ¼ σΔR

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinðαÞ sin

�
π

6
− ϕ

�s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinðαÞ sin

�
ϕþ π

6

�s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sinðαÞ cosðϕÞ

p !
: ð20Þ

To find the general hyperspherical harmonic expansion of
the Δ-string potential, we note that it factors into the hyper-
radial VΔðRÞ ¼ σΔR and the hyperangular part VΔðα;ϕÞ,

VΔðR; α;ϕÞ ¼ VΔðRÞVΔðα;ϕÞ

¼ VΔðRÞ
X∞
K;Q

vΔK;QY
KQν
00 ðα;ϕÞ; ð21Þ

where the expansion coefficients vΔK;Q are defined by the Δ
analog of Eq. (4) and are tabulated in Table I.

E. General pairwise power-law potential

Infinitely many permutation-symmetric sums of two-
body power-law potentials have the generic form of
Eq. (18) with different exponents ϵ; i.e., both the
Coulomb and the Δ-string potentials are two special cases
of the more general attractive homogeneous potential,

Vϵ ¼ sgnðϵÞσϵ
X3
i>j¼1

jxi − xjjϵ

¼ sgnðϵÞσϵ
�
ð2ρ2Þϵ=2 þ

�
1

2
ðρ2 þ 3λ2 − 2

ffiffiffi
3

p
ρ · λÞ

�
ϵ=2

þ
�
1

2
ðρ2 þ 3λ2 þ 2

ffiffiffi
3

p
ρ · λÞ

�
ϵ=2
�
; ð22Þ

where sgnðϵÞ ¼ ϵ=jϵj. Note that in the special case of the
harmonic oscillator potential (ϵ ¼ 2) the above form degen-
erates into an expression proportional to ρ2 þ λ2 ¼ R2.
In Fig. 1, we display the graphs of four ratios of

hyperspherical expansion coefficients as functions of the
exponent ϵ. There, one can see that these coefficients
depend smoothly on the exponent ϵ and that they uniformly
decrease with the increasing value of index K, in this class
of potentials. Numerical values of five expansion coeffi-
cients of potentials VY, VΔ, VCoulomb, and VLog are shown
in Table I.

F. Logarithmic potential

The logarithmic potential

VLog ¼ σLog
X3
i>j¼1

logðjxi − xjjÞ ð23Þ

has a divergent short-distance and a steadily rising long-
distance part; thence, it can be thought of as a linear
combination of the QCD Coulomb (with a homogeneity
index α ¼ −1) and a linear confining potential (with a
homogeneity index α ¼ 1), with a common homogeneity
index equal to 0: α ¼ 0. Note that this homogeneity
condition boils down to an additive, rather than multipli-
cative, factorization of the potential:

VLogðR; α;ϕÞ ¼ VLogðRÞ þ VLogðα;ϕÞ

¼ VLogðRÞ þ
X∞
K;Q

vLogK;QY
KQν
00 ðα;ϕÞ: ð24Þ
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The logarithmic potential has been used with great
success in the heavy quark-antiquark two-body problem;
it reproduces the remarkable mass independence of the
cc̄ − J=Ψ and bb̄ − Υ spectra. It has not been used in the
three-quark problem at all, to our knowledge.

IV. RESULTS

In the following, we present the K ¼ 0;…; 5 shells’
energy spectra, for two reasons: (1) both as an example of
the kind of results that one may expect as K increases and
in order to settle some long-standing issues regarding the
K ¼ 3 shell [6,7,27] and (2) as an illustration of the
methods, see Appendix B, that were used in their calcu-
lation. With regard to 2, we note that these examples are all
purely algebraic, in the sense that no numerical calculations
were necessary, but that ceases to be the case as K increases
beyond K > 8, at first only for certain subsets of states and,
ultimately, for all states.
Wenote thatwe have already reported at a conference [28]

some of the K ¼ 4 shell results, albeit without derivation.

A. K= 0, 1, 2 shells

The K ¼ 0, 1 bands are affected only by the v00
coefficient, so they need not be treated separately here,
whereas the K ¼ 2 band is affected by the v00 and v40
coefficients. The calculated energy splittings of K ¼ 2 shell
states depend only on the SU(6) multiplets,

½20; 1þ� 1

π
ffiffiffi
π

p
�
v00 −

1ffiffiffi
3

p v40

�

½70; 0þ� 1

π
ffiffiffi
π

p
�
v00 þ

1ffiffiffi
3

p v40

�

½70; 2þ� 1

π
ffiffiffi
π

p
�
v00 −

1

5
ffiffiffi
3

p v40

�

½56; 2þ� 1

π
ffiffiffi
π

p
�
v00 þ

ffiffiffi
3

p

5
v40

�
; ð25Þ

and the resulting spectrum is shown in Fig. 2. Our main
concern is the energy splitting pattern among the states
within the K ¼ 2 hyperspherical Oð6Þ multiplet. The
hyper-radial matrix elements of the linear hyper-radial
potential are identical for all the (hyper-radial ground)
states in one K band. Therefore, as is well known, the
energy differences among various substates of a particular
K band multiplet are integer multiples of the energy
splitting “unit” ΔK ¼ 1

π
ffiffi
π

p ð 1

5
ffiffi
3

p − 1ffiffi
3

p Þv40 ¼ − 1
π
ffiffi
π

p 4

5
ffiffi
3

p v40.

Note, however, that this kind of spectrum is subject to
the condition v00 ≠ 0.

B. K= 3 shell

With the area-dependent (i.e., ϕ-independent) central Y-
string potential VY-central, Eq. (9), in three dimensions, we

find that the each SUð6Þ, or S3 multiplet in the K ¼ 3 band
has one of four possible energies shown in Eqs. (26)
with vY-central6�6 ¼ 0.
Upon introduction of the ϕ-dependent two-body

“V-string” potentials VV-string, Eqs. (A1a)–(A1c) into the

full Y string, the vY-string6�6 coefficient becomes ≠ 0. After
diagonalization of the C½K0�;½K� matrix, one finds further
splittings among the previously degenerate states ½70; 1−�,
½56; 3−�, and ½20; 3−� as well as among ½70; 3−�, ½56; 1−�,
and ½20; 1−�,

½20; 1−� 1

π
ffiffiffi
π

p
�
v00 þ

1ffiffiffi
3

p v40 −
2

7
v66

�

½56; 1−� 1

π
ffiffiffi
π

p
�
v00 þ

1ffiffiffi
3

p v40 þ
2

7
v66

�

½70; 1−� 1

π
ffiffiffi
π

p ðv00Þ

½70; 2−� 1

π
ffiffiffi
π

p
�
v00 −

1ffiffiffi
3

p v40

�

½70; 3−� 1

π
ffiffiffi
π

p
�
v00 −

1ffiffiffi
3

p v40

�

½20; 3−� 1

π
ffiffiffi
π

p
�
v00 −

ffiffiffi
3

p

7
v40 − v66

�

½56; 3−� 1

π
ffiffiffi
π

p
�
v00 −

ffiffiffi
3

p

7
v40 þ v66

�
; ð26Þ

where our v66 < 0 is negative and Richard and Taxil’s is
positive. These results are displayed in Fig. 3.
For the K ¼ 3 band in three dimensions, the energy

splittings have been calculated by Bowler et al. [7,27] for
two-body anharmonic potentials perturbing the harmonic
oscillator and confirmed and clarified by Richard and Taxil,
Ref. [6], in the hyperspherical formalism with linear two-
body potentials (the Δ string).
In hindsight, Richard and Taxil’s Ref. [6] separation of

V4ðRÞ and V6ðRÞ potentials’ contributions is particularly
illuminating: the former corresponds precisely to our

FIG. 2. The K ¼ 2 spectrum of both the YandΔ strings in three
dimensions.
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“ϕ-independent” term v40, and the latter corresponds to the
“ϕ-dependent” potential’s contribution to v66.
As both the central Y string and the Δ string contain

the former, whereas only the Δ string contains the latter, we
see that the latter is the source of different degeneracies/
splittings in the spectra of these two types of poten-
tials [29].

C. K= 4 shell

The SUð6Þ, or S3 multiplets in the K ¼ 4 band have one
of the following 12 values of the diagonalized C matrix
CK
½md� ×

v00
π
ffiffi
π

p , from which one can evaluate the eigenenergies.

We use the baryon-spectroscopic notation ½dim; LP�, where
dim is the dimension of the SUFSð6Þ representation and the
correspondence with the representations of the permutation
group S3 is given as 70 ↔ M, 20 ↔ A, 56 ↔ S,
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ð27Þ

The Δ-string results are shown in Fig. 4. Again, as the
third coefficient v6�6 vanishes in the central Y-string
potential VY-central (which is without two-body terms),
or as it is roughly ten times smaller than usual, in the
full Y-string potential VY-string, the (second) observable
difference between Y-string and Δ-string potentials shows
up in the magnitude of splitting between the pairs of
½70; 2þ�; ½700; 2þ� and ½70; 4þ�; ½700; 4þ� levels: the Y-string
states are ordered as shown in the third (v6�6 ¼ 0) column
in Fig. 4. As explained earlier, the vanishing of v6�6 follows
from the central Y-string potential’s independence of the
Iwai angle ϕ, i.e., from the dynamical “kinematic rotations/
democracy transformations” Oð2Þ symmetry [19,20] asso-
ciated with it.
Numerical results for other potentials are shown in

Table II. Table II shows that the ordering of K ¼ 4 states
is not universally valid even for the (convex) potentials
considered here; note that, although the three highest-lying
multiplets always come from the same set (½70; 3þ�;
½56; 2þ�; ½20; 3þ�; ½700; 4þ�; see Fig. 4), their orderings are
different in these potentials. That, of course, is a conse-
quence of different ratios v40=v00, v6�6=v00, and v80=v00.
This goes to show that one cannot expect strongly restric-
tive ordering theorems to hold for three-body systems, as
they hold in the two-body problem, Ref. [2]. Nevertheless,
even the present results are useful, as they indicate that
certain sets of multiplets are jointly lifted, or depressed,
as a single group in the spectrum, with ordering within
the group being subject to the detailed structure of the
potential.
Of course, similar conclusions hold also for K ¼ 3

spectrum splitting but are less pronounced, as that shell

FIG. 3. Schematic representation of the K ¼ 3 band in the
energy spectrum of the Δ-string potential in three dimensions,
following Ref. [6]. The sizes of the two splittings (the vΔ40-
induced Δ and the subsequent vΔ6�6-induced splitting) are not on
the same scale, the latter having been increased, so as to be clearly
visible. The Δ here is the same as the Δ in the K ¼ 2 band.
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depends only on two numbers: the ratios v40=v00 and
v6�6=v00. As the difference between Δ and Y-string
potentials is most pronounced in the value of v6�6, that
is the case in which the distinction between these two
potentials is most clearly seen.
On the phenomenological side, some eigenenergies of

three quarks in the K ¼ 4 shell have been calculated in
Ref. [30] using a variational method based on harmonic
oscillator wave functions. These calculations included the
Δ-string, Y-string, and Coulomb potentials, all at once, as
well as a relativistic kinetic energy [this kinetic energy
violates theOð6Þ symmetry]. Each one of these three terms
in the potential is homogenous, but their sum is not—
therefore, the individual contributions of these terms to the
total/potential energy cannot be compared directly with the
results of their separate calculations. Moreover, each term
in the Hamiltonian breaks the Oð6Þ symmetry differently,
thus inducing different splittings of energy spectra. These
facts prevent us from directly comparing our results with
Ref. [30], but the overall trend for groups of states seem to
be in agreement with our results; see Table II for
comparison.

D. K= 5 shell

With a ϕ-independent central Y-string potential in three
dimensions, we find that each SUð6Þ, or S3 multiplet in the
K ¼ 5 band has one of four of 15 different energies. Upon
introduction of a ϕ-dependent (“two-body”) component of

the potential, proportional to v66, and upon diagonalization
of the C½K0�;½K� matrix, one finds four new splittings between
previously degenerate states, (1) ½56; 2−�; ½20; 2−�; (2) ½560;
4−�; ½200; 4−�; (3) ½70; 1−�; ½700; 1−�; and (4) ½70; 5−�;
½700; 5−�, as well as three nondegenerate states of which
the energies are shifted by v66. These algebraic results are
summarized in
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FIG. 4. Schematic representation of the K ¼ 4 band in the
energy spectrum of three quarks in the Δ-string potential.

TABLE II. The values of effective potentials in the Y-,Δ-string,
and (strong) Coulomb potentials for various K ¼ 4 states (for all
allowed orbital waves L).

K ½SUð6Þ; LP� hVY=σYi hVΔ=σΔi −hVC=αCi
4 ½56; 0þ� 1.45921 2.87122 3.82554
4 ½70; 0þ� 1.39729 2.80996 4.11043
4 ½70; 1þ� 1.47483 2.88587 3.48449
4 ½56; 2þ� 1.51372 2.92453 3.36709
4 ½20; 2þ� 1.47483 2.88587 3.48449
4 ½70; 2þ� 1.44997 2.87749 4.13184
4 ½700; 2þ� 1.43052 2.82683 3.49379
4 ½70; 3þ� 1.51906 2.92963 3.281
4 ½20; 3þ� 1.50137 2.91213 3.36239
4 ½56; 4þ� 1.4187 2.83095 3.94783
4 ½70; 4þ� 1.44036 2.85066 3.3656
4 ½700; 4þ� 1.49938 2.91178 3.81992
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The numerical results for three different potentials are
displayed in Table III, whereas in Table IV we show the
results for the Δ-string potential, with this potential's
different multipole contributions separated and graphically
displayed in Fig. 5.

TABLE III. The values of the effective potential matrix ele-
ments for the Y-, Δ-string, and (strong) Coulomb potentials and
various K ¼ 5 states (for all allowed orbital waves L).

K ½SUð6Þ; LP� hVY=σYi hVΔ=σΔi −hVC=αCi
5 ½70; 1−� 1.39729 2.80778 2.55667
5 ½700; 1−� 1.46442 2.87829 2.85542
5 ½56; 1−� 1.44898 2.87055 2.46858
5 ½20; 1−� 1.44898 2.85059 2.5953
5 ½70; 2−� 1.49547 2.90629 2.32887
5 ½20; 2−� 1.47483 2.87091 2.47611
5 ½56; 2−� 1.47483 2.90084 2.28602
5 ½70; 3−� 1.46682 2.84167 2.41462
5 ½700; 3−� 1.44037 2.8887 2.30016
5 ½7000; 3−� 1.5103 2.92104 2.67414
5 ½56; 3−� 1.44031 2.82915 2.84424
5 ½20; 3−� 1.44031 2.87571 2.54855
5 ½70; 4−� 1.49547 2.90629 2.32887
5 ½56; 4−� 1.52299 2.93685 2.23815
5 ½20; 4−� 1.52299 2.93020 2.28039
5 ½70; 5−� 1.50797 2.91991 2.75234
5 ½700; 5−� 1.41405 2.82520 2.30772
5 ½56; 5−� 1.44788 2.84623 2.63735
5 ½20; 5−� 1.44788 2.87283 2.46839

TABLE IV. The values of the effective three-body Δ-string
potential divided by the string tension σΔ, hVΔðv0;0; v4;0;
v6;6; v8;0Þ=σΔi, as a function of the expansion coefficients
ðv0;0; v4;0; v6;6; v8;0Þ, for various K ¼ 5 states (for all allowed
orbital waves L). Here, hVΔðAÞ=σΔi ¼ hVΔðv0;0; v4;0 ≠ 0 ¼
v6;6 ¼ v8;0Þ=σΔi, and hVΔðBÞ=σΔi ¼ hVΔðv0;0; v4;0; v8;0 ≠ 0 ¼
v6;6Þ=σΔi.
K ½SUð6Þ; LP� hVΔðAÞ=σΔi hVΔðBÞ=σΔi hVΔ=σΔi
5 ½70; 1−� 2.8124 2.80996 2.80778
5 ½700; 1−� 2.88099 2.87611 2.87829
5 ½56; 1−� 2.85813 2.86057 2.87055
5 ½20; 1−� 2.85813 2.86057 2.85059
5 ½70; 2−� 2.90385 2.90629 2.90629
5 ½56; 2−� 2.88099 2.88587 2.87091
5 ½20; 2−� 2.88099 2.88587 2.90084
5 ½70; 3−� 2.85051 2.85214 2.84167
5 ½700; 3−� 2.87918 2.87827 2.8887
5 ½7000; 3−� 2.92091 2.921 2.92104
5 ½56; 3−� 2.85813 2.85243 2.82915
5 ½20; 3−� 2.85813 2.85243 2.87571
5 ½70; 4−� 2.90385 2.90629 2.90629
5 ½56; 4−� 2.93434 2.93352 2.93685
5 ½20; 4−� 2.93434 2.93352 2.93020
5 ½70; 5−� 2.91909 2.91872 2.91991
5 ½700; 5−� 2.82764 2.82639 2.82520
5 ½56; 5−� 2.85813 2.85953 2.84623
5 ½20; 5−� 2.85813 2.85953 2.87283

FIG. 5. Schematic representation of the K ¼ 5 band in the
energy spectrum of the Δ- and Y-string potentials in three
dimensions. The sizes of the two splittings (the vΔ40-induced Δ
and the subsequent vΔ80-induced splitting) are not on the same
scale. The Δ here is not the same as the Δ in the K ¼ 2 band.
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V. DISCUSSION AND COMPARISON WITH
PREVIOUS CALCULATIONS

The following points ought to be made:
(1) The present results are meant (only) as examples

of what can be done; these calculations can be
extended with K increasing ad infinitum, with the
help of Oð6Þ matrix elements that are functions of
Oð6Þ Clebsch-Gordan coefficients, which can be
found in Ref. [8]. This is subject to the proviso
that at some value of K the calculations must
become numerical.

(2) The algebraic results shown in Sec. IV do not hold
for the QCD Coulomb potential, as the QCD
Coulomb hyper-radial potential −αC=R Eq. (16)
has a dynamical Oð7Þ symmetry and therefore
accidental degeneracies are expected to appear. That
symmetry is broken by the hyperangular part of the
Coulomb three-body potential in a manner that still
remains to be explored.

(3) In the K ¼ 2 band/shell of the three-body energy
spectrum, the eigenenergies depend on two coef-
ficients ðv00; v40Þ, and the splittings among various
levels depend only on the (generally small) ratio
v40=v00. This means that the eigenenergies form a
fixed pattern (“ordering”) that does not depend on
the shape of the three-body potential. The actual
size of the K ¼ 2 shell energy splitting depends on
the small parameter v40=v00, provided that the
potential is permutation symmetric. This fact
was noticed almost 40 years ago, Refs. [31,32],
and it suggests that similar patterns might exist in
higher-K shells.
The practical advantage of permutation-adapted

hyperspherical harmonics over the conventional
ones is perhaps best illustrated here: the K ¼ 2
shell splittings in the Y- and Δ-string potentials
were obtained, after some complicated calculations
using conventional hyperspherical harmonics in
Ref. [33], whereas here they follow from the
calculation of four (simple) hyperangular matrix
elements.

(4) Historically, extensions of this kind of calculations
to higher (K ≥ 3) bands, for general three-body
potentials, turned out more problematic than ex-
pected; Bowler et al., Ref. [7], published a set of
predictions for the K ¼ 3, 4 bands, which were
later questioned by Richard and Taxil’s, Ref. [6],
K ¼ 3 hyperspherical harmonic calculation; see
also Refs. [30,34]. This controversy has not been
resolved up to the present day, to our knowledge,
so we address that problem first. In the K ¼ 3
case, the energies depend on three coefficients
(v00, v40, and v6�6), and there is no mixing of
multiplets, so all eigenenergies can be expressed in

a simple closed form that agrees with Ref. [6] and
depends on two small parameters v40=v00 and
v6�6=v00.
Note that the coefficient v6�6 vanishes in the

(simplified) central Y-string potential (without
two-body terms) and thus causes the first poten-
tially observable difference between Y- and Δ-
string potentials: the splittings between ½20; 1−�
and ½56; 1−� as well as between ½20; 3−� and
½56; 3−�. The actual value of v6�6 in the exact
Y-string potential is so small, so as to be negligible
compared with the other two coefficients, v00 and
v40, in its expansion.

(5) Note that from Eq. (7) it follows that there must
exist an upper limit on the values of the ratios
jv40=v00j ≤

ffiffiffi
3

p
, and from Eq. (8), it follows that

jv6�6=v00j ≤ 7=2. If these limits are exceeded, the
overall sign of the effective potential flips, and the
solution (motion) becomes unbound. This example
clearly shows the limitations of the present method.
However, the physically interesting potentials con-
sidered in Sec. III all satisfy inequalities v00 ≫ jv40j
and v00 ≫ jv6�6j, as can be seen in Table I and
Fig. 1, which shows that this method may be
applied here.

(6) The above points (2) and (3) display possible “fault
line(s)” in the predictions of the ordering of shells
with different values of K: in case v00 ¼ 0, the
K ¼ 0, 1 shells become unbound to leading (adia-
batic) order, and their binding becomes a question of
higher-order (nonadiabatic) effects.

(7) We shall not attempt a numerical prediction of triple-
heavy hyperon masses here, for the following
reasons: (a) the mass of heavy quark(s) mQ is not
precisely known in the three-quark environment;
(b) the QCD coupling constant αS is not known in
this environment; (c) the value of the effective string
tension σ is not known in this environment; and
(d) the spin-dependent interactions, which are not
included here, may significantly influence the re-
sults. Nevertheless, nothing prevents the interested
reader from inserting his/her favorite values of mQ,
αS, and σ into our formulas to obtain some definite
predictions.

(8) There are several possible straightforward exten-
sions of the present work: (a) to equal mass systems
with a relativistic kinematic energy and (b) to two
identical and one distinct quark systems. Both
extensions break the Oð6Þ symmetry further still
but can be treated within the present approach, with
certain caveats.

(9) Note that we have kept the full SUFð3Þ, SUFSð6Þ
notation for the three-quark states, even though
there can be only one flavor, with three identical
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heavy quarks. This is in order to keep maxi-
mum generality and to allow potential future
extension to relativistic light-quark systems
(cf. Refs. [30,34]).

(10) The present formalism allows a (mathematically
proper) extension of the Regge theory/trajectories
[35–37] to three-quark systems as well as an
extension of Birman-Schwinger’s results [38,39]
about the number of bound states of a Schrödinger
equation in a given potential.

(11) The present formalism allows an extension to atomic
and molecular physics, as well, albeit with signifi-
cant modifications: (a) atomic systems are subject to
Coulomb potential, which leads to a higher dynami-
cal symmetry, that needs to be taken into account,
and (b) molecular systems are bound by inhomog-
enous potentials, such as the Lennard-Jones one,
which must be treated differently.

VI. SUMMARY AND CONCLUSIONS

In summary, we have reduced the nonrelativistic (quan-
tum) three-identical body problem to a single ordinary
differential equation for the hyper-radial wave function
with coefficients multiplying the homogenous hyper-radial
potential that are determined entirely by Oð6Þ group-
theoretical arguments; see Refs. [8,9]. That equation can
be solved in the same way as the radial Schrödinger
equation in three dimensions. The breaking of the Oð6Þ
symmetry by the three-quark potential determines the
ordering of states within different shells in the energy
spectrum.
The dynamical Oð2Þ symmetry of the Y-string potential

was discovered in Ref. [19], with the permutation group
S3 ⊂ Oð2Þ as the subgroup of the dynamical Oð2Þ sym-
metry. The existence of an additional dynamical symmetry
strongly suggested an algebraic approach, such as that
used in two-dimensional space, in Ref. [20]. In three
dimensions, the hyperspherical symmetry group is Oð6Þ,
and the residual dynamical symmetry of the potential is
S3⊗ SOð3Þrot ⊂Oð2Þ⊗ SOð3Þrot ⊂Oð6Þ, where SOð3Þrot
is the rotational symmetry associated with the (total orbital)
angular momentum L. We showed how the energy eigen-
values can be calculated as functions of the three-body

potential’s (hyper)spherical harmonics expansion coeffi-
cients v3−bodyK;Q and Oð6Þ Clebsch-Gordan coefficients that
are evaluated in Ref. [8].
We have used these results to calculate the energy

splittings of various states [or SUFSð6Þ and S3 multiplets]
in the K ≤ 5 shells of the Y-, Δ-string, and Coulomb
potential spectra. The ordering of bound states has its most
immediate application in the physics of three confined
quarks, for which the question was raised originally,
Refs. [6,7,31,32]. We have shown that in the K ≥ 3 shells
a clear difference appears between the spectra of the Y- and
Δ-string models of confinement. That is also the first
explicit consequence of the dynamical Oð2Þ symmetry of
the Y-string potential.
We stress the algebraic nature of our results, as this

method can be used to obtain predictions for arbitrarily
large K values, the calculations of which must be numeri-
cal, however, as soon as the number of states that are mixed
exceeds 5.
The results presented here do not represent the outer

boundaries of applicability of our method but are rather just
illustrative examples, with a view to its application to
atomic, molecular, and nuclear physics.
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APPENDIX A: EVALUATION OF OBTUSE-
ANGLED TWO-BODY CONTRIBUTIONS

TO THE Y STRING

As stated in Sec. II, at obtuse angles (≥ 1200), there are
two-body contributions to the Y-string potential that break
the dynamical Oð2Þ symmetry of Eq. (12). Therefore, the
expansion coefficient vY-stringK¼6;Q¼�6 of the full potential is not

zero vY-string6;�6 ≠ 0.
Three angle-dependent two-body string in terms of

Jacobi vectors ρ, λ are, see Ref. [33],
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The Oð6Þ v6�6 coefficient is defined in Eq. (4),

vY-string6;�6 ¼
Z

Y6�6
00 ðΩ5ÞVY-stringðα;ϕÞdΩð5Þ; ðA2Þ

where the integration over dΩð5Þ is constrained by inequal-
ities (A1a)–(A1c) and

Y6;�6
00 ðα;ϕÞ ¼ 2

π3=2
R−6ðλ2 − ρ2 � 2iλ · ρÞ3

¼ ∓ 2i

π3=2
sin3 α exp ð∓ 3iϕÞ; ðA3Þ

which is equivalent, up to the normalization constant, to the
Oð3Þ spherical harmonics Y3;�3ðα;ϕÞ. Numerical evalu-
ation yields vY-string6;�6 ¼ −0.027, the value of which is
smaller than the subsequent coefficients in the expansion
of this potential; see Table I.

APPENDIX B: DETAILS OF CALCULATIONS

1. K= 2 shell

The calculated coefficients entering the effective poten-
tials for states with K ¼ 2 can be found in Table V.

2. K= 3 shell

The calculated effective potentials in states with of
K ¼ 3 and various values L are listed in Tables VI and VII.

3. K= 4 shell

The calculated effective potentials for states with
K ¼ 4 and various values of L are listed in Table VIII.

TABLE VII. The values of the off-diagonal matrix elements of
the hyperangular part of the three-body potential π

ffiffiffi
π

p h½SUð6Þf;
LP
f �j2ℜeY6;�6;0

0;0 j½SUð6Þi; LP
i �iang, for various K ¼ 3 states (for all

allowed orbital waves L).

K ½SUð6Þf; LP
f � ½SUð6Þi; LP

i � π
ffiffiffi
π

p h2ℜeY6;�6;0
0;0 iang

3 ½20; 1−� ½20; 1−� −1
3 ½56; 1−� ½56; 1−� 1
3 ½20; 3−� ½20; 3−� − 2

7

3 ½56; 3−� ½56; 3−� 2
7

3 ½70; L−� ½70; L−� 0

TABLE VI. The values of the three-body potential hyper-
angular diagonal matrix elements hY4;0

00 iang, for various K ¼ 3
states (for all allowed orbital waves L).

K ðK;Q; L;M; νÞ ½SUð6Þ; LP� π
ffiffiffi
π

p hY4;0
00 iang

3 ð3;∓ 3; 1; 1;�1Þ ½20; 1−� 1ffiffi
3

p

3 ð3;∓ 3; 1; 1;�1Þ ½56; 1−� 1ffiffi
3

p

3 ð3;�1; 1; 1;�3Þ ½70; 1−� 0
3 ð3;∓ 1; 2; 2;�5Þ ½70; 2−� − 1ffiffi

3
p

3 ð3;∓ 1; 3; 3;�2Þ ½70; 3−� 5
7
ffiffi
3

p

3 ð3;�3; 3; 3;∓ 6Þ ½56; 3−� −
ffiffi
3

p
7

3 ð3;�3; 3; 3;∓ 6Þ ½20; 3−� −
ffiffi
3

p
7

TABLE V. The values of the three-body potential hyperangular
matrix elements π

ffiffiffi
π

p hY4;0
00 iang, for various K ¼ 2 states (for all

allowed orbital waves L). The correspondence between the
irreducible representations ðS; A;MÞ of the S3 permutation group
and SUð6ÞFS symmetry multiplets (20,56,70) of the three-quark
system is as follows: S ↔ 56, A ↔ 20 and M ↔ 70.

K ðK;Q; L;M; νÞ ½SUð6Þ; LP� π
ffiffiffi
π

p hY4;0
00 iang

2 ð2;−2; 0; 0; 0Þ ½70; 0þ� 1ffiffi
3

p

2 (2,0,2,2,0) ½56; 2þ� ffiffi
3

p
5

2 ð2;∓ 2; 2; 2;�3Þ ½70; 2þ� − 1

5
ffiffi
3

p

2 (2,0,1,1,0) ½20; 1þ� − 1ffiffi
3

p
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The selection rules that we have not derived fully, as of yet,
are as follows:
(1) the three-dimensional expansion of the potentials

goes in double-valued steps of K and Q, as com-
pared with the two-dimensional case; viz., K ¼ 0, 4,
8, 12 and K ¼ 6, Q ¼ 6 in three dimensions and
K ¼ 0, 2, 4, 6 and K ¼ 3,Q ¼ 3 in two dimensions.
The latter can be understood in terms of Oð3Þ
Clebsch-Gordan coefficients and spherical harmon-
ics, whereas the former can be understood in terms
of Oð6Þ Clebsch-Gordan coefficients, the properties
of which are not (well) known, however.

(2) The selection rules read Q≡ 0ðmod 6Þ and
K ≡ 0ðmod 4Þ, and the Clebsch-Gordan coefficients
demand Q ¼ jQf −Qij.

The ϕ-dependent (two-body) component in the three-
body potential, which is proportional to v6�6, enters the
K ¼ 4 spectrum, only through the off-diagonal matrix
elements of two pairs of mixed-symmetry ½70; LP�-plets;

the multiplet states j½70; Lþ�i and j½700; Lþ�i have identical
physical quantum numbers ðK;LPÞ, whereas the democ-
racy label Q is generally not a good quantum number in
permutation-symmetric three-body potentials, so it may be
expected to be broken, and the corresponding eigenstates to
mix under the influence of general permutation-symmetric
three-body potentials. That is precisely what happens when
the expansion coefficients v6�6 ≠ 0 do not vanish. In that
case, the two multiplets j½70; Lþ�i and j½700; Lþ�i mix, as
determined by the diagonalization of the 2 × 2 potential
matrix.

a. |[70;L + ]〉− |[700;L+ ]〉 mixing and the physical states

The three-body potential matrix in the Oð6Þ symmetric
states basis is nondiagonal in general; for example, for two
multiplets (jai, jbi) that have identical quantum numbers,
such as j½70; Lþ�i and j½700; Lþ�i, the potential matrix is
2 × 2 and can be written as

Va;b ¼
1

π
ffiffiffi
π

p
 
v00 þ ½v40hY4;0;0

00 ia þ v80hY8;0;0
00 ia� v6�6h2ℜeY6;�6;0

0;0 ia;b
v6�6h2ℜeY6;�6;0

0;0 ib;a v00 þ ½v40hY4;0;0
00 ib þ v80hY8;0;0

00 ib�

!
; ðB1Þ

where v00; v40; v80, and v6�6 are the hyperspherical ex-

pansion coefficients of the potential in question; hYK;0;0
00 ia

and hYK;0;0
00 ib are the Kth diagonal hyperangular matrix

elements for SOð6Þ states jai and jbi, respectively, that can
be read off from Table VIII; and h2ℜeY6;�6;0

0;0 ia;b is the off-
diagonal matrix element, from Table IX. Diagonalization is

accomplished by way of mixing the j½70; Lþ�ai and
j½70; Lþ�bi states,
j½70; Lþ�i ¼ cos θj½70; Lþ�ai þ sin θj½700; Lþ�bi;
j½700; Lþ�i ¼ − sin θj½70; Lþ�ai þ cos θj½700; Lþ�bi; ðB2Þ
the mixing angle θ being determined by

TABLE VIII. The values of the three-body potential hyperangular diagonal matrix elements hY4;0;0
00 iang and

hY8;0;0
00 iang, for various K ¼ 4 states (for all allowed orbital waves L).

K ðK;Q; L;M; νÞ ½SUð6Þ; LP� π
ffiffiffi
π

p hY4;0;0
00 iang π

ffiffiffi
π

p hY8;0;0
00 iang

4 ð4;�4; 0; 0; 0Þ ½70; 0þ� ffiffi
3

p
2

1

2
ffiffi
5

p

4 (4,0,0,0,0) ½56; 0þ� 0 2ffiffi
5

p

4 ð4;�2; 1; 1;�2Þ ½70; 1þ� 0 − 1ffiffi
5

p

4 ð4; 0; 2; 2;∓ ffiffiffiffiffiffiffiffi
105

p Þ ½56; 2þ� − 12
ffiffi
3

p
35

ffiffi
5

p
7

4 ð4; 0; 2; 2;∓ ffiffiffiffiffiffiffiffi
105

p Þ ½20; 2þ� 0 − 1ffiffi
5

p

4 ð4;�2; 2; 2;�2Þ ½70; 2þ� 4
ffiffi
3

p
35

ffiffi
5

p
7

4 ð4;�4; 2; 2;∓ 3Þ ½700; 2þ� 2
ffiffi
3

p
7

− 1

7
ffiffi
5

p

4 ð4;∓ 2; 3; 3;�13Þ ½70; 3þ� − 5
ffiffi
3

p
14

1

14
ffiffi
5

p

4 (4,0,3,3,0) ½20; 3þ� − 3
ffiffi
3

p
14

−
ffiffi
5

p
14

4 (4,0,4,4,0) ½56; 4þ� 5
ffiffi
3

p
14

3

14
ffiffi
5

p

4 ð4;∓ 2; 4; 4;�5Þ ½70; 4þ� 3
ffiffi
3

p
14

−
ffiffi
5

p
42

4 ð4;∓ 4; 4; 4;�10Þ ½700; 4þ� − 3
ffiffi
3

p
14

1

42
ffiffi
5

p
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tan2θ

¼ 2v6�6h2ℜeY6;�6;0
0;0 ia;b

½v40hY4;0;0
00 iaþv80hY8;0;0

00 ia�− ½v40hY4;0;0
00 ibþv80hY8;0;0

00 ib�
:

ðB3Þ

The (diagonal) eigenvalues of the potential matrix

Va;b ¼
�
a c

c d

�
ðB4Þ

can also be expressed in terms of the matrix elements
ða; c; dÞ as

V� ¼ 1

2
ðaþ d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 2adþ 4c2 þ d2

p
Þ;

and that leads to, for the [70, 4]-plets,

V�ð½70; 4�Þ

¼ 1

π
ffiffiffi
π

p
�
v00 þ

1

42
ffiffiffi
5

p ð−2v80

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1215v240 − 54

ffiffiffiffiffi
15

p
v40v80 þ 9v280 þ 1280v26�6

q
Þ
�

and, for the [70, 2]-plets,

V�ð½70;2�Þ¼
1

π
ffiffiffi
π

p
�
v00þ

1

35
ð7

ffiffiffi
3

p
v40þ2

ffiffiffi
5

p
v80

�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3v240−2

ffiffiffiffiffi
15

p
v40v80þ5v280þ120v26�6

q
Þ
�
;

where b ¼ v40, c ¼ v80, and d ¼ v6�6.

TABLE X. The values of the three-body potential hyperangular diagonal matrix elements hY4;0;0
00 iang, hY8;0;0

00 iang,
and π

ffiffiffi
π

p h2ℜeY6;�6;0
00 iang for various K ¼ 5 SU(6) multiplets (with orbital angular momentum L ¼ J). States

containing one or more asterisks (�) are subject to mixing described in the text.

K ðK;Q; L;M; νÞ ½SUð6Þ; LP� π
ffiffiffi
π

p hY4;0;0
00 iang π

ffiffiffi
π

p hY8;0;0
00 iang π

ffiffiffi
π

p h2ℜeY6;�6;0
00 iang

5 ð5;−5; 1; 1; 1Þ ½70; 1−� ffiffi
3

p
2

1

2
ffiffi
5

p �
5 ð5;−1; 1; 1; 3Þ ½700; 1−� 0 1ffiffi

5
p �

5 ð5;−3; 1; 1;−5Þ ½56; 1−� 1

2
ffiffi
3

p − 1

2
ffiffi
5

p − 2
5

5 ð5;−3; 1; 1;−5Þ ½20; 1−� 1

2
ffiffi
3

p − 1

2
ffiffi
5

p 2
5

5 ð5;−1; 2; 2;−13Þ ½70; 2−� − 1

2
ffiffi
3

p − 1

2
ffiffi
5

p 0

5 ð5;−3; 2; 2; 3Þ ½56; 2−� 0 − 1ffiffi
5

p − 3
5

5 ð5;−3; 2; 2; 3Þ ½20; 2−� 0 − 1ffiffi
5

p 3
5

5 ð5;−5; 3; 3; 6Þ ½70; 3−� 2

3
ffiffi
3

p − 1

3
ffiffi
5

p ��
5 ð5;−1; 3; 3; 7 − ffiffiffiffiffiffiffiffi

241
p Þ ½700; 3−� − 5

12
ffiffi
3

p þ 85

12
ffiffiffiffiffiffi
723

p 241þ19
ffiffiffiffiffiffi
241

p
2892

ffiffi
5

p ��
5 ð5;−1; 3; 3; 7þ ffiffiffiffiffiffiffiffi

241
p Þ ½7000; 3−� − 5ð241þ17

ffiffiffiffiffiffi
241

p Þ
2892

ffiffi
3

p 241−19
ffiffiffiffiffiffi
241

p
2892

ffiffi
5

p ��
5 ð5;−3; 3; 3; 0Þ ½56; 3−� 1

2
ffiffi
3

p 7

6
ffiffi
5

p 14
15

5 ð5;−3; 3; 3; 0Þ ½20; 3−� 1

2
ffiffi
3

p 7

6
ffiffi
5

p − 14
15

5 ð5;−1; 4; 4; 8Þ ½70; 4−� − 1

2
ffiffi
3

p − 1

2
ffiffi
5

p 0

5 ð5;−3; 4; 4; 24Þ ½56; 4−� − 7

6
ffiffi
3

p 1

6
ffiffi
5

p − 2
15

5 ð5;−3; 4; 4; 24Þ ½20; 4−� − 7

6
ffiffi
3

p 1

6
ffiffi
5

p 2
15

5 ð5;−5; 5; 5; 15Þ ½70; 5−� − 5

6
ffiffi
3

p
ffiffi
5

p
66

� � �
5 ð5;−1; 5; 5; 3Þ ½700; 5−� 7

6
ffiffi
3

p 17

66
ffiffi
5

p � � �
5 ð5;−3; 5; 5; 9Þ ½56; 5−� 1

2
ffiffi
3

p − 19

66
ffiffi
5

p 8
15

5 ð5;−3; 5; 5; 9Þ ½20; 5−� 1

2
ffiffi
3

p − 19

66
ffiffi
5

p − 8
15

TABLE IX. The values of the off-diagonal matrix elements of
the hyperangular part of the three-body potential π

ffiffiffi
π

p h½SUð6Þf;
LP
f �j2ℜeY6;�6;0

0;0 j½SUð6Þi; LP
i �iang, for various K ¼ 4 states (for all

allowed orbital waves L).

K ½SUð6Þf; LP
f � ½SUð6Þi; LP

i � π
ffiffiffi
π

p h2ℜeY6;�6;0
0;0 iang

4 ½70; 2þ� ½700; 2þ� 6
7

ffiffi
6
5

q
4 ½700; 2þ� ½70; 2þ� 6

7

ffiffi
6
5

q
4 ½70; 4þ� ½700; 4þ� 8

21

4 ½700; 4þ� ½70; 4þ� 8
21

4 ½20; Lþ� ½20; Lþ� 0
4 ½56; Lþ� ½56; Lþ� 0
4 ½20; Lþ� ½56; Lþ� 0
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4. K= 5 shell

The calculated effective potentials of states with K ¼ 5
and various values of L are listed in Tables X,XI, and XII.
The ϕ-dependent (two-body) potential component pro-

portional to v6�6 enters these effective potentials in two
ways: (1) through diagonal matrix elements in Table XI,
causing the splitting of symmetric ½56; LP� and antisym-
metric ½20; LP� multiplets, as in the K ¼ 3 case, and
(2) through off-diagonal matrix elements in Table XII,
causing further splitting of two mixed-symmetry ½70; LP�-
plets, as in the K ¼ 4 case. Just as in Appendix B 3 a, the
three-body potential matrix in the Oð6Þ symmetric states
basis is nondiagonal in general and can be diagonalized in
the same manner.

a. Two-state |[70;LP]〉− |[700;LP]〉 mixing

Diagonalization of the 2 × 2 matrices proceeds by way of
mixing of the j½70; Lþ�ai, and j½70; Lþ�bi states, as deter-
mined by Eq. (B2), and the mixing angle θ being given by
Eq. (B3). The (diagonal) eigenvalues of the potential matrix
Eq. (B4) can also be expressed in terms of thematrix elements
and that leads to, for the ½70; 5−�-plets, see Table XII,

V�ð½70; 5�Þ

¼ 1

π
ffiffiffi
π

p
�
v00 þ

ffiffiffi
3

p

18
v40 þ

ffiffiffi
5

p

30
v80þ

�
ffiffiffi
5

p

165

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1815v240 þ 66

ffiffiffiffiffi
15

p
v40v80 þ 9v280 þ 968v26�6

q �

and, for the ½70; 1−�-plets, see Table XII,

V�ð½70; 1�Þ

¼ 1

π
ffiffiffi
π

p
�
v00 þ

ffiffiffi
3

p

4
v40 þ

3
ffiffiffi
5

p

20
v80

� 1

20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
75v240 − 10

ffiffiffiffiffi
15

p
v40v80 þ 5v280 þ 96v26�6

q �
;

where b ¼ v40, c ¼ v80, and d ¼ v6�6.

b. Three-state |[70;3− ]〉− |[700;3− ]〉− |[7000;3 − ]〉 mixing

In the L ¼ 3 case, the mixing potential matrix is 3 × 3
(see Table XII)

Va;b ¼

0
B@

α δ 0

δ β ϵ

0 ϵ γ

1
CA: ðB5Þ

Its eigenvalues can also be expressed in terms of the matrix
elements ðα; β; γ; δ; ϵÞ as follows,

Vð½70; 3−�Þ ¼ 1

3
ðαþ β þ γÞ þ 1

3
ffiffiffi
3

p
2
A −

ffiffiffi
3

p
2

3A
I ðB6Þ

Vð½700; 3−�Þ ¼ 1

3
ðαþ β þ γÞ − ð1 − i

ffiffiffi
3

p Þ
6
ffiffiffi
3

p
2

Aþ ð1þ i
ffiffiffi
3

p Þ
3
ffiffiffi
3

p
4A

I

ðB7Þ

Vð½7000;3−�Þ ¼ 1

3
ðαþ βþ γÞ− ð1− i

ffiffiffi
3

p Þ
6
ffiffiffi
3

p
2

Aþ ð1þ i
ffiffiffi
3

p Þ
3
ffiffiffi
3

p
4A

I;

ðB8Þ

where C and D have been separated into the unperturbed
(ϵ ¼ δ ¼ 0) part and the perturbation—collect the δ2 þ ϵ2

terms together:

TABLE XI. The values of the diagonal matrix elements of the
hyperangular part of the three-body potential hYðK;Qf; L;
M; νfÞj2ℜeY6;�6;0

0;0 jYðK;Qi; L;M; νiÞiang, for various K ¼ 5

states (for all allowed orbital waves L).

K ½SUð6Þf; LP
f � ½SUð6Þi; LP

i � π
ffiffiffi
π

p h2ℜeY6;�6;0
0;0 iang

5 ½56; 1−� ½56; 1−� − 2
5

5 ½20; 1−� ½20; 1−� 2
5

5 ½56; 2−� ½56; 2−� 3
5

5 ½20; 2−� ½20; 2−� − 3
5

5 ½56; 3−� ½56; 3−� 14
15

5 ½20; 3−� ½20; 3−� − 14
15

5 ½56; 4−� ½56; 4−� − 2
15

5 ½20; 4−� ½20; 4−� 2
15

5 ½56; 5−� ½56; 5−� 8
15

5 ½20; 5−� ½20; 5−� − 8
15

TABLE XII. The values of the off-diagonal matrix elements of
the hyperangular part of the three-body potential π

ffiffiffi
π

p h½SUð6Þf;
LP
f �j2ℜeY6;�6;0

0;0 j½SUð6Þi; LP
i �iang, for various K ¼ 5 states (for all

allowed orbital waves L).

K ½SUð6Þf; LP
f � ½SUð6Þi; LP

i � π
ffiffiffi
π

p h2ℜeY6;�6;0
0;0 iang

5 ½70; 1−� ½700; 1−� ffiffi
6

p
5

5 ½700; 1−� ½70; 1−� ffiffi
6

p
5

5 ½70; 3−� ½700; 3−� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
139
450

þ 2131

450
ffiffiffiffiffiffi
241

p
q

5 ½700; 3−� ½70; 3−� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
139
450

þ 2131

450
ffiffiffiffiffiffi
241

p
q

5 ½70; 3−� ½7000; 3−� − 1
15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
482

ð33499 − 2131
ffiffiffiffiffiffiffiffi
241

p Þ
q

5 ½7000; 3−� ½70; 3−� − 1
15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
482

ð33499 − 2131
ffiffiffiffiffiffiffiffi
241

p Þ
q

5 ½70; 5−� ½700; 5−� 2
3

ffiffi
2
5

q
5 ½700; 5−� ½70; 5−� 2

3

ffiffi
2
5

q
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C ¼ 2α3 þ 2β3 þ 2γ3 − 3ðβ þ γÞðβγ þ α2Þ − 3ðβ2 þ γ2Þαþ 12αβγ

þ 9½ðδ2 − 2ϵ2Þαþ γðϵ2 − 2δ2Þ þ βðϵ2 þ δ2Þ� ðB9Þ

D ¼ 4I3 þ C2 ðB10Þ

I ¼ ð−α2 − β2 − γ2 þ βαþ γαþ βγÞ − 3ðδ2 þ ϵ2Þ: ðB11Þ

Here,

α ¼ 1

π
ffiffiffi
π

p
�
v00 −

�
5

12
ffiffiffi
3

p −
85

12
ffiffiffiffiffiffiffiffi
723

p
�
v40 þ

241þ 19
ffiffiffiffiffiffiffiffi
241

p

2892
ffiffiffi
5

p v80

�

β ¼ 1

π
ffiffiffi
π

p
�
v00 þ

2

3
ffiffiffi
3

p v40 þ −
1

3
ffiffiffi
5

p v80

�

γ ¼ 1

π
ffiffiffi
π

p
�
v00 −

5ð241 − 17
ffiffiffiffiffiffiffiffi
241

p Þ
2892

ffiffiffi
3

p v40 þ
241 − 19

ffiffiffiffiffiffiffiffi
241

p

2892
ffiffiffi
5

p v80

�

δ ¼ 1

π
ffiffiffi
π

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

139

450
þ 2131

450
ffiffiffiffiffiffiffiffi
241

p
s

v66

!

ϵ ¼ 1

π
ffiffiffi
π

p
�
−

1

15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

482
ð33499 − 2131

ffiffiffiffiffiffiffiffi
241

p
Þ

r
v66

�
:

These formulas are manifestly rather cumbersome, and they do not offer much new insight into the problem that could not
be gained by a (simpler) numerical calculation. Clearly, there is no advantage to having explicit algebraic expressions for
this kind of quantity. As K increases to K ≥ 6, the number of mixing multiplets can only increase, as can the number of
states within invariant subspaces.
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Abstract

We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when 
both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which 
yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum 
and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the 
generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called 
quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and 
the Bethe equations of the Gaudin model.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The quantum inverse scattering method (QISM) is an approach to construct and solve quantum 
integrable systems [1–3]. In the framework of the QISM the algebraic Bethe ansatz (ABA) is 
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a powerful algebraic tool, which yields the spectrum and corresponding eigenstates for which 
highest weight type representations are relevant, like for example quantum spin systems, Gaudin 
models, etc. In particular, the Heisenberg spin chain [4], with periodic boundary conditions, has 
been studied by the algebraic Bethe ansatz [1,3], including the question of completeness and 
simplicity of the spectrum [5].

A way to introduce non-periodic boundary conditions compatible with the integrability of the 
quantum systems solvable by the quantum inverse scattering method was developed in [6]. The 
boundary conditions at the left and right sites of the system are expressed in the left and right 
reflection matrices. The compatibility condition between the bulk and the boundary of the system 
takes the form of the so-called reflection equation. The compatibility at the right site of the model 
is expressed by the dual reflection equation. The matrix form of the exchange relations between 
the entries of the Sklyanin monodromy matrix are analogous to the reflection equation. Together 
with the dual reflection equation they yield the commutativity of the open transfer matrix [6–8].

There is a renewed interest in applying the algebraic Bethe ansatz to the open XXX chain 
with non-periodic boundary conditions compatible with the integrability of the systems [9–12]. 
Other approaches include the ABA based on the functional relation between the eigenvalues of 
the transfer matrix and the quantum determinant and the associated T–Q relation [13], func-
tional relations for the eigenvalues of the transfer matrix based on fusion hierarchy [14] and the 
Vertex-IRF correspondence [15]. For a review of the coordinate Bethe ansatz for non-diagonal 
boundaries see [16]. However, we will focus on the case when system admits the so-called 
pseudo-vacuum, or the reference state [6,9–12]. In his seminal work on boundary conditions 
in quantum integrable models Sklyanin has studied the XXZ spin chain with diagonal bound-
aries [6]. The next relevant step was the study of the s�(n) spin chain in the case when reflection 
matrices can be brought into the diagonal form by a suitable similarity transformation which 
leaves the R-matrix invariant and it is independent of the spectral parameter [17,18]. These re-
sults were then generalized to the case of the spin-s XXX chain when there exists a basis in which 
one reflection matrix is triangular and the other one is diagonal [9]. Recent studies are focused 
on the XXX chain when both K-matrices can be simultaneously brought to a triangular form by 
a single similarity matrix which is independent of the spectral parameter [10] and similarly for 
the XXZ chain [12]. Although the on shell Bethe ansatz is realized, the proposed Bethe vectors 
are not suitable for the off shell ABA. The case when the reflection matrix K−(λ) is diagonal 
and K+(λ) is a two-by-two matrix with non-zero entries was studied in [11].

This work is centred on the implementation of the algebraic Bethe ansatz which yields the 
off shell action of the transfer matrix the XXX Heisenberg spin chain when the corresponding 
K-matrices are triangularizable. The Bethe vectors ΨM(μ1, μ2, . . . , μM) we define here are such 
that they make the off shell action of the transfer matrix strikingly simple since it almost coincides 
with the corresponding action in the case when the two boundary matrices are diagonal. The 
Bethe vectors ΨM(μ1, μ2, . . . , μM), for an arbitrary positive integer M , are defined explicitly as 
some polynomial functions of the creation operators. As expected, the off shell action yields the 
spectrum of the transfer matrix and the corresponding Bethe equations. To explore further these 
results we use the so-called quasi-classical limit and obtain the off shell action of the generating 
function of the Gaudin Hamiltonians, with boundary terms, on the corresponding Bethe vectors.

A model of interacting spins in a chain was first considered by Gaudin [19,20]. In his ap-
proach, these models were introduced as a quasi-classical limit of the integrable quantum chains. 
The Gaudin models were extended to any simple Lie algebra, with arbitrary irreducible represen-
tation at each site of the chain [20]. Sklyanin studied the rational s�(2) model in the framework 
of the quantum inverse scattering method using the s�(2) invariant classical r-matrix [21]. A gen-
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eralization of these results to all cases when skew-symmetric r-matrix satisfies the classical 
Yang–Baxter equation [22] was relatively straightforward [23,24]. Therefore, considerable at-
tention has been devoted to Gaudin models corresponding to the classical r-matrices of simple 
Lie algebras [25–27] and Lie superalgebras [28–32].

Hikami showed how the quasi-classical expansion of the transfer matrix, calculated at the spe-
cial values of the spectral parameter, yields the Gaudin Hamiltonians in the case of non-periodic 
boundary conditions [33]. Then the ABA was applied to open Gaudin model in the context of 
the Vertex-IRF correspondence [34–36]. Also, results were obtained for the open Gaudin models 
based on Lie superalgebras [37]. An approach to study the open Gaudin models based on the 
classical reflection equation [38] and the non-unitary r-matrices was developed recently, see [39,
40] and the references therein. For a recent review of the open Gaudin model see [41].

In [42] we have derived the generating function of the Gaudin Hamiltonians with boundary 
terms following Sklyanin’s approach in the periodic case [21]. Our derivation is based on the 
quasi-classical expansion of the linear combination of the transfer matrix of the XXX chain 
and the central element, the so-called Sklyanin determinant. Here we use this result with the 
objective to derive the off shell action of the generating function of the Gaudin Hamiltonians. As 
we will show below, the quasi-classical expansion of the Bethe vectors we have defined for he 
XXX Heisenberg spin chain yields the Bethe vectors of the corresponding Gaudin model. The 
significance of these Bethe vectors is in the striking simplicity of the formulae of the off shell 
action of the generating function of the Gaudin Hamiltonians.

This paper is organized as follows. In Section 2 we review the SL(2)-invariant Yang R-matrix 
and provide fundamental tools for the study of the inhomogeneous XXX Heisenberg spin chain. 
The general solutions of the reflection equation and the dual reflection equation are given in 
Section 3 as well as the triangularization of these K-matrices, when the corresponding parame-
ters obey an extra identity. In Section 4 we expose the Sklyanin approach to the inhomogeneous 
XXX Heisenberg spin chain with non-periodic boundary conditions. The implementation of the 
ABA, as one of the main results of the paper, is presented in Section 5, including the definition of 
the Bethe vectors and the formulae of the off shell action of the transfer matrix. Corresponding 
Gaudin model and the respective implementation of the ABA are given in Section 6. Our con-
clusions are presented in Section 7. Finally, in Appendix A are given some basic definitions for 
the convenience of the reader and in Appendix B are given commutation relations relevant for 
the implementation of the ABA in Section 5.

2. Inhomogeneous Heisenberg spin chain

The XXX Heisenberg spin chain is related to the Yangian Y(s�(2)) (see [43]) and the 
SL(2)-invariant Yang R-matrix [44]

R(λ) = λ1 + ηP =

⎛⎜⎜⎝
λ + η 0 0 0

0 λ η 0
0 η λ 0
0 0 0 λ + η

⎞⎟⎟⎠ , (2.1)

where λ is a spectral parameter, η is a quasi-classical parameter. We use 1 for the identity operator 
and P for the permutation in C2 ⊗C

2.
The Yang R-matrix satisfies the Yang–Baxter equation [44,45] in the space C2 ⊗C

2 ⊗C
2

R12(λ − μ)R13(λ)R23(μ) = R23(μ)R13(λ)R12(λ − μ), (2.2)
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we suppress the dependence on the quasi-classical parameter η and use the standard notation 
of the QISM to denote spaces Vj , j = 1, 2, 3 on which corresponding R-matrices Rij , ij =
12, 13, 23 act non-trivially [1–3]. In the present case V1 = V2 = V3 =C

2.
The Yang R-matrix also satisfies other relevant properties such as

unitarity R12(λ)R21(−λ) = (η2 − λ2)1;
parity invariance R21(λ) = R12(λ);
temporal invariance Rt

12(λ) = R12(λ);
crossing symmetry R(λ) = J1R

t2(−λ − η)J −1
1 ,

where t2 denotes the transpose in the second space and the entries of the two-by-two matrix J
are Jab = (−1)a−1δa,3−b .

Here we study the inhomogeneous XXX spin chain with N sites, characterized by the local 
space Vm =C

2s+1 and inhomogeneous parameter αm. The Hilbert space of the system is

H =
N⊗

m=1

Vm = (
C

2s+1)⊗N
. (2.3)

Following [21] we introduce the Lax operator

L0m(λ) = 1 + η

λ
(�σ0 · �Sm) = 1

λ

(
λ + ηS3

m ηS−
m

ηS+
m λ − ηS3

m

)
. (2.4)

Notice that L(λ) is a two-by-two matrix in the auxiliary space V0 =C
2. It obeys

L0m(λ)L0m(η − λ) =
(

1 + η2 sm(sm + 1)

λ(η − λ)

)
10, (2.5)

where sm is the value of spin in the space Vm.
When the quantum space is also a spin 1

2 representation, the Lax operator becomes the 
R-matrix, L0m(λ) = 1

λ
R0m(λ − η/2).

Due to the commutation relations (A.1), it is straightforward to check that the Lax operator 
satisfies the RLL-relations

R00′(λ − μ)L0m(λ − αm)L0′m(μ − αm) = L0′m(μ − αm)L0m(λ − αm)R00′(λ − μ). (2.6)

The so-called monodromy matrix

T (λ) = L0N(λ − αN) · · ·L01(λ − α1) (2.7)

is used to describe the system. For simplicity we have omitted the dependence on the quasi-
classical parameter η and the inhomogeneous parameters {αj , j = 1, . . . , N}. Notice that T (λ)

is a two-by-two matrix acting in the auxiliary space V0 = C
2, whose entries are operators acting 

in H

T (λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
. (2.8)

From RLL-relations (2.6) it follows that the monodromy matrix satisfies the RTT-relations

R00′(λ − μ)T0(λ)T0′(μ) = T0′(μ)T0(λ)R00′(λ − μ). (2.9)

The RTT-relations define the commutation relations for the entries of the monodromy matrix.
In every Vm =C

2s+1 there exists a vector ωm ∈ Vm such that
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S3
mωm = smωm and S+

mωm = 0. (2.10)

We define a vector Ω+ to be

Ω+ = ω1 ⊗ · · · ⊗ ωN ∈H. (2.11)

From the definitions above it is straightforward to obtain the action of the entries of the mon-
odromy matrix (2.8) on the vector Ω+

A(λ)Ω+ = a(λ)Ω+, with a(λ) =
N∏

m=1

λ − αm + ηsm

λ − αm

, (2.12)

D(λ)Ω+ = d(λ)Ω+, with d(λ) =
N∏

m=1

λ − αm − ηsm

λ − αm

, (2.13)

C(λ)Ω+ = 0. (2.14)

To construct integrable spin chains with non-periodic boundary condition, we will follow 
Sklyanin’s approach [6]. Accordingly, before defining the essential operators and corresponding 
algebraic structure, in the next section we will introduce the relevant boundary K-matrices.

3. Reflection equation

A way to introduce non-periodic boundary conditions which are compatible with the integra-
bility of the bulk model, was developed in [6]. Boundary conditions on the left and right sites of 
the system are encoded in the left and right reflection matrices K− and K+. The compatibility 
condition between the bulk and the boundary of the system takes the form of the so-called reflec-
tion equation. It is written in the following form for the left reflection matrix acting on the space 
C

2 at the first site K−(λ) ∈ End(C2)

R12(λ − μ)K−
1 (λ)R21(λ + μ)K−

2 (μ) = K−
2 (μ)R12(λ + μ)K−

1 (λ)R21(λ − μ). (3.1)

Due to the properties of the Yang R-matrix the dual reflection equation can be presented in 
the following form

R12(μ − λ)K+
1 (λ)R21(−λ − μ − 2η)K+

2 (μ)

= K+
2 (μ)R12(−λ − μ − 2η)K+

1 (λ)R21(μ − λ). (3.2)

One can then verify that the mapping

K+(λ) = K−(−λ − η) (3.3)

is a bijection between solutions of the reflection equation and the dual reflection equation. After 
substitution of (3.3) into the dual reflection equation (3.2) one gets the reflection equation (3.1)
with shifted arguments.

The general, spectral parameter dependent, solutions of the reflection equation (3.1) and the 
dual reflection equation (3.2) can be written as follows [46,47]

K̃−(λ) =
(

ξ− − λ ψ̃−λ

φ̃−λ ξ− + λ

)
, (3.4)

K̃+(λ) =
(

ξ+ + λ + η −ψ̃+(λ + η)

−φ̃+(λ + η) ξ+ − λ − η

)
. (3.5)
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We notice that the matrix K−(λ) (3.4) has at most two distinct eigenvalues

ε± = ξ− ± λν−, ν− =
√

1 + φ̃−ψ̃−, (3.6)

when ν− �= 0. Then, for ψ̃− �= 0, there exists a matrix

U =
(

ψ̃− ψ̃−
1 − ν− 1 + ν−

)
(3.7)

such that

U−1K̃−(λ)U =
(

ξ− − λν− 0
0 ξ− + λν−

)
. (3.8)

A similar diagonalization exists when ̃φ− �= 0. However, for ν− = 0, i.e. ̃φ−ψ̃− = −1, the matrix 
K−(λ) cannot be diagonalized and

U−1K−(λ)U =
(

ξ− λφ̃−
0 ξ−

)
, (3.9)

where

U =
(

ψ̃− 0
1 −φ̃−

)
. (3.10)

Following [10] we notice the condition(
φ̃−ψ̃+ − φ̃+ψ̃−)2 = 4

(
φ̃− − φ̃+)(

ψ̃− − ψ̃+)
(3.11)

has to be imposed on the parameters of K∓ so that the matrices (3.4) and (3.5) are upper trian-
gularizable by a single similarity matrix M . When the square root with the negative sign is taken 
on the right-hand-side of (3.11) then one possible choice for M is given by

M =
( −1 − ν− φ̃−

φ̃− −1 − ν−
)

. (3.12)

Evidently this matrix does not depend on the spectral parameter λ and it is such that

K−(λ) = M−1K̃−(λ)M =
(

ξ− − λν− λψ−
0 ξ− + λν−

)
, (3.13)

K+(λ) = M−1K̃+(λ)M =
(

ξ+ + (λ + η)ν+ −ψ+(λ + η)

0 ξ+ − (λ + η)ν+
)

, (3.14)

with ψ− = φ̃− + ψ̃−, ν+ =
√

1 + φ̃+ψ̃+ and ψ+ = φ̃+ + ψ̃+. An analogous choice for M exists 
for the other sign of the square root in (3.11).

4. Inhomogeneous Heisenberg spin chain with boundary terms

In order to develop the formalism necessary to describe an integrable spin chain with non-
periodic boundary condition, we use the Sklyanin approach [6]. The main tool in this framework 
is the corresponding monodromy matrix

T0(λ) = T0(λ)K−
0 (λ)T̃0(λ), (4.1)

it consists of the matrix T (λ) (2.7), a reflection matrix K−(λ) (3.13) and the matrix
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T̃0(λ) =
(

Ã(λ) B̃(λ)

C̃(λ) D̃(λ)

)
= L01(λ + α1 + η) · · ·L0N(λ + αN + η). (4.2)

It is important to notice that the identity (2.5) can be rewritten in the form

L0m(λ − αm)L0m(−λ + αm + η) =
(

1 + η2sm(sm + 1)

(λ − αm)(−λ + αm + η)

)
10. (4.3)

It follows from the equation above and the RLL-relations (2.6) that the RTT-relations (2.9) can 
be recast as follows

T̃0′(μ)R00′(λ + μ)T0(λ) = T0(λ)R00′(λ + μ)T̃0′(μ), (4.4)

T̃0(λ)T̃0′(μ)R00′(μ − λ) = R00′(μ − λ)T̃0′(μ)T̃0(λ). (4.5)

Using the RTT-relations (2.9), (4.4), (4.5) and the reflection equation (3.1) it is straightforward 
to show that the exchange relations of the monodromy matrix T (λ) in V0 ⊗ V0′ are

R00′(λ − μ)T0(λ)R0′0(λ + μ)T0′(μ) = T0′(μ)R00′(λ + μ)T0(λ)R0′0(λ − μ), (4.6)

using the notation of [6]. From the equation above we can read off the commutation relations of 
the entries of the monodromy matrix

T (λ) =
(
A(λ) B(λ)

C(λ) D(λ)

)
. (4.7)

Following Sklyanin [6] (see also [10]) we introduce the operator

D̂(λ) =D(λ) − η

2λ + η
A(λ). (4.8)

The relevant commutation relations are given in Appendix B.
The exchange relations (4.6) admit a central element, the so-called Sklyanin determinant,

�
[
T (λ)

] = tr00′P −
00′T0(λ − η/2)R00′(2λ)T0′(λ + η/2). (4.9)

The element �[T (λ)] can be expressed in form

�
[
T (λ)

] = 2λD̂(λ − η/2)A(λ + η/2) − (2λ + η)B(λ − η/2)C(λ + η/2). (4.10)

The open chain transfer matrix is given by the trace of the monodromy T (λ) over the auxiliary 
space V0 with an extra reflection matrix K+(λ) [6],

t (λ) = tr0
(
K+(λ)T (λ)

)
. (4.11)

The reflection matrix K+(λ) (3.14) is the corresponding solution of the dual reflection equation 
(3.2). The commutativity of the transfer matrix for different values of the spectral parameter[

t (λ), t (μ)
] = 0, (4.12)

is guaranteed by the dual reflection equation (3.2) and the exchange relations (4.6) of the mon-
odromy matrix T (λ) [6].
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5. Algebraic Bethe ansatz

In [10] it was shown that the most general case in which the algebraic Bethe ansatz can be 
fully implemented is when both K-matrices have upper-triangular from (3.13) and (3.14). The 
main aim of this section is to define the Bethe vectors as to obtain the most simplest formulae 
for the off shell action of the transfer matrix of the spin chain on these Bethe vectors. The first 
step in this direction is to get the expressions of the entries of the monodromy matrix T (λ) in 
terms of the corresponding ones of the monodromies T (λ) and T̃ (λ). According to definition of 
the monodromy matrix (4.1) we have

T (λ) =
(
A(λ) B(λ)

C(λ) D(λ)

)
=

(
A(λ) B(λ)

C(λ) D(λ)

)(
ξ− − λν− ψ−λ

0 ξ− + λν−
)(

Ã(λ) B̃(λ)

C̃(λ) D̃(λ)

)
. (5.1)

From the equation above, using (4.2) and the RTT-relations (4.4), we obtain

A(λ) = (
ξ− − λν−)

A(λ)Ã(λ) + ((
ψ−λ

)
A(λ) + (

ξ− + λν−)
B(λ)

)
C̃(λ) (5.2)

D(λ) = (
ξ− − λν−)(

B̃(λ)C(λ) − η

2λ + η

(
D(λ)D̃(λ) − Ã(λ)A(λ)

))
+ ((

ψ−λ
)
C(λ) + (

ξ− + λν−)
D(λ)

)
D̃(λ) (5.3)

B(λ) = (
ξ− − λν−)( 2λ

2λ + η
B̃(λ)A(λ) − η

2λ + η
B(λ)D̃(λ)

)
+ ((

ψ−λ
)
A(λ) + (

ξ− + λν−)
B(λ)

)
D̃(λ) (5.4)

C(λ) = (
ξ− − λν−)

C(λ)Ã(λ) + ((
ψ−λ

)
C(λ) + (

ξ− + λν−)
D(λ)

)
C̃(λ). (5.5)

With the aim of obtaining the action of the operators A(λ), D(λ) and C(λ) on the vector Ω+
(2.11) we first observe that the action of the operators Ã(λ), D̃(λ) and C̃(λ) on the vector Ω+

Ã(λ)Ω+ = ã(λ)Ω+, with ã(λ) =
N∏

m=1

λ + αm + η + ηsm

λ + αm + η
, (5.6)

D̃(λ)Ω+ = d̃(λ)Ω+, with d̃(λ) =
N∏

m=1

λ + αm + η − ηsm

λ + αm + η
, (5.7)

C̃(λ)Ω+ = 0, (5.8)

follows directly from the definition (4.2). Using the relations (5.2)–(5.5) and the formulas 
(2.12)–(2.14) and (5.6)–(5.8) we derive

C(λ)Ω+ = 0, (5.9)

A(λ)Ω+ = α(λ)Ω+, with α(λ) = (
ξ− − λν−)

a(λ)̃a(λ), (5.10)

D(λ)Ω+ = δ(λ)Ω+, with

δ(λ) =
((

ξ− + λν−) − η

2λ + η

(
ξ− − λν−))

d(λ)d̃(λ) + η

2λ + η

(
ξ− − λν−)

a(λ)̃a(λ).

(5.11)
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In what follows we will use the fact that Ω+ is an eigenvector of the operator D̂(λ) (4.8)

D̂(λ)Ω+ = δ̂(λ)Ω+, with δ̂(λ) = δ(λ) − η

2λ + η
α(λ), (5.12)

or explicitly

δ̂(λ) =
((

ξ− + λν−) − η

2λ + η

(
ξ− − λν−))

d(λ)d̃(λ). (5.13)

The transfer matrix of the inhomogeneous XXX chain (4.11) with the triangular K-matrix (3.14)
can be expressed using Sklyanin’s D̂(λ) operator (4.8) [10]

t (λ) = κ1(λ)A(λ) + κ2(λ)D̂(λ) + κ12(λ)C(λ), (5.14)

with

κ1(λ) = 2
(
ξ+ + λν+) λ + η

2λ + η
, κ2(λ) = ξ+ − (λ + η)ν+,

κ12(λ) = −ψ+(λ + η). (5.15)

Evidently the vector Ω+ (2.11) is an eigenvector of the transfer matrix

t (λ)Ω+ = (
κ1(λ)α(λ) + κ2(λ)̂δ(λ)

)
Ω+ = Λ0(λ)Ω+. (5.16)

For simplicity we have suppressed the dependence of the eigenvalue Λ0(λ) on the boundary 
parameters ξ+ and ν+ as well as the quasi-classical parameter η.

We proceed to define the Bethe vectors ΨM(μ1, μ2, . . . , μM) as to make the off shell action 
of t (λ) on them as simple as possible. Before discussing ΨM(μ1, μ2, . . . , μM), for arbitrary 
positive integer M , we will give explicitly first two Bethe vectors as well as the corresponding 
formulae for the off shell action of the transfer matrix. To this end, our next step is to show that

Ψ1(μ) = B(μ)Ω+ + b1(μ)Ω+, (5.17)

is a Bethe vector, if b1(μ) is chosen to be

b1(μ) = ψ+

2ν+

(
2μ

2μ + η
α(μ) − δ̂(μ)

)
. (5.18)

A straightforward calculation, using the relations (B.2), (B.3) and (B.4), shows that the off shell 
action of the transfer matrix (5.14) on Ψ1(μ) is given by

t (λ)Ψ1(μ) = Λ1(λ,μ)Ψ1(μ) + 2η(λ + η)(ξ+ + μν+)

(λ − μ)(λ + μ + η)
F1(μ)Ψ1(λ) (5.19)

where the eigenvalue Λ1(λ, μ) is given by

Λ1(λ,μ) = κ1(λ)
(λ + μ)(λ − μ − η)

(λ − μ)(λ + μ + η)
α(λ) + κ2(λ)

(λ − μ + η)(λ + μ + 2η)

(λ − μ)(λ + μ + η)
δ̂(λ). (5.20)

Evidently Λ1(λ, μ) depends also on boundary parameters ξ+, ν+ and the quasi-classical param-
eter η, but these parameters are omitted in order to simplify the formulae. The unwanted term on 
the right hand side (5.19) is annihilated by the Bethe equation

F1(μ) = 2μ

2μ + η
α(μ) − ξ+ − (μ + η)ν+

ξ+ + μν+ δ̂(μ) = 0, (5.21)
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or equivalently,

α(μ)

δ̂(μ)
= (μ + η)κ2(μ)

μκ1(μ)
= (2μ + η)(ξ+ − (μ + η)ν+)

2μ(ξ+ + μν+)
. (5.22)

Therefore we have shown that Ψ1(μ) (5.17) is the Bethe vector of the transfer matrix (5.14)
corresponding to the eigenvalue Λ1(λ, μ) (5.20).

We seek the Bethe vector Ψ2(μ1, μ2) in the form

Ψ2(μ1,μ2) = B(μ1)B(μ2)Ω+ + b
(1)
2 (μ2;μ1)B(μ1)Ω+

+ b
(1)
2 (μ1;μ2)B(μ2)Ω+ + b

(2)
2 (μ1,μ2)Ω+, (5.23)

where b(1)
2 (μ1; μ2) and b(2)

2 (μ1, μ2) are given by

b
(1)
2 (μ1;μ2) = ψ+

2ν+

(
2μ1

2μ1 + η

(μ1 + μ2)(μ1 − μ2 − η)

(μ1 − μ2)(μ1 + μ2 + η)
α(μ1)

− (μ1 − μ2 + η)(μ1 + μ2 + 2η)

(μ1 − μ2)(μ1 + μ2 + η)
δ̂(μ1)

)
, (5.24)

b
(2)
2 (μ1,μ2) = 1

2

(
b

(1)
2 (μ1;μ2) b1(μ2) + b

(1)
2 (μ2;μ1) b1(μ1)

)
. (5.25)

Starting from the definitions (5.14) and (5.23), using the relations (B.8), (B.9) and (B.10) to 
push the operators A(λ), D̂(λ) and C(λ) to the right and after rearranging some terms, we obtain 
the off shell action of transfer matrix t (λ) on Ψ2(μ1, μ2)

t (λ)Ψ2(μ1,μ2) = Λ2
(
λ, {μi}

)
Ψ2(μ1,μ2)

+
2∑

i=1

2η(λ + η)(ξ+ + μiν
+)

(λ − μi)(λ + μi + η)
F2(μi;μ3−i )Ψ2(λ,μ3−i ), (5.26)

where the eigenvalue is given by

Λ2
(
λ, {μi}

) = κ1(λ)α(λ)

2∏
i=1

(λ + μi)(λ − μi − η)

(λ − μi)(λ + μi + η)

+ κ2(λ)̂δ(λ)

2∏
i=1

(λ − μi + η)(λ + μi + 2η)

(λ − μi)(λ + μi + η)
(5.27)

and the two unwanted terms in (5.26) are canceled by the Bethe equations which follow from 
F2(μi; μ3−i ) = 0, i.e.

2μi

2μi + η

(μi + μ3−i )(μi − μ3−i − η)

(μi − μ3−i )(μi + μ3−i + η)
α(μi)

− ξ+ − (μi + η)ν+

ξ+ + μiν+
(μi − μ3−i + η)(μi + μ3−i + 2η)

(μi − μ3−i )(μi + μ3−i + η)
δ̂(μi) = 0, (5.28)

with i = {1, 2}. Therefore the Bethe equations are

α(μi)

δ̂(μi)
= (μi + η)κ2(μi)

μiκ1(μi)

(μi − μ3−i + η)(μi + μ3−i + 2η)

(μi + μ3−i )(μi − μ3−i − η)
, (5.29)
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where i = {1, 2}. Striking property of the Bethe vectors we have introduced so far is the simplicity 
of the off shell action of the transfer matrix t (λ), Eqs. (5.19) and (5.26). Actually, the action of 
the transfer matrix almost coincides with the one in the case when the two boundary matrices are 
diagonal [6,33].

We proceed to define ΨM(μ1, μ2, . . . , μM) as a sum of 2M terms, for arbitrary positive inte-
ger M , and as a symmetric function of its arguments

ΨM(μ1,μ2, . . . ,μM)

= B(μ1)B(μ2) · · ·B(μM)Ω+
+ b

(1)
M (μM ;μ1,μ2, . . . ,μM−1)B(μ1)B(μ2) · · ·B(μM−1)Ω+

+ · · · + b
(2)
M (μM−1,μM ;μ1,μ2, . . . ,μM−2)B(μ1)B(μ2) · · ·B(μM−2)Ω+

...

+ b
(M−1)
M (μ1,μ2, . . . ,μM−1;μM)B(μM)Ω+ + b

(M)
M (μ1,μ2, . . . ,μM)Ω+, (5.30)

where the coefficients are given by

b
(1)
M (μ1;μ2,μ3, . . . ,μM) = ψ+

2ν+

(
2μ1

2μ1 + η
α(μ1)

M∏
j=2

(μ1 + μj )(μ1 − μj − η)

(μ1 − μj )(μ1 + μj + η)

− δ̂(μ1)

M∏
j=2

(μ1 − μj + η)(μ1 + μj + 2η)

(μ1 − μj )(μ1 + μj + η)

)
, (5.31)

b
(2)
M (μ1,μ2;μ3, . . . ,μM) = 1

2

(
b

(1)
M (μ1;μ2,μ3, . . . ,μM)b

(1)
M−1(μ2;μ3, . . . ,μM)

+ b
(1)
M (μ2;μ1,μ3, . . . ,μM)b

(1)
M−1(μ1;μ3, . . . ,μM)

)
,

... (5.32)

b
(M−1)
M (μ1,μ2, . . . ,μM−1;μM)

= 1

(M − 1)!
∑

ρ∈SM−1

b
(1)
M (μρ(1);μρ(2), . . . ,μM)

× b
(1)
M−1(μρ(2);μρ(3), . . . ,μM)

× b
(1)
M−2(μρ(3);μρ(4), . . . ,μM) · · ·b(1)

2 (μρ(M−1);μM) (5.33)

b
(M)
M (μ1,μ2, . . . ,μM)

= 1

M!
∑

σ∈SM

b
(1)
M (μσ(1);μσ(2), . . . ,μσ(M))b

(1)
M−1(μσ(2);μσ(3), . . . ,μσ(M))

× b
(1)
M−2(μσ(3);μσ(4), . . . ,μσ(M)) · · ·b(1)

2 (μσ(M−1);μσ(M))b1(μσ(M)), (5.34)

where SM−1 and SM are the symmetric groups of degree M − 1 and M , respectively.
A straightforward calculation based on evident generalization of the formulas (B.8), (B.9) and 

(B.10) and subsequent rearranging of terms, yields the off shell action of the transfer matrix on 
the Bethe vector ΨM(μ1, μ2, . . . , μM)
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t (λ)ΨM(μ1,μ2, . . . ,μM)

= ΛM

(
λ, {μi}

)
ΨM(μ1,μ2, . . . ,μM)

+
M∑
i=1

2η(λ + η)(ξ+ + μiν
+)

(λ − μi)(λ + μi + η)
FM

(
μi; {μj }j �=i

)
ΨM

(
λ, {μj }j �=i

)
, (5.35)

where the corresponding eigenvalue is given by

ΛM

(
λ, {μi}

) = κ1(λ)α(λ)

M∏
i=1

(λ + μi)(λ − μi − η)

(λ − μi)(λ + μi + η)

+ κ2(λ)̂δ(λ)

M∏
i=1

(λ − μi + η)(λ + μi + 2η)

(λ − μi)(λ + μi + η)
(5.36)

and the M unwanted terms o the right hand side of (5.35) are canceled by the Bethe equations 
FM(μi; {μj }j �=i ) = 0, explicitly

2μi

2μi + η
α(μi)

M∏
j=1
j �=i

(μi + μj )(μi − μj − η)

(μi − μj )(μi + μj + η)

− ξ+ − (μi + η)ν+

ξ+ + μiν+ δ̂(μi)

M∏
j=1
j �=i

(μi − μj + η)(μi + μj + 2η)

(μi − μj )(μi + μj + η)
= 0, (5.37)

or equivalently

α(μi)

δ̂(μi)
= (μi + η)κ2(μi)

μiκ1(μi)

M∏
j=1
j �=i

(μi − μj + η)(μi + μj + 2η)

(μi + μj )(μi − μj − η)
, (5.38)

with i = {1, 2, . . . , M}. The Bethe vectors ΨM(μ1, μ2, . . . , μM) we have defined in (5.30) yield 
the strikingly simple expression (5.35) for the off shell action of the transfer matrix t (λ) (5.14). 
Actually, the action of the transfer matrix is as simple as it could possible be since it almost 
coincides with the one in the case when the two boundary matrices are diagonal [6,33]. In this 
way we have fully implemented the algebraic Bethe ansatz for the XXX spin chain in the case 
when both boundary matrices have upper-triangular form (3.13) and (3.14).

6. Gaudin model

We explore further the results obtained in the previous section on the XXX Heisenberg spin 
chain in the case when both boundary matrix are upper-triangular. We combine them together 
with the quasi-classical limit studied in [42] with the aim of implementing fully the off shell 
Bethe ansatz for the corresponding Gaudin model by defining its Bethe vectors. The significance 
of these Bethe vectors is in the striking simplicity of the formulae of the off shell action of the 
generating function of the Gaudin Hamiltonians, yielding the spectrum and the corresponding 
Bethe equations.
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For the study of the open Gaudin model we impose

lim
η→0

(
K+(λ)K−(λ)

) = (
ξ2 − λ2ν2)1. (6.1)

In particular, this implies that the parameters of the reflection matrices on the left and on the right 
end of the chain are the same. In general, this is not the case in the study of the open spin chain. 
However, this condition is essential for the Gaudin model. Then we will write

K−(λ) ≡ K(λ) =
(

ξ − λν λψ

0 ξ + λν

)
, (6.2)

so that

K+(λ) = K(−λ − η) =
(

ξ + (λ + η)ν −ψ(λ + η)

0 ξ − (λ + η)ν

)
. (6.3)

In [42] we have derived the generating function of the Gaudin Hamiltonians with boundary 
terms following Sklyanin’s approach in the periodic case [21]. Our derivation is based on the 
quasi-classical expansion of the linear combination of the transfer matrix of the XXX chain and 
the central element, the so-called Sklyanin determinant. Finally, the expansion reads [42]

2λt(λ) − �
[
T (λ)

] = 2λ
(
ξ2 − λ2ν2)1 + η

(
ξ2 − 3λ2ν2)1

+ η2λ

((
ξ2 − λ2ν2)τ(λ) − ν2

2
1

)
+O

(
η3), (6.4)

where τ(λ) is the generating function of the Gaudin Hamiltonians, with upper triangular reflec-
tion matrix (6.2),

τ(λ) = tr0 L2
0(λ), (6.5)

and the Lax matrix

L0(λ) =
N∑

m=1

( �σ0 · �Sm

λ − αm

+ �σ0 · (K−1
m (λ)�SmKm(λ))

λ + αm

)
. (6.6)

The Gaudin Hamiltonians with the boundary terms are obtained from the residues of the gener-
ating function (6.5) at poles λ = ±αm:

Resλ=αm τ(λ) = 4Hm and Resλ=−αm τ(λ) = 4H̃m (6.7)

where

Hm =
N∑

n�=m

�Sm · �Sn

αm − αn

+
N∑

n=1

(Km(αm)�SmK−1
m (αm)) · �Sn + �Sn · (Km(αm)�SmK−1

m (αm))

2(αm + αn)
,

(6.8)

and

H̃m =
N∑

n�=m

�Sm · �Sn

αm − αn

+
N∑

n=1

(Km(−αm)�SnK
−1
m (−αm)) · �Sn + �Sn · (Km(−αm)�SmK−1

m (−αm))

2(αm + αn)
. (6.9)
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Since the element �[T (λ)] can be written in form (4.10) it is evident that the vector Ω+ (2.11)
is its eigenvector

�
[
T (λ)

]
Ω+ = 2λα(λ + η/2)̂δ(λ − η/2)Ω+. (6.10)

Moreover, it follows from (5.16) and (6.10) that Ω+ (2.11) is an eigenvector of the difference(
2λt(λ) − �

[
T (λ)

])
Ω+ = 2λ

(
Λ0(λ) − α(λ + η/2)̂δ(λ − η/2)

)
Ω+. (6.11)

We can expand the eigenvalue on the right hand side of the equation above in powers of η

2λ
(
κ1(λ)α(λ) + κ2(λ)̂δ(λ) − α(λ + η/2)̂δ(λ − η/2)

)
= 2λ

(
ξ2 − λ2ν2) + η

(
ξ2 − 3λ2ν2) + η2λ

((
ξ2 − λ2ν2)χ0(λ) − ν2

2

)
+O

(
η3). (6.12)

Substituting the expansion above into the right hand side of (6.11) and using (6.4) to expand the 
left hand side, it follows that the vector Ω+ (2.11) is an eigenvector of the generating function of 
the Gaudin Hamiltonians

τ(λ)Ω+ = χ0(λ)Ω+, (6.13)

with

χ0(λ) = 4λ

ξ2 − λ2ν2

N∑
m=1

(
sm

λ − αm

+ sm

λ + αm

)

+ 2
N∑

m,n=1

(
smsn + smδmn

(λ − αm)(λ − αn)
+ 2(smsn + smδmn)

(λ − αm)(λ + αn)
+ smsn + smδmn

(λ + αm)(λ + αn)

)
.

(6.14)

As expected, the eigenfunction χ0(λ) also depends on the boundary parameters ξ , ν. In general, 
we can obtain the spectrum χM(λ, μ1, . . . , μM) of the generating function τ(λ) of the Gaudin 
Hamiltonians through the expansion

2λ
(
ΛM(λ,μ1, . . . ,μM) − α(λ + η/2)̂δ(λ − η/2)

)
= 2λ

(
ξ2 − λ2ν2) + η

(
ξ2 − 3λ2ν2) + η2λ

((
ξ2 − λ2ν2)χM(λ,μ1, . . . ,μM) − ν2

2

)
+O

(
η3), (6.15)

or explicitly

χM(λ,μ1, . . . ,μM) = −4λ2ν4

(ξ2 − λ2ν2)2
+ 2

M∑
j,k=1

(
1 − δjk

(λ − μj )(λ − μk)
+ 2(1 − δjk)

(λ − μj )(λ + μk)

+ 1 − δjk

(λ + μj )(λ + μk)

)
+ 2

N∑
m,n=1

(
smsn + smδmn

(λ − αm)(λ − αn)

+ 2(smsn + smδmn)

(λ − αm)(λ + αn)
+ smsn + smδmn

(λ + αm)(λ + αn)

)
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− 4

(
M∑

j=1

(
1

λ − μj

+ 1

λ + μj

)
− λν2

ξ2 − λ2ν2

)

×
(

N∑
m=1

(
sm

λ − αm

+ sm

λ + αm

)
+ λν2

ξ2 − λ2ν2

)
. (6.16)

As our next important step toward obtaining the formulas of the algebraic Bethe ansatz for 
the corresponding Gaudin model we observe that the first term in the expansion of the function 
FM(μ1; μ2, . . . , μM) in powers of η is

FM(μ1;μ2, . . . ,μM) = ηfM(μ1;μ2, . . . ,μM) +O
(
η2), (6.17)

where

fM(μ1;μ2, . . . ,μM) = 2μ1ν
2

ξ + μ1ν
− 2(ξ − μ1ν)

M∑
j=2

(
1

μ1 − μj

+ 1

μ1 + μj

)

+ 2(ξ − μ1ν)

N∑
m=1

(
sm

μ1 − αm

+ sm

μ1 + αm

)
. (6.18)

We have used the formulas (5.17) and (5.18) as well as (5.4) and (5.13) in order to expand the 
Bethe vector Ψ1(μ) of the Heisenberg spin chain in powers of η and obtained the Bethe vector 
ϕ1(μ) of the Gaudin model

Ψ1(μ) = ηϕ1(μ) +O
(
η2), (6.19)

where

ϕ1(μ) =
N∑

m=1

(
ξ + αmν

μ − αm

+ ξ + αmν

μ + αm

)(
ψ sm

ν
+ S−

m

)
Ω+. (6.20)

As our final step we observe that using (4.10) and (5.19) we have the off shell action of the 
difference of the transfer matrix of the XXX chain and the central element, the so-called Sklyanin 
determinant, on the Bethe vector Ψ1(μ)(

2λt(λ) − �
[
T (λ)

])
Ψ1(μ) = 2λ

(
Λ1(λ,μ) − α(λ + η/2)̂δ(λ − η/2)

)
Ψ1(μ)

+ (2λ)
2η(λ + η)(ξ + μν)

(λ − μ)(λ + μ + η)
F1(μ)Ψ1(λ). (6.21)

Finally, the off shell action of the generating function the Gaudin Hamiltonians on the vector 
ϕ1(μ) can be obtained from the equation above by using the expansion (6.4) and (6.19) on the 
left hand side as well as the expansion (6.15), (6.17) and (6.19) on the right hand side

τ(λ)ϕ1(μ) = χ1(λ,μ)ϕ1(μ) + 4λ(ξ + μν)

(ξ2 − λ2ν2)(λ2 − μ2)
f1(μ)ϕ1(λ). (6.22)

Therefore ϕ1(μ) (6.20) is the Bethe vector of the corresponding Gaudin model, i.e. the eigenvec-
tor of the generating function the Gaudin Hamiltonians once the unwanted term is canceled by 
imposing the corresponding Bethe equation

f1(μ) = 2μν2

ξ + μν
+ 2(ξ − μν)

N∑
m=1

(
sm

μ − αm

+ sm

μ + αm

)
= 0. (6.23)
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To obtain the action of the generating function τ(λ) on the Bethe vector ϕ2(μ1, μ2) of the 
Gaudin model we follow analogous steps to the ones we have done when studding the action of 
τ(λ) on ϕ1(μ). The first term in the expansion of the Bethe vector Ψ2(μ1, μ2) (5.23) in powers 
of η yields the corresponding Bethe vector of the Gaudin model

Ψ2(μ1,μ2) = η2ϕ2(μ1,μ2) +O
(
η3), (6.24)

where

ϕ2(μ1,μ2) =
N∑

m,n=1

(
ξ + αmν

μ1 − αm

+ ξ + αmν

μ1 + αm

)(
ξ + αnν

μ2 − αn

+ ξ + αnν

μ2 + αn

)

×
((

ψ sm

ν
+ S−

m

)(
ψ sn

ν
+ S−

n

)
− ψ

ν
δmn

(
ψ sn

2ν
+ S−

n

))
Ω+. (6.25)

As in the previous case (6.21), it is of interest to study the action of the difference of the transfer 
matrix t (λ) and the so-called Sklyanin determinant �[T (λ)] on the Bethe vector Ψ2(μ1, μ2)

using (4.10) and (5.26)(
2λt(λ) − �

[
T (λ)

])
Ψ2(μ1,μ2)

= 2λ
(
Λ2(λ,μ1,μ2) − α(λ + η/2) δ̂(λ − η/2)

)
Ψ2(μ1,μ2)

+ (2λ)
2η(λ + η)(ξ + μ1ν)

(λ − μ1)(λ + μ1 + η)
F2(μ1;μ2)Ψ2(λ,μ2)

+ (2λ)
2η(λ + η)(ξ + μ2ν)

(λ − μ2)(λ + μ2 + η)
F2(μ2;μ1)Ψ2(λ,μ1). (6.26)

The off shell action of the generating function of the Gaudin Hamiltonians on the Bethe vector 
ϕ2(μ1, μ2) is obtained from the equation above using the expansions (6.4) and (6.24) on the left 
hand side and (6.15), (6.24) and (6.17) on the right hand side. Then, by comparing the terms of 
the fourth power in η on both sides of (6.26) we derive

τ(λ)ϕ2(μ1,μ2) = χ2(λ,μ1,μ2)ϕ2(μ1,μ2) + 4λ(ξ + μ1ν)

(ξ2 − λ2ν2)(λ2 − μ2
1)

f2(μ1;μ2)ϕ2(λ,μ2)

+ 4λ(ξ + μ2ν)

(ξ2 − λ2ν2)(λ2 − μ2
2)

f2(μ2;μ1)ϕ2(λ,μ1). (6.27)

The two unwanted terms on the right hand side of the equation above are annihilated by the 
following Bethe equations

f2(μ1;μ2) = 2μ1ν
2

ξ + μ1ν
− 2(ξ − μ1ν)

(
1

μ1 − μ2
+ 1

μ1 + μ2

)
+ 2(ξ − μ1ν)

N∑
m=1

(
sm

μ1 − αm

+ sm

μ1 + αm

)
= 0, (6.28)

f2(μ2;μ1) = 2μ2ν
2

ξ + μ2ν
− 2(ξ − μ2ν)

(
1

μ2 − μ1
+ 1

μ2 + μ1

)
+ 2(ξ − μ2ν)

N∑
m=1

(
sm

μ2 − αm

+ sm

μ2 + αm

)
= 0. (6.29)
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The off shell action of the generating function τ(λ) on the Bethe vector ϕ2(μ1, μ2) of the Gaudin 
model is strikingly simple (6.27). Actually, it is as simple as it can be since (6.27) practically 
coincide with the corresponding formula in the case when the boundary matrix K(λ) is diago-
nal [33].

In general, we have that the first term in the expansion of the Bethe vector ΨM(μ1, μ2, . . . , μM)

(5.30), for arbitrary positive integer M , in powers of η is

ΨM(μ1,μ2, . . . ,μM) = ηMϕM(μ1,μ2, . . . ,μM) +O
(
ηM+1), (6.30)

where

ϕM(μ1,μ2, . . . ,μM) = F(μ1)F (μ2) · · ·F(μM)Ω+ (6.31)

and the operator F(μ) is given by

F(μ) =
N∑

m=1

(
ξ + μν

μ − αm

+ ξ − μν

μ + αm

)(
ψ

ν
S3

m + S−
m − ψ2

4ν2
S+

m

)
. (6.32)

The Bethe vector of the Gaudin model ϕM(μ1, μ2, . . . , μM) is a symmetric function of its argu-
ments, since a straightforward calculation shows that the operator F(μ) commutes at different 
values of the spectral parameter,[

F(λ),F (μ)
] = 0. (6.33)

The action of the generating function τ(λ) on the Bethe vector ϕM(μ1, μ2, . . . , μM) is derived 
analogously to the previous two cases when M = 1 (6.22) and M = 2 (6.27). In the present case 
we use the expansions (6.15), (6.17) and (6.30) to obtain

τ(λ)ϕM(μ1,μ2, . . . ,μM)

= χM

(
λ, {μi}Mi=1

)
ϕM(μ1,μ2, . . . ,μM)

+
M∑
i=1

4λ(ξ + μiν)

(ξ2 − λ2ν2)(λ2 − μ2
i )

fM

(
μi; {μj }j �=i

)
ϕM

(
λ, {μj }j �=i

)
, (6.34)

where χM(λ, {μi}Mi=1) is given in (6.16) and the unwanted terms on the right hand side of the 
equation above are canceled by the following Bethe equations

fM

(
μi; {μj }j �=i

) = 2μiν
2

ξ + μiν
− 2(ξ − μiν)

M∑
j=1
j �=i

(
1

μi − μj

+ 1

μi + μj

)

+ 2(ξ − μiν)

N∑
m=1

(
sm

μi − αm

+ sm

μi + αm

)
= 0, (6.35)

for i = 1, 2, . . . , M . As expected, the above action of the generating function τ(λ) is strikingly 
simple and this simplicity is due to our definition of the Bethe vector ϕM(μ1, μ2, . . . , μM) (6.31). 
These results will be studied further in the framework of an alternative approach to the imple-
mentation of the algebraic Bethe ansatz for the Gaudin model, with triangular K-matrix (6.2), 
based on the classical reflection equation and corresponding linear bracket and will be reported 
in [42].
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7. Conclusions

We have implemented fully the off shell algebraic Bethe ansatz for the XXX Heisenberg 
spin chain in the case when the boundary parameters satisfy an extra condition guaranteeing 
that both boundary matrices can be brought to the upper-triangular form by a single similarity 
matrix which does not depend on the spectral parameter. As it turned out the identity satisfied 
by the Lax operator enables a convenient realization for the Sklyanin monodromy matrix. This 
realization led to the action of the entries of the Sklyanin monodromy matrix on the vector Ω+
and consequently to the observation that Ω+ is an eigenvector of the transfer matrix of the chain.

We have proceeded then to the essential step of the algebraic Bethe ansatz, to the definition 
of the Bethe vectors ΨM(μ1, μ2, . . . , μM). Our objective was to make the off shell action of the 
transform matrix t (λ) on them as simple as possible. Before defining the general Bethe vector 
ΨM(μ1, μ2, . . . , μM), for an arbitrary positive integer M , we gave a step by step presentation 
of the first two Bethe vectors, including the formulae for the action of t (λ), the corresponding 
eigenvalues and Bethe equations. In this way we have exposed the striking property of these 
vectors to make the off shell action of the transform matrix as simple as possible. Consequently, 
the elaborated definition of ΨM(μ1, μ2, . . . , μM), for arbitrary positive integer M , appeared nat-
urally as a generalization of the first two Bethe vectors. As expected, the action of t (λ) on the 
Bethe vector ΨM(μ1, μ2, . . . , μM) is again very simple. Actually, the action of the transfer ma-
trix is as simple as it could possible be since it almost coincides with the corresponding action in 
the case when the two boundary matrices are diagonal [6,33].

We explored further these results by obtaining the off shell action of the generating func-
tion of the Gaudin Hamiltonians on the corresponding Bethe vectors by means of the so-called 
quasi-classical limit. To study the open Gaudin model we had to impose the condition so that the 
parameters of the reflection matrices on the left and on the right end of the chain are the same. 
This is not the case in the study of the open spin chain, but is essential for the Gaudin model. 
The generating function of the Gaudin Hamiltonians with boundary terms is derived analogously 
to the periodic case [42]. Based on this result we showed how the quasi-classical limit yields 
the off shell action of the generating function of the Gaudin Hamiltonians on the Bethe vectors 
ϕM(μ1, μ2, . . . , μM) as well as the spectrum and the Bethe equations. The off shell action of 
the generating function τ(λ) on the Bethe vectors ϕM(μ1, μ2, . . . , μM) is strikingly simple. As 
in the case of the spin chain, it is as simple as it can be since it practically coincide with the 
corresponding formula in the case when the boundary matrix is diagonal [33]. This simplicity of 
the action of τ(λ) is due to our definition of the Bethe vectors ϕM(μ1, μ2, . . . , μM).

An important open problem is to calculate the off shell scalar product of the Bethe vectors we 
have defined above both for the XXX Heisenberg spin chain and the Gaudin model. These results 
could lead to the correlations functions for both systems. In the case of Gaudin model it would 
be of interest to establish a relation between Bethe vectors and solutions of the corresponding 
Knizhnik–Zamolodchikov equations, along the lines it was done in the case when the boundary 
matrix is diagonal [33].
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Appendix A. Basic definitions

We consider the spin operators Sα with α = +, −, 3, acting in some (spin s) representation 
space C2s+1 with the commutation relations[

S3, S±] = ±S±,
[
S+, S−] = 2S3, (A.1)

and Casimir operator

c2 = (
S3)2 + 1

2

(
S+S− + S−S+) = (

S3)2 + S3 + S−S+ = �S · �S.

In the particular case of spin 1
2 representation, one recovers the Pauli matrices

Sα = 1

2
σα = 1

2

(
δα3 2δα+

2δα− −δα3

)
.

We consider a spin chain with N sites with spin s representations, i.e. a local C2s+1 space at 
each site and the operators

Sα
m = 1 ⊗ · · · ⊗ Sα︸︷︷︸

m

⊗· · · ⊗ 1, (A.2)

with α = +, −, 3 and m = 1, 2, . . . , N .

Appendix B. Commutation relations

Eq. (4.6) yields the exchange relations between the operators A(λ), B(λ), C(λ) and D̂(λ). The 
relevant relations are

B(λ)B(μ) = B(μ)B(λ), C(λ)C(μ) = C(μ)C(λ), (B.1)

A(λ)B(μ) = (λ + μ)(λ − μ − η)

(λ − μ)(λ + μ + η)
B(μ)A(λ) + 2ημ

(λ − μ)(2μ + η)
B(λ)A(μ)

− η

λ + μ + η
B(λ)D̂(μ), (B.2)

D̂(λ)B(μ) = (λ − μ + η)(λ + μ + 2η)

(λ − μ)(λ + μ + η)
B(μ)D̂(λ) − 2η(λ + η)

(λ − μ)(2λ + η)
B(λ)D̂(μ)

+ 4ημ(λ + η)

(2λ + η)(2μ + η)(λ + μ + η)
B(λ)A(μ), (B.3)

[
C(λ),B(μ)

] = 2ηλ(λ − μ + η)

(λ − μ)(λ + μ + η)(2λ + η)
A(μ)A(λ)

− 2η2λ

(λ − μ)(2λ + η)(2μ + η)
A(λ)A(μ)

+ η(λ + μ)

(λ − μ)(λ + μ + η)
A(μ)D̂(λ) − 2ηλ

(λ − μ)(2λ + η)
A(λ)D̂(μ)

− η2

(λ + μ + η)(2μ + η)
D̂(λ)A(μ) − η

λ + μ + η
D̂(λ)D̂(μ). (B.4)
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For completeness we include the following commutation relations[
A(λ),A(μ)

] = η

λ + μ + η

(
B(μ)C(λ) −B(λ)C(μ)

)
(B.5)

[
A(λ), D̂(μ)

] = 2η(μ + η)

(λ − μ)(2μ + η)

(
B(λ)C(μ) −B(μ)C(λ)

)
(B.6)

[
D̂(λ), D̂(μ)

] = 4η(λ + η)(μ + η)

(2λ + η)(2μ + η)(λ + μ + η)

(
B(λ)C(μ) −B(μ)C(λ)

)
(B.7)

From the relations above it follows that

A(λ)B(μ1)B(μ2)Ω+

=
2∏

i=1

(λ + μi)(λ − μi − η)

(λ − μi)(λ + μi + η)
α(λ)B(μ1)B(μ2)Ω+

+
2∑

i=1

2ημi

(2μi + η)(λ − μi)

(μi + μ3−i )(μi − μ3−i − η)

(μi − μ3−i )(μi + μ3−i + η)
α(μi)B(λ)B(μ3−i )Ω+

−
2∑

i=1

η

λ + μi + η

(μi − μ3−i + η)(μi + μ3−i + 2η)

(μi − μ3−i )(μi + μ3−i + η)
δ̂(μi)B(λ)B(μ3−i )Ω+. (B.8)

Analogously,

D̂(λ)B(μ1)B(μ2)Ω+

=
2∏

i=1

(λ − μi + η)(λ + μi + 2η)

(λ − μi)(λ + μi + η)
δ̂(λ)B(μ1)B(μ2)Ω+

−
2∑

i=1

2η(λ + η)

(2λ + η)(λ − μi)

(μi − μ3−i + η)(μi + μ3−i + 2η)

(μi − μ3−i )(μ1 + μ3−i + η)
δ̂(μi)B(λ)B(μ3−i )Ω+

+
2∑

i=1

4ημi(λ + η)

(2λ + η)(2μi + η)(λ + μi + η)

× (μi + μ3−i )(μi − μ3−i − η)

(μi − μ3−i )(μi + μ3−i + η)
α(μi)B(λ)B(μ3−i )Ω+. (B.9)

Finally,

C(λ)B(μ1)B(μ2)Ω+

=
2∑

i=1

(
4μiλη

(2λ + η)(2μi + η)(λ + μi + η)

× (λ + μ3−i )(λ − μ3−i − η)

(λ − μ3−i )(λ + μ3−i + η)

(μi + μ3−i )(μi − μ3−i − η)

(μi − μ2)(μi + μ3−i + η)
α(λ)α(μi)

− 2λη

(λ − μi)(2λ + η)

× (λ + μ2)(λ − μ2 − η)

(λ − μ2)(λ + μ2 + η)

(μi − μ2 + η)(μi + μ2 + 2η)

(μi − μ2)(μi + μ2 + η)
α(λ)̂δ(μi)
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+ 2μiη

(λ − μi)(2μi + η)

× (λ − μ2 + η)(λ + μ2 + 2η)

(λ − μ2)(λ + μ2 + η)

(μi + μ2)(μi − μ2 − η)

(μi − μ2)(μi + μ2 + η)
α(μi )̂δ(λ) − η

λ + μi + η

× (λ − μ2 + η)(λ + μ2 + 2η)

(λ − μ2)(λ + μ2 + η)

(μi − μ2 + η)(μi + μ2 + 2η)

(μi − μ2)(μi + μ2 + η)
δ̂(λ)̂δ(μ1)

)
×B(μ3−i )Ω+

+
(

8η2μ1μ2(μ1 + μ2)(λ(λ + η) − μ1μ2)

(λ − μ1)(λ − μ2)(2μ1 + η)(2μ2 + η)(λ + μ1 + η)(λ + μ2 + η)(μ1 + μ2 + η)

× α(μ1)α(μ2)

− 4η2μ1(μ2 − μ1 + η)(λ(λ + η) + μ1(μ2 + η))

(λ − μ1)(λ − μ2)(2μ1 + η)(μ2 − μ1)(λ + μ1 + η)(λ + μ2 + η)
α(μ1)̂δ(μ2)

− 4η2μ2 (μ1 − μ2 + η)(λ(λ + η) + μ2(μ1 + η))

(λ − μ1)(λ − μ2)(2μ2 + η)(μ1 − μ2)(λ + μ1 + η)(λ + μ2 + η)
α(μ2)̂δ(μ1)

− 2η2(μ1 + μ2 + 2η)(η2 − λ2 + μ1μ2 + η(μ1 + μ2 − λ))

(λ − μ1)(λ − μ2)(λ + μ1 + η)(λ + μ2 + η)(μ1 + μ2 + η)
δ̂(μ1)̂δ(μ2)

)
B(λ)Ω+

(B.10)

The relations (B.8), (B.9) and (B.10) are readily generalized [10].
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Abstract

Following Sklyanin’s proposal in the periodic case, we derive the generating function of the Gaudin 
Hamiltonians with boundary terms. Our derivation is based on the quasi-classical expansion of the linear 
combination of the transfer matrix of the XXX Heisenberg spin chain and the central element, the so-called 
Sklyanin determinant. The corresponding Gaudin Hamiltonians with boundary terms are obtained as the 
residues of the generating function. By defining the appropriate Bethe vectors which yield strikingly simple 
off shell action of the generating function, we fully implement the algebraic Bethe ansatz, obtaining the 
spectrum of the generating function and the corresponding Bethe equations.
© 2015 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

* Corresponding author.
E-mail addresses: nantonio@math.ist.utl.pt (N. Cirilo António), nmanoj@ualg.pt (N. Manojlović), 
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1. Introduction

A model of interacting spins in a chain was first considered by Gaudin [1,2]. Gaudin de-
rived these models as a quasi-classical limit of the quantum chains. Sklyanin studied the rational 
s�(2) model in the framework of the quantum inverse scattering method using the s�(2) invari-
ant classical r-matrix [3]. A generalisation of these results to all cases when skew-symmetric 
r-matrix satisfies the classical Yang–Baxter equation [4] was relatively straightforward [5,6]. 
Therefore, considerable attention has been devoted to Gaudin models corresponding to the clas-
sical r-matrices of simple Lie algebras [7–12] and Lie superalgebras [13–17].

Hikami, Kulish and Wadati showed that the quasi-classical expansion of the transfer matrix 
of the periodic chain, calculated at the special values of the spectral parameter, yields the Gaudin 
Hamiltonians [18,19]. Hikami showed how the quasi-classical expansion of the transfer matrix, 
calculated at the special values of the spectral parameter, yields the Gaudin Hamiltonians in 
the case of non-periodic boundary conditions [20]. Then the ABA was applied to open Gaudin 
model in the context of the Vertex-IRF correspondence [21–23]. Also, results were obtained 
for the open Gaudin models based on Lie superalgebras [24]. An approach to study the open 
Gaudin models based on the classical reflection equation [25–27] and the non-unitary r-matrices 
was developed recently, see [28,29] and the references therein. For a review of the open Gaudin 
model see [30]. Progress in applying Bethe ansatz to the Heisenberg spin chain with non-periodic 
boundary conditions compatible with the integrability of the quantum systems [31–41] had recent 
impact on the study of the corresponding Gaudin model [41,42]. The so-called T − Q approach 
to implementation of Bethe ansatz [35,36] was used to obtain the eigenvalues of the associated 
Gaudin Hamiltonians and the corresponding Bethe ansatz equations [42]. In [41] the off shell 
action of the generating function of the Gaudin Hamiltonians on the Bethe vectors was obtained 
through the so-called quasi-classical limit.

Here we derive the generating function of the Gaudin Hamiltonians with boundary terms fol-
lowing Sklyanin’s approach in the periodic case [3]. Our derivation is based on the quasi-classical 
expansion of the linear combination of the transfer matrix of the inhomogeneous XXX Heisen-
berg spin chain and the central element, the so-called Sklyanin determinant. The essential step in 
this derivation is the expansion of the monodromy matrix in powers of the quasi-classical param-
eter. Moreover, we show how the representation of the relevant Lax matrix in terms of local spin 
operators yields the partial fraction decomposition of the generating function. Consequently, the 
Gaudin Hamiltonians with the boundary terms are obtained from the residues of the generating 
function at poles. We derive the relevant linear bracket for the Gaudin Lax operator and cer-
tain classical r-matrix, obtained form the s�(2) invariant classical r-matrix and the corresponding 
K-matrix. The local realisation of the Lax matrix together with the linear bracket provide the 
necessary structure for the implementation of the algebraic Bethe ansatz. In this framework, the 
Bethe vectors, defined as the symmetric functions of its arguments, have a remarkable property 
that the off shell action of the generating function on them is strikingly simple. Actually, it is 
as simple as it can be since it practically coincide with the corresponding formula in the case 
when the boundary matrix is diagonal [20]. The off shell action of the generating function of the 
Gaudin Hamiltonians with the boundary terms yields the spectrum of the system and the corre-
sponding Bethe equations. As usual, when the Bethe equations are imposed on the parameters of 
the Bethe vectors, the unwanted terms in the action of the generating function are annihilated.

However, more compact form of the Bethe vector ϕM(μ1, μ2, . . . , μM), for an arbitrary pos-
itive integer M , requires further studies. As it is evident form the formulas for the Bethe vector 
ϕ4(μ1, μ2, μ3, μ4) given in Appendix B, the problem lies in the definition the scalar coefficients 
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c
(m)
M (μ1, . . .μm; μm+1, . . . , μM), with m = 1, 2, . . . , M . Some of them are straightforward to 

obtain but, in particular, the coefficient c(M)
M (μ1, μ2 . . . , μM) still represents a challenge, at least 

in the present form.
This paper is organised as follows. In Section 2 we review the SL(2)-invariant Yang R-matrix 

and provide fundamental tools for the study of the inhomogeneous XXX Heisenberg spin chain 
and the corresponding Gaudin model. Moreover, we outline Sklyanin’s derivation of the rational 
s�(2) Gaudin model. The general solutions of the reflection equation and the dual reflection 
equation are given in Section 3. As one of the main results of the paper, the generating function 
of the Gaudin Hamiltonians with boundary terms is derived in Section 4, using the quasi-classical 
expansion of the linear combination of the transfer matrix of the inhomogeneous XXX spin chain 
and the so-called Sklyanin determinant. The relevant algebraic structure, including the classical 
reflection equation, is given in Section 5. The implementation of the algebraic Bethe ansatz is 
presented in Section 6, including the definition of the Bethe vectors and the formulae of the off 
shell action of the generating function of the Gaudin Hamiltonians. Our conclusions are presented 
in Section 7. Finally, in Appendix A are given some basic definitions for the convenience of the 
reader.

2. s�(2) Gaudin model

The XXX Heisenberg spin chain is related to the SL(2)-invariant Yang R-matrix [43]

R(λ) = λ1 + ηP =
⎛⎜⎝

λ + η 0 0 0
0 λ η 0
0 η λ 0
0 0 0 λ + η

⎞⎟⎠ , (2.1)

where λ is a spectral parameter, η is a quasi-classical parameter, 1 is the identity operator and 
we use P for the permutation in C2 ⊗C

2.
The Yang R-matrix satisfies the Yang–Baxter equation [43–46] in the space C2 ⊗C

2 ⊗C
2

R12(λ − μ)R13(λ)R23(μ) = R23(μ)R13(λ)R12(λ − μ), (2.2)

we use the standard notation of the quantum inverse scattering method to denote spaces on which 
corresponding R-matrices Rij , ij = 12, 13, 23 act nontrivially and suppress the dependence on 
the quasi-classical parameter η [45,46].

The Yang R-matrix also satisfies other relevant properties such as

unitarity R12(λ)R21(−λ) = (η2 − λ2)1;
parity invariance R21(λ) = R12(λ);
temporal invariance Rt

12(λ) = R12(λ);
crossing symmetry R(λ) = J1R

t2(−λ − η)J1,

where t2 denotes the transpose in the second space and the entries of the two-by-two matrix J
are Jab = (−1)a−1δa,3−b .

Here we study the inhomogeneous XXX spin chain with N sites, characterised by the local 
space Vm =C

2s+1 and inhomogeneous parameter αm. For simplicity, we start by considering the 
periodic boundary conditions. The Hilbert space of the system is

H = N⊗
m=1

Vm = (C2s+1)⊗N. (2.3)
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Following [3] we introduce the Lax operator [41]

L0m(λ) = 1 + η

λ

(
�σ0 · �Sm

)
= 1

λ

(
λ + ηS3

m ηS−
m

ηS+
m λ − ηS3

m

)
. (2.4)

Notice that L(λ) is a two-by-two matrix in the auxiliary space V0 =C
2. It obeys

L0m(λ)L0m(η − λ) =
(

1 + η2 c2,m

λ(η − λ)

)
10, (2.5)

where c2,m is the value of the Casimir operator on the space Vm [41].
When the quantum space is also a spin 1

2 representation, the Lax operator becomes the 
R-matrix, L0m(λ) = 1

λ
R0m (λ − η/2).

Due to the commutation relations (A.1), it is straightforward to check that the Lax operator 
satisfies the RLL-relations

R00′(λ − μ)L0m(λ)L0′m(μ) = L0′m(μ)L0m(λ)R00′(λ − μ). (2.6)

The so-called monodromy matrix

T (λ) = L0N(λ − αN) · · ·L01(λ − α1) (2.7)

is used to describe the system. For simplicity we have omitted the dependence on the quasi-
classical parameter η and the inhomogeneous parameters {αj , j = 1, . . . , N}. Notice that T (λ)

is a two-by-two matrix acting in the auxiliary space V0 = C
2, whose entries are operators acting 

in H. From RLL-relations (2.6) it follows that the monodromy matrix satisfies the RTT-relations

R00′(λ − μ)T0(λ)T0′(μ) = T0′(μ)T0(λ)R00′(λ − μ). (2.8)

The periodic boundary conditions and the RTT-relations (2.8) imply that the transfer matrix

t (λ) = tr0T (λ), (2.9)

commute at different values of the spectral parameter,

[t (μ), t (ν)] = 0, (2.10)

here we have omitted the nonessential arguments.
The RTT-relations admit a central element


 [T (λ)] = tr00′P −
00′T0 (λ − η/2) T0′ (λ + η/2) , (2.11)

where

P −
00′ = 1 −P00′

2
= − 1

2η
R00′ (−η) . (2.12)

A straightforward calculation shows that[



[
T (μ)

]
, T (ν)

]
= 0. (2.13)

As the first step toward the study of the Gaudin model we consider the expansion of the 
monodromy matrix (2.7) with respect to the quasi-classical parameter η
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T (λ) = 1 + η

N∑
m=1

�σ0 · �Sm

λ − αm

+ η2

2

N∑
n,m=1
n�=m

10

(�Sm · �Sn

)
(λ − αm)(λ − αn)

+ η2

2

N∑
m=1

⎛⎝ N∑
n>m

ı �σ0 ·
(�Sn × �Sm

)
(λ − αm)(λ − αn)

+
N∑

n<m

ı �σ0 ·
(�Sm × �Sn

)
(λ − αm)(λ − αn)

⎞⎠ +O(η3). (2.14)

If the Gaudin Lax matrix is defined by [3]

L0(λ) =
N∑

m=1

�σ0 · �Sm

λ − αm

(2.15)

and the quasi-classical property of the Yang R-matrix [3]

1

λ
R(λ) = 1 − ηr(λ), where r(λ) = −P

λ
(2.16)

is taken into account, then substitution of the expansion (2.14) into the RTT-relations (2.8) yields 
the so-called Sklyanin linear bracket [3]

[L1(λ),L2(μ)] = [r12(λ − μ),L1(λ) + L2(μ)] . (2.17)

Using the expansion (2.14) it is evident that

t (λ) = 2 + η2
N∑

m=1

N∑
n�=m

�Sm · �Sn

(λ − αm)(λ − αn)
+O(η3). (2.18)

The same expansion (2.14) leads to


 [T (λ)] = 1 + η trL(λ) + η2

2
tr00′P −

00′

N∑
m=1

(
�σ0 · �Sm

(λ − αm)2
− �σ0′ · �Sm

(λ − αm)2

)

+ η2

2
tr00′P −

00′

N∑
m=1

N∑
n�=m

⎛⎝ 10

(�Sm · �Sn

)
(λ − αm)(λ − αn)

+
10′

(�Sm · �Sn

)
(λ − αm)(λ − αn)

⎞⎠
+ η2

2
tr00′P −

00′

N∑
m=1

⎛⎝ N∑
n>m

ı �σ0 ·
(�Sn × �Sm

)
(λ − αm)(λ − αn)

+
N∑

n<m

ı �σ0 ·
(�Sm × �Sn

)
(λ − αm)(λ − αn)

⎞⎠
+ η2

2
tr00′P −

00′

N∑
m=1

⎛⎝ N∑
n>m

ı �σ0′ ·
(�Sn × �Sm

)
(λ − αm)(λ − αn)

+
N∑

n<m

ı �σ0′ ·
(�Sm × �Sn

)
(λ − αm)(λ − αn)

⎞⎠
+ η2tr00′P −

00′L0(λ)L0′(λ) +O(η3), (2.19)

where L(λ) is given in (2.15). The final expression for the expansion of 
 [T (λ)] is obtained 
after taking all the traces


 [T (λ)] = 1 + η2

⎛⎝ N∑
m=1

N∑
n�=m

�Sm · �Sn

(λ − αm)(λ − αn)
− 1

2
trL2(λ)

⎞⎠ +O(η3). (2.20)
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To obtain the generation function of the Gaudin Hamiltonians notice that (2.18) and (2.20)
yield

t (λ) − 
 [T (λ)] = 1 + η2

2
trL2(λ) +O(η3). (2.21)

Therefore

τ(λ) = 1

2
trL2(λ) (2.22)

commute for different values of the spectral parameter,

[τ(λ), τ (μ)] = 0. (2.23)

Moreover, from (2.15) it is straightforward to obtain the expansion

τ(λ) =
N∑

m=1

2Hm

λ − αm

+
N∑

m=1

�Sm · �Sm

(λ − αm)2
=

N∑
m=1

2Hm

λ − αm

+
N∑

m=1

sm(sm + 1)

(λ − αm)2
, (2.24)

and the Gaudin Hamiltonians, in the periodic case, are

Hm =
N∑

n�=m

�Sm · �Sn

αm − αn

. (2.25)

This shows that τ(λ) is the generating function of Gaudin Hamiltonians when the periodic bound-
ary conditions are imposed [3].

3. Reflection equation

A way to introduce non-periodic boundary conditions which are compatible with the integra-
bility of the bulk model, was developed in [27]. Boundary conditions on the left and right sites 
of the system are encoded in the left and right reflection matrices K− and K+. The compatibil-
ity condition between the bulk and the boundary of the system takes the form of the so-called 
reflection equation. It is written in the following form for the left reflection matrix acting on the 
space C2 at the first site K−(λ) ∈ End(C2)

R12(λ − μ)K−
1 (λ)R21(λ + μ)K−

2 (μ) = K−
2 (μ)R12(λ + μ)K−

1 (λ)R21(λ − μ). (3.1)

Due to the properties of the Yang R-matrix the dual reflection equation can be presented in 
the following form

R12(μ − λ)K+
1 (λ)R21(−λ − μ − 2η)K+

2 (μ)

= K+
2 (μ)R12(−λ − μ − 2η)K+

1 (λ)R21(μ − λ). (3.2)

One can then verify that the mapping

K+(λ) = K−(−λ − η) (3.3)

is a bijection between solutions of the reflection equation and the dual reflection equation. After 
substitution of (3.3) into the dual reflection equation (3.2) one gets the reflection equation (3.1)
with shifted arguments.
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The general, spectral parameter dependent solutions of the reflection equation (3.1) can be 
written as follows [47]

K−(λ) =
(

ξ − λ ψλ

φλ ξ + λ

)
. (3.4)

It is straightforward to check the following useful identities

K−(−λ)K−(λ) =
(
ξ2 − λ2 (1 + φψ)

)
1 = det

(
K−(λ)

)
1, (3.5)

K−(−λ) = trK−(λ) − K−(λ). (3.6)

4. s�(2) Gaudin model with boundary terms

With the aim of describing the inhomogeneous XXX spin chain with non-periodic boundary 
condition it is instructive to recall some properties of the Lax operator (2.4). The identity (2.5)
can be rewritten in the form [41]

L0m(λ − αm)L0m(−λ + αm + η) =
(

1 + η2 sm(sm + 1)

(λ − αm)(−λ + αm + η)

)
10. (4.1)

It follows from the equation above and the RLL-relations (2.6) that the RTT-relations (2.8) can 
be recast as follows

T̃0′(μ)R00′(λ + μ)T0(λ) = T0(λ)R00′(λ + μ)T̃0′(μ), (4.2)

T̃0(λ)T̃0′(μ)R00′(μ − λ) = R00′(μ − λ)T̃0′(μ)T̃0(λ), (4.3)

where

T̃ (λ) = L01(λ + α1 + η) · · ·L0N(λ + αN + η). (4.4)

The Sklyanin monodromy matrix T (λ) of the inhomogeneous XXX spin chain with non-periodic 
boundary consists of the two matrices T (λ) (2.7) and T̃0(λ) (4.4) and a reflection matrix K−(λ)

(3.4),

T0(λ) = T0(λ)K−
0 (λ)T̃0(λ). (4.5)

Using the RTT-relations (2.8), (4.2), (4.3) and the reflection equation (3.1) it is straightforward 
to show that the exchange relations of the monodromy matrix T (λ) in V0 ⊗ V0′ are [41]

R00′(λ − μ)T0(λ)R0′0(λ + μ)T0′(μ) = T0′(μ)R00′(λ + μ)T0(λ)R0′0(λ − μ). (4.6)

The open chain transfer matrix is given by the trace of T (λ) over the auxiliary space V0 with an 
extra reflection matrix K+(λ) [27],

t (λ) = tr0
(
K+(λ)T (λ)

)
. (4.7)

The reflection matrix K+(λ) (3.3) is the corresponding solution of the dual reflection equation 
(3.2). The commutativity of the transfer matrix for different values of the spectral parameter

[t (λ), t (μ)] = 0, (4.8)

is guaranteed by the dual reflection equation (3.2) and the exchange relations (4.6) of the mon-
odromy matrix T (λ).
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The exchange relations (4.6) admit a central element


 [T (λ)] = tr00′P −
00′T0(λ − η/2)R00′(2λ)T0′(λ + η/2). (4.9)

For the study of the open Gaudin model we impose

lim
η→0

(
K+(λ)K−(λ)

)
=

(
ξ2 − λ2 (1 + φψ)

)
1. (4.10)

In particular, this implies that the parameters of the reflection matrices on the left and on the right 
end of the chain are the same. In general this not the case in the study of the open spin chain. 
However, this condition is essential for the Gaudin model. Then we will write

K−(λ) ≡ K(λ), (4.11)

so that

K+(λ) = K(−λ − η) = K(−λ) − ηM with M =
(−1 ψ

φ 1

)
. (4.12)

Remark that the matrix M obeys M2 = (1 + ψφ)1.
The expansion of T (λ) is given in (2.14). It is easy to get the expansion for T̃ (λ) as introduced 

in (4.4) and then, the one for T (λ). Using the relation (4.12), we deduce the expansion of t (λ)

(6.24) in powers of η:

t (λ) = 2
(
ξ2 − λ2 (1 + φψ)

)
− 2ηλ (1 + φψ)

− η2 tr0 (M0 (L0(λ)K0(λ) − K0(λ)L0(−λ)))

+ η2
(
ξ2 − λ2 (1 + φψ)

) N∑
m,n=1
n�=m

( �Sm · �Sn

(λ − αm)(λ − αn)
+ �Sm · �Sn

(λ + αm)(λ + αn)

)

− η2tr0 L0(λ)K0(λ)L0(−λ)K0(−λ) +O(η3). (4.13)

Our next step is to obtain the expansion of 
 [T (λ)] (4.9) in powers of η. We follow the 
analogous steps as for the periodic case, and after some tedious but straightforward calculations 
we get


 [T (λ)] = λ
(

tr2
0K0(λ) − tr0K

2
0 (λ)

)
+ 2ηλtr0K0(λ) tr0 (L0(λ)K0(λ) − K0(λ)L0(−λ))

− 2ηλ
(

tr0

{
L0(λ)K2

0 (λ)
}

− tr0

{
L0(−λ)K2

0 (λ)
})

− η

2
tr0 K2

0 (λ)

+ η2λ

N∑
m,n=1
n�=m

( �Sm · �Sn

(λ − αm)(λ − αn)
+ �Sm · �Sn

(λ + αm)(λ + αn)

)
tr0 K0(−λ)K0(λ)

− 2η2λ tr0 L0(λ)K0(λ)L0(−λ)K0(−λ)

− η2 tr0
{(

L0(λ)K0(λ) − K0(λ)L0(−λ)
)
K0(λ)

}
+ η2λ

(
tr0 {L0(λ)K0(λ) − K0(λ)L0(−λ)}

)2

− η2λ tr0

{(
L0(λ)K0(λ) − K0(λ)L0(−λ)

)(
L0(λ)K0(λ) − K0(λ)L0(−λ)

)}
+ η2λ

4
tr0 M2

0 +O(η3). (4.14)
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Using the relations (3.5) and (3.6) the first term of the expansion above simplifies and the second 
and third term together turn out to be propositional to the trace of L(λ) (2.15) and therefore 
vanish,


 [T (λ)] = 2λ
(
ξ2 − λ2 (1 + φψ)

)
− η

(
ξ2 + λ2 (1 + φψ)

)
+ 2η2λ

(
ξ2 − λ2 (1 + φψ)

)
×

N∑
m,n=1
n�=m

( �Sm · �Sn

(λ − αm)(λ − αn)
+ �Sm · �Sn

(λ + αm)(λ + αn)

)

− 2η2λ tr0 L0(λ)K0(λ)L0(−λ)K0(−λ)

− η2 tr0((L0(λ)K0(λ) − K0(λ)L0(−λ))K0(λ))

+ η2λ tr0

{(
tr0′ {L0′(λ)K0′(λ) − K0′(λ)L0′(−λ)} − L0(λ)K0(λ)

+ K0(λ)L0(−λ)
)(

L0(λ)K0(λ) − K0(λ)L0(−λ)
)}

+ η2λ

2
(1 + φψ)

+O
(
η3). (4.15)

In order to simplify some formulae we introduce the following notation

L0(λ) = L0(λ) − K0(λ)L0(−λ)K−1
0 (λ). (4.16)

Using the formulas (4.13) and (4.15) we calculate the expansion in powers of η of the differ-
ence

2λt(λ) − 
 [T (λ)] = 2λ
(
ξ2 − λ2 (1 + φψ)

)
+ η

(
ξ2 − 3λ2 (1 + φψ)

)
− 2η2λ tr0 (M0L0(λ)K0(λ)) + η2tr0

(
L0(λ)K2

0 (λ)
)

− η2λ tr0 ((tr0′ (L0′(λ)K0′(λ))10 −L0(λ)K0(λ))L0(λ)K0(λ))

− η2λ

2
(1 + φψ) +O(η3). (4.17)

Actually the third and the fourth term in the expression above vanish

tr0

(
L0(λ)K2

0 (λ)
)

− 2λ tr0 (M0L0(λ)K0(λ)) = tr0 ((L0(λ)K0(λ)) (K0(λ) − 2λM0))

= tr0 (L0(λ)K0(λ)K0(−λ)) =
(
ξ2 − λ2 (1 + φψ)

)
tr0L0 = 0, (4.18)

due to the fact that the tr0L0 is equal to zero. Therefore the expansion (4.17) reads

2λt(λ) − 
 [T (λ)] = 2λ
(
ξ2 − λ2 (1 + φψ)

)
+ η

(
ξ2 − 3λ2 (1 + φψ)

)
− η2λ tr0 ((tr0′ (L0′(λ)K0′(λ))10 −L0(λ)K0(λ))L0(λ)K0(λ))

− η2λ

2
(1 + φψ) +O(η3). (4.19)

It is important to notice that using the following identity

tr0′ (L0′(λ)K0′(λ))10 −L0(λ)K0(λ) = −K0(−λ)L0(λ), (4.20)

the third term in (4.19) can be simplified

tr0 K0(−λ)L0(λ)L0(λ)K0(λ) =
(
ξ2 − λ2 (1 + φψ)

)
tr0 L2

0(λ). (4.21)
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Finally, the expansion (4.19) reads

2λt(λ) − 
 [T (λ)] = 2λ
(
ξ2 − λ2 (1 + φψ)

)
+ η

(
ξ2 − 3λ2 (1 + φψ)

)
+ η2λ

(
ξ2 − λ2 (1 + φψ)

)
tr0 L2

0(λ)

− η2λ

2
(1 + φψ) +O(η3). (4.22)

This shows that

τ(λ) = tr0 L2
0(λ) (4.23)

commute for different values of the spectral parameter,

[τ(λ), τ (μ)] = 0. (4.24)

and therefore can be considered to be the generating function of Gaudin Hamiltonians with 
boundary terms. The multiplicative factor in (6.31), which is equal to the determinant of K(λ), 
will be useful in the partial fraction decomposition of the generating function.

With the aim of obtaining the Gaudin Hamiltonians with the boundary terms from the gener-
ating function (6.31), it is instructive to study the representation of L0(λ) (4.16) in terms of the 
local spin operators

L0(λ) =
N∑

m=1

⎛⎝ �σ0 · �Sm

λ − αm

+
(
K0(λ)�σ0K

−1
0 (λ)

)
· �Sm

λ + αm

⎞⎠ , (4.25)

noticing that

L0(λ) =
N∑

m=1

⎛⎝ �σ0 · �Sm

λ − αm

+
�σ0 ·

(
K−1

m (λ)�SmKm(λ)
)

λ + αm

⎞⎠ . (4.26)

Now it is straightforward to obtain the expression for the generating function (6.31) in terms of 
the local operators

τ(λ) = 2
N∑

m,n=1

( �Sm · �Sn

(λ − αm)(λ − αn)
+

�Sm ·
(
K−1

n (λ)�SnKn(λ)
)

+
(
K−1

n (λ)�SnKn(λ)
)

· �Sm

(λ − αm)(λ + αn)

+
(
K−1

m (λ)�SmKm(λ)
)

·
(
K−1

n (λ)�SnKn(λ)
)

(λ + αm)(λ + αn)

⎞⎠ . (4.27)

It is important to notice that (4.27) simplifies further

τ(λ) = 2
N∑

m,n=1

( �Sm · �Sn

(λ − αm)(λ − αn)
+ �Sm · �Sn

(λ + αm)(λ + αn)

+
�Sm ·

(
K−1

n (λ)�SnKn(λ)
)

+
(
K−1

n (λ)�SnKn(λ)
)

· �Sm

(λ − αm)(λ + αn)

⎞⎠ . (4.28)



N. Cirilo António et al. / Nuclear Physics B 893 (2015) 305–331 315

The Gaudin Hamiltonians with the boundary terms are obtained from the residues of the 
generating function (4.28) at poles λ = ±αm:

Resλ=αmτ(λ) = 4Hm and Resλ=−αmτ(λ) = (−4) H̃m (4.29)

where

Hm =
N∑

n�=m

�Sm · �Sn

αm − αn

+
N∑

n=1

�Sm ·
(
K−1

n (αm)�SnKn(αm)
)

+
(
K−1

n (αm)�SnKn(αm)
)

· �Sm

2(αm + αn)
,

(4.30)

and

H̃m =
N∑

n�=m

�Sm · �Sn

αm − αn

+
N∑

n=1

�Sm ·
(
K−1

n (−αm)�SnKn(−αm)
)

+
(
K−1

n (−αm)�SnKn(−αm)
)

· �Sm

2(αm + αn)
. (4.31)

The above Hamiltonians can be expressed in somewhat a more symmetric form

Hm =
N∑

n�=m

�Sm · �Sn

αm − αn

+
N∑

n=1

(
Km(αm)�SmK−1

m (αm)
)

· �Sn + �Sn ·
(
Km(αm)�SmK−1

m (αm)
)

2(αm + αn)
,

(4.32)

and

H̃m =
N∑

n�=m

�Sm · �Sn

αm − αn

+
N∑

n=1

(
Km(−αm)�SmK−1

m (−αm)
)

· �Sn + �Sn ·
(
Km(−αm)�SmK−1

m (−αm)
)

2(αm + αn)
. (4.33)

The next step is to study the quasi-classical limit of the exchange relations (4.6) with the aim 
of deriving relevant algebraic structure for the Lax operator (4.16).

5. Linear bracket relations

The implementation of the algebraic Bethe ansatz requires the commutation relations between 
the entries of the Lax operator (4.16). Our aim is to derive these relations as the quasi-classical 
limit of (4.6). As the first step in this direction we observe that using (2.16) the reflection equation 
(3.1) can be expressed as(

1 − ηr12(λ − μ)
)
K1(λ)

(
1 − ηr21(λ + μ)

)
K2(μ)

= K2(μ)
(
1 − ηr12(λ + μ)

)
K1(λ)

(
1 − ηr21(λ − μ)

)
. (5.1)

The conditions obtained from the zero and first order in η are identically satisfied for the matrix 
K(λ). In particular, it obeys the classical reflection equation [25,26]:
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r12(λ − μ)K1(λ)K2(μ) + K1(λ)r21(λ + μ)K2(μ)

= K2(μ)r12(λ + μ)K1(λ) + K2(μ)K1(λ)r21(λ − μ). (5.2)

The terms of the second order in η in (5.1) are

r12(λ − μ)K1(λ)r21(λ + μ)K2(μ) = K2(μ)r12(λ + μ)K1(λ)r21(λ − μ). (5.3)

This equation is also satisfied by the K-matrix (3.4) and the classical r-matrix (2.16). In addition, 
the classical r-matrix (2.16) has the unitarity property

r21(−λ) = −r12(λ), (5.4)

and satisfies the classical Yang–Baxter equation

[r13(λ), r23(μ)] + [r12(λ − μ), r13(λ) + r23(μ)] = 0. (5.5)

Now we can proceed to the derivation of the relevant linear bracket relations of the Lax operator 
(4.16). The desired relations can be obtained by writing Eq. (4.6) in the following form, using 
(2.16),

(1 − ηr00′(λ − μ))T0(λ) (1 − ηr0′0(λ + μ))T0′(μ)

= T0′(μ) (1 − ηr00′(λ + μ))T0(λ) (1 − ηr0′0(λ − μ)) (5.6)

and substituting the expansion of T (λ) (4.5) in powers of η

T (λ) = K(λ) + ηL(λ)K(λ) + η2

2

d2T (λ)

dη2
|η=0 +O(η3). (5.7)

The zero and first orders in η are identically satisfied for the matrix K(λ) defined in (3.4). The 
relations we seek follow from the terms of the second order in η in (5.6). When the terms con-
taining the second order derivatives of T are eliminated and Eq. (5.3) is used to eliminate the 
other two terms, there are ten terms remaining. Using twice the classical reflection equation (5.2)
and the unitarity property (5.4) one obtains

(L0(λ)L0′(μ) −L0′(μ)L0(λ))K0(λ)K0′(μ)

= (r00′(λ − μ)L0(λ) −L0(λ)r00′(λ − μ))K0(λ)K0′(μ) + (L0(λ)K0′(μ)r00′(λ + μ)

− K0′(μ)r00′(λ + μ)L0(λ))K0(λ) − (r0′0(μ − λ)L0′(μ)

− L0′(μ)r0′0(μ − λ))K0(λ)K0′(μ) + (K0(λ)r0′0(μ + λ)L0′(μ)

− L0′(μ)K0(λ)r0′0(μ + λ))K0′(μ). (5.8)

Multiplying both sides of Eq. (5.8) from the right by K−1
0 (λ)K−1

0′ (μ), (5.8) can be express as

[L0(λ),L0′(μ)] =
[
r00′(λ − μ) − K0′(μ)r00′(λ + μ)K−1

0′ (μ),L0(λ)
]

−
[
r0′0(μ − λ) − K0(λ)r0′0(μ + λ)K−1

0 (λ),L0′(μ)
]
. (5.9)

Defining

rK
00′(λ,μ) = r00′(λ − μ) − K0′(μ)r00′(λ + μ)K−1

0′ (μ), (5.10)

(5.9) can be written as
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[L0(λ),L0′(μ)] =
[
rK

00′(λ,μ),L0(λ)
]
−

[
rK

0′0(μ,λ),L0′(μ)
]
. (5.11)

The commutator (5.11) is obviously anti-symmetric. It obeys the Jacobi identity because the 
r-matrix (5.10) satisfies the classical YB equation

[rK
32(λ3, λ2), r

K
13(λ1, λ3)] + [rK

12(λ1, λ2), r
K
13(λ1, λ3) + rK

23(λ2, λ3)] = 0. (5.12)

The commutator (5.11) can also be recasted as an (r, s) Maillet algebra [48]. In the following we 
study the algebraic Bethe ansatz based on the linear bracket (5.11).

6. Algebraic Bethe ansatz

Our preliminary step in the implementation of the algebraic Bethe ansatz for the open Gaudin 
model is to bring the boundary K-matrix to the upper, or lower, triangular form. As it was pointed 
out in (3.4), the general form of the K-matrix (4.11) is

K̃(λ) =
(

ξ − λ ψ̃λ

φ̃λ ξ + λ

)
. (6.1)

It is straightforward to check that the matrix

U =
(−1 − ν φ̃

φ̃ −1 − ν

)
, (6.2)

with ν =
√

1 + φ̃ ψ̃ , which does not depend on the spectral parameter λ, brings the K-matrix to 
the upper triangular form by the similarity transformation

K(λ) = U−1K̃(λ)U =
(

ξ − λν λψ

0 ξ + λν

)
, (6.3)

where ψ = φ̃ + ψ̃ . Evidently, the inverse matrix is

K−1(λ) = 1

ξ2 − λ2ν2

(
ξ + λν −λψ

0 ξ − λν

)
. (6.4)

Direct substitution of the formulas above into (4.25),

L0(λ) =
(

H(λ) F (λ)

E(λ) −H(λ)

)
=

N∑
m=1

(
�σ0 · �Sm

λ − αm

+ K0(λ)�σ0K
−1
0 (λ) · �Sm

λ + αm

)
, (6.5)

yields the following local realisation for the entries of the Lax matrix

E(λ) =
N∑

m=1

(
S+

m

λ − αm

+ (ξ + λν)S+
m

(ξ − λν)(λ + αm)

)
, (6.6)

F(λ) =
N∑

m=1

(
S−

m

λ − αm

+ (ξ − λν)2S−
m − λ2ψ2S+

m − 2λψ(ξ − λν)S3
m

(ξ + λν)(ξ − λν)(λ + αm)

)
, (6.7)

H(λ) =
N∑

m=1

(
S3

m

λ − αm

+ λψ S+
m + (ξ − λν)S3

m

(ξ − λν)(λ + αm)

)
. (6.8)

The linear bracket (5.11) based on the r-matrix rK
00′(λ, μ) (5.10), corresponding to (6.3), (6.4)

and the classical r-matrix (2.16), defines the Lie algebra relevant for the open Gaudin model
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[E(λ),E(μ)] = 0, (6.9)

[H(λ),E(μ)] = 2

λ2 − μ2

(
λE(μ) − ξ − λν

ξ − μν
μE(λ)

)
, (6.10)

[E(λ),F (μ)] = 2ψμ

(λ + μ)(ξ + μν)
E(λ)

+ 4

λ2 − μ2

(
ξ − μν

ξ − λν
λH(μ) − ξ + λν

ξ + μν
μH(λ)

)
, (6.11)

[H(λ),H(μ)] = −ψ

λ + μ

(
λ

ξ − λν
E(μ) − μ

ξ − μν
E(λ)

)
, (6.12)

[H(λ),F (μ)] = ψ

λ + μ

(
2λ

ξ − λν
H(μ) − ψμ2

ξ2 − μ2ν2
E(λ)

)
− 2

λ2 − μ2

(
λF(μ) − ξ + λν

ξ + μν
μF(λ)

)
, (6.13)

[F(λ),F (μ)] = 2ψ

λ + μ

(
λ

ξ + λν
F(μ) − μ

ξ + μν
F(λ)

)
− 2ψ2

λ + μ

(
λ2

ξ2 − λ2ν2
H(μ) − μ2

ξ2 − μ2ν2
H(λ)

)
. (6.14)

Our next step is to introduce the new generators e(λ), h(λ) and f (λ) as the following linear 
combinations of the original generators

e(λ) = −ξ + λν

λ
E(λ), h(λ) = 1

λ

(
H(λ) − ψλ

2ξ
E(λ)

)
,

f (λ) = 1

λ
((ξ + λν)F (λ) + ψλH(λ)) . (6.15)

The key observation is that in the new basis we have

[e(λ), e(μ)] = [h(λ),h(μ)] = [
f (λ), f (μ)

] = 0. (6.16)

Therefore there are only three nontrivial relations

[h(λ), e(μ)] = 2

λ2 − μ2 (e(μ) − e(λ)) , (6.17)

[
h(λ), f (μ)

] = −2

λ2 − μ2 (f (μ) − f (λ)) − 2ψν

(λ2 − μ2)ξ

(
μ2h(μ) − λ2h(λ)

)
− ψ2

(λ2 − μ2)ξ2

(
μ2e(μ) − λ2e(λ)

)
, (6.18)

[
e(λ), f (μ)

] = 2ψν

(λ2 − μ2)ξ

(
μ2e(μ) − λ2e(λ)

)
− 4

λ2 − μ2

(
(ξ2 − μ2ν2)h(μ) − (ξ2 − λ2ν2)h(λ)

)
. (6.19)

In the Hilbert space H (2.3), in every Vm =C
2s+1 there exists a vector ωm ∈ Vm such that

S3
mωm = smωm and S+

mωm = 0. (6.20)
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We define a vector �+ to be

�+ = ω1 ⊗ · · · ⊗ ωN ∈H. (6.21)

From the definitions above, the formulas (6.6)–(6.8) and (6.15) it is straightforward to obtain the 
action of the generators e(λ) and h(λ) on the vector �+

e(λ)�+ = 0, and h(λ)�+ = ρ(λ)�+, (6.22)

with

ρ(λ) = 1

λ

N∑
m=1

(
sm

λ − αm

+ sm

λ + αm

)
=

N∑
m=1

2sm

λ2 − α2
m

. (6.23)

The generating function of the Gaudin Hamiltonians (6.31) in terms of the entries of the Lax 
matrix is given by

τ(λ) = tr0 L2
0(λ) = 2H 2(λ) + 2F(λ)E(λ) + [E(λ),F (λ)] . (6.24)

From (6.11) we have that the last term is

[E(λ),F (λ)] = 2
ξ2 + λ2ν2

(ξ2 − λ2ν2)λ
H(λ) − 2H ′(λ) + ψ

ξ + λν
E(λ), (6.25)

and therefore the final expression is

τ(λ) = 2

(
H 2(λ) + ξ2 + λ2ν2

(ξ2 − λ2ν2)λ
H(λ) − H ′(λ)

)
+

(
2F(λ) + ψ

ξ + λν

)
E(λ). (6.26)

Our aim is to implement the algebraic Bethe ansatz based on the Lie algebra (6.16)–(6.19). 
To this end we need to obtain the expression for the generating function τ(λ) in terms of the 
generators e(λ), h(λ) and f (λ). The first step is to invert the relations (6.15)

E(λ) = −λ

ξ − λν
e(λ), (6.27)

H(λ) = λ

(
h(λ) − ψλ

2ξ(ξ − λν)
e(λ)

)
, (6.28)

F(λ) = λ

ξ + λν

(
f (λ) − ψλh(λ) + ψ2λ2

2ξ(ξ − λν)
e(λ)

)
. (6.29)

In particular, we have

H 2(λ) = λ2
(

h2(λ) − ψλ

2ξ(ξ − λν)
(2h(λ)e(λ) − [h(λ), e(λ)]) + ψ2λ2

4ξ2(ξ − λν)2
e2(λ)

)
= λ2

(
h2(λ) − ψλ

2ξ(ξ − λν)

(
2h(λ)e(λ) + e′(λ)

λ

)
+ ψ2λ2

4ξ2(ξ − λν)2
e2(λ)

)
. (6.30)

Substituting (6.27)–(6.30) into (6.26) we obtain the desired expression for the generating function

τ(λ) = 2λ2
(

h2(λ) + 2ν2

ξ2 − λ2ν2
h(λ) − h′(λ)

λ

)
− 2λ2

ξ2 − λ2ν2

(
f (λ) + ψλ2ν

ξ
h(λ) + ψ2λ2

4ξ2
e(λ) − ψν

ξ

)
e(λ). (6.31)
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An important initial observation in the implementation of the algebraic Bethe ansatz is that 
the vector �+ (6.21) is an eigenvector of the generating function τ(λ), to show this we use the 
expression above, (6.22) and (6.23)

τ(λ)�+ = χ0(λ)�+ = 2λ2
(

ρ2(λ) + 2ν2 ρ(λ)

ξ2 − λ2ν2
− ρ′(λ)

λ

)
�+, (6.32)

using (6.23) the eigenvalue χ0(λ) can be expressed as

χ0(λ) = 8λ2

⎛⎝ N∑
m=1

sm(sm + 1)

(λ2 − α2
m)2

+
N∑

m=1

sm

λ2 − α2
m

⎛⎝ ν2

ξ2 − λ2ν2
+

N∑
n�=m

2sn

α2
m − α2

n

⎞⎠⎞⎠ . (6.33)

An essential step in the algebraic Bethe ansatz is a definition of the corresponding Bethe 
vectors. In this case, they are symmetric functions of their arguments and are such that the off 
shell action of the generating function of the Gaudin Hamiltonians is as simple as possible. With 
this aim we attempt to show that the Bethe vector ϕ1(μ) has the form

ϕ1(μ) = (f (μ) + c1(μ))�+, (6.34)

where c1(μ) is given by

c1(μ) = −ψν

ξ

(
1 − μ2ρ(μ)

)
. (6.35)

Evidently, the action of the generating function of the Gaudin Hamiltonians reads

τ(λ)ϕ1(μ) = [
τ(λ), f (μ)

]
�+ + χ0(λ)ϕ1(μ). (6.36)

A straightforward calculation show that the commutator in the first term of (6.36) is given by[
τ(λ), f (μ)

]
�+ = − 8λ2

λ2 − μ2

(
ρ(λ) + ν2

ξ2 − λ2ν2

)
ϕ1(μ)

+ 8λ2(ξ2 − μ2ν2)

(λ2 − μ2)(ξ2 − λ2ν2)

(
ρ(μ) + ν2

ξ2 − μ2ν2

)
ϕ1(λ). (6.37)

Therefore the action of the generating function τ(λ) on ϕ1(μ) is given by

τ(λ)ϕ1(μ) = χ1(λ,μ)ϕ1(μ) + 8λ2(ξ2 − μ2ν2)

(λ2 − μ2)(ξ2 − λ2ν2)

(
ρ(μ) + ν2

ξ2 − μ2ν2

)
ϕ1(λ),

(6.38)

with

χ1(λ,μ) = χ0(λ) − 8λ2

λ2 − μ2

(
ρ(λ) + ν2

ξ2 − λ2ν2

)
. (6.39)

The unwanted term in (6.38) vanishes when the following Bethe equation is imposed on the 
parameter μ,

ρ(μ) + ν2

ξ2 − μ2ν2
= 0. (6.40)

Thus we have shown that ϕ1(μ) (6.34) is the desired Bethe vector of the generating function τ(λ)

corresponding to the eigenvalue χ1(λ, μ).
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We seek the Bethe vector ϕ2(μ1, μ2) as the following symmetric function

ϕ2(μ1,μ2) = f (μ1)f (μ2)�+ + c
(1)
2 (μ2;μ1)f (μ1)�+

+ c
(1)
2 (μ1;μ2)f (μ2)�+ + c

(2)
2 (μ1,μ2)�+, (6.41)

where the scalar coefficients c(1)
2 (μ1; μ2) and c(2)

2 (μ1, μ2) are

c
(1)
2 (μ1;μ2) = −ψν

ξ

(
1 − μ2

1ρ(μ1) + 2μ2
1

μ2
1 − μ2

2

)
, (6.42)

c
(2)
2 (μ1,μ2) = −ψ2

ν2

(
(ξ2 − 3μ2

2ν
2)ρ(μ1) − (ξ2 − 3μ2

1ν
2)ρ(μ2)

μ2
1 − μ2

2

+ (ξ2 − (μ2
1 + μ2

2)ν
2)ρ(μ1)ρ(μ2)

)
. (6.43)

One way to obtain the action of τ(λ) on ϕ2(μ1, μ2) is to write

τ(λ)ϕ2(μ1,μ2)

= [[
τ(λ), f (μ1)

]
, f (μ2)

]
�+ +

(
f (μ2) + c

(1)
2 (μ2;μ1)

)[
τ(λ), f (μ1)

]
�+

+
(
f (μ1) + c

(1)
2 (μ1;μ2)

)[
τ(λ), f (μ2)

]
�+ + χ0(λ)ϕ2(μ1,μ2). (6.44)

Then to substitute (6.37) in the second and third term above and use the relation(
f (μ1) + c

(1)
2 (μ1;μ2)

)
ϕ1(μ2)

= ϕ2(μ1,μ2) − ψν

ξ

2μ2
2

μ2
1 − μ2

2

ϕ1(μ1)

−
(

c
(2)
2 (μ1,μ2) − c1(μ1)c1(μ2) + 2

ψν

ξ

μ2
1c1(μ2) − μ2

2c1(μ1)

μ2
1 − μ2

2

)
�+, (6.45)

which follows from the definition (6.41). A straightforward calculation shows that the off shell 
action of the generating function τ(λ) on ϕ2(μ1, μ2) is given by

τ(λ)ϕ2(μ1,μ2) = χ2(λ,μ1,μ2)ϕ2(μ1,μ2) +
2∑

i=1

8λ2(ξ2 − μ2
i ν

2)

(λ2 − μ2
i )(ξ

2 − λ2ν2)

×
(

ρ(μi) + ν2

ξ2 − μ2
i ν

2
− 2

μ2
i − μ2

3−i

)
ϕ2(λ,μ3−i ), (6.46)

with the eigenvalue

χ2(λ,μ1,μ2) = χ0(λ) −
2∑

i=1

8λ2

λ2 − μ2
i

(
ρ(λ) + ν2

ξ2 − λ2ν2
− 1

λ2 − μ2
3−i

)
. (6.47)

The two unwanted terms in the action above (6.46) vanish when the Bethe equations are imposed 
on the parameters μ1 and μ2,

ρ(μi) + ν2

ξ2 − μ2
i ν

2
− 2

μ2
i − μ2

3−i

= 0, (6.48)
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with i = 1, 2. Therefore ϕ2(μ1, μ2) is the Bethe vector of the generating function of the Gaudin 
Hamiltonians with the eigenvalue χ2(λ, μ1, μ2).

As our next step we propose the Bethe vector ϕ3(μ1, μ2, μ3) in the form of the following 
symmetric function of its arguments

ϕ3(μ1,μ2,μ3) = f (μ1)f (μ2)f (μ3)�+ + c
(1)
3 (μ1;μ2,μ3)f (μ2)f (μ3)�+

+ c
(1)
3 (μ2;μ3,μ1)f (μ3)f (μ1)�+ + c

(1)
3 (μ3;μ1,μ2)f (μ1)f (μ2)�+

+ c
(2)
3 (μ1,μ2;μ3)f (μ3)�+ + c

(2)
3 (μ2,μ3;μ1)f (μ1)�+

+ c
(2)
3 (μ3,μ1;μ2)f (μ2)�+ + c

(3)
3 (μ1,μ2,μ3)�+, (6.49)

where the three scalar coefficients above are given by

c
(1)
3 (μ1;μ2,μ3) = −ψν

ξ

(
1 − μ2

1ρ(μ1) + 2μ2
1

μ2
1 − μ2

2

+ 2μ2
1

μ2
1 − μ2

3

)
, (6.50)

c
(2)
3 (μ1,μ2;μ3)

= −ψ2

ν2

(
ξ2 − 3μ2

2ν
2

μ2
1 − μ2

2

(
ρ(μ1) − 2

μ2
1 − μ2

3

)
− ξ2 − 3μ2

1ν
2

μ2
1 − μ2

2

(
ρ(μ2) − 2

μ2
2 − μ2

3

))

− ψ2

ν2
(ξ2 − (μ2

1 + μ2
2)ν

2)

(
ρ(μ1) − 2

μ2
1 − μ2

3

)(
ρ(μ2) − 2

μ2
2 − μ2

3

)
, (6.51)

c
(3)
3 (μ1,μ2,μ3)

= − ψ3

ν3ξ

(
4ξ4 + (

ξ2 + μ2
1ν

2
) (

4μ2
1 − 5(μ2

2 + μ2
3)

)
ν2

(μ2
1 − μ2

2)(μ
2
1 − μ2

3)
ρ(μ1)

+ 4ξ4 + (
ξ2 + μ2

2ν
2
) (

4μ2
2 − 5(μ2

3 + μ2
1)

)
ν2

(μ2
2 − μ2

3)(μ
2
2 − μ2

1)
ρ(μ2)

+ 4ξ4 + (
ξ2 + μ2

3ν
2
) (

4μ2
3 − 5(μ2

1 + μ2
2)

)
ν2

(μ2
3 − μ2

1)(μ
2
3 − μ2

2)
ρ(μ3)

)

− ψ3

ν3ξ

(
ξ2ν2

(
μ4

1 + μ4
2 − μ2

1μ
2
2 + 2μ2

3

(
μ2

1 + μ2
2

) − 5μ4
3

) − (
2ξ4 − μ2

1μ
2
2ν

4
) (

μ2
1 + μ2

2 − 2μ2
3

)
(μ2

1 − μ2
3)(μ

2
2 − μ2

3)
ρ(μ1)ρ(μ2)

+ ξ2ν2
(
μ4

2 + μ4
3 − μ2

2μ
2
3 + 2μ2

1

(
μ2

2 + μ2
3

) − 5μ4
1

) − (
2ξ4 − μ2

2μ
2
3ν

4
) (

μ2
2 + μ2

3 − 2μ2
1

)
(μ2

2 − μ2
1)(μ

2
3 − μ2

1)
ρ(μ2)ρ(μ3)

+ ξ2ν2
(
μ4

3 + μ4
1 − μ2

3μ
2
1 + 2μ2

2

(
μ2

3 + μ2
1

) − 5μ4
2

) − (
2ξ4 − μ2

3μ
2
1ν

4
) (

μ2
3 + μ2

1 − 2μ2
2

)
(μ2

3 − μ2
2)(μ

2
1 − μ2

2)
ρ(μ3)ρ(μ1)

)

− ψ3

ν3
ξ

(
2ξ2 −

(
μ2

1 + μ2
2 + μ2

3

)
ν2

)
ρ(μ1)ρ(μ2)ρ(μ3). (6.52)

A lengthy but straightforward calculation based on appropriate generalisation of (6.44) and (6.45)
shows that the action of the generating function τ(λ) on ϕ3(μ1, μ2, μ3) is given by

τ(λ)ϕ3(μ1,μ2,μ3) = χ3(λ,μ1,μ2μ3)ϕ3(μ1,μ2,μ3) +
3∑

i=1

8λ2(ξ2 − μ2
i ν

2)

(λ2 − μ2
i )(ξ

2 − λ2ν2)
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×
⎛⎝ρ(μi) + ν2

ξ2 − μ2
i ν

2
−

3∑
j �=i

2

μ2
i − μ2

j

⎞⎠ϕ3(λ, {μj }j �=i ), (6.53)

where the eigenvalue is

χ3(λ,μ1,μ2,μ3) = χ0(λ) −
3∑

i=1

8λ2

λ2 − μ2
i

⎛⎝ρ(λ) + ν2

ξ2 − λ2ν2
−

3∑
j �=i

1

λ2 − μ2
j

⎞⎠ . (6.54)

The three unwanted terms in (6.53) vanish when the Bethe equation are imposed on the parame-
ters μi ,

ρ(μi) + ν2

ξ2 − μ2
i ν

2
−

3∑
j �=i

2

μ2
i − μ2

j

= 0, (6.55)

with i = 1, 2, 3.
As a symmetric function of its arguments the Bethe vector ϕ4(μ1, μ2, μ3, μ4) is given explic-

itly in Appendix B. It is possible to check that the off shell action of the generating function τ(λ)

on the Bethe vector ϕ4(μ1, μ2, μ3, μ4) is given by

τ(λ)ϕ4(μ1,μ2,μ3,μ4)

= χ4(λ,μ1,μ2μ3)ϕ4(μ1,μ2,μ3,μ4) +
4∑

i=1

8λ2(ξ2 − μ2
i ν

2)

(λ2 − μ2
i )(ξ

2 − λ2ν2)

×
⎛⎝ρ(μi) + ν2

ξ2 − μ2
i ν

2
−

4∑
j �=i

2

μ2
i − μ2

j

⎞⎠ϕ4(λ, {μj }j �=i ), (6.56)

with the eigenvalue

χ4(λ,μ1,μ2,μ3,μ4) = χ0(λ) −
4∑

i=1

8λ2

λ2 − μ2
i

⎛⎝ρ(λ) + ν2

ξ2 − λ2ν2
−

4∑
j �=i

1

λ2 − μ2
j

⎞⎠ .

(6.57)

The four unwanted terms on the right hand side of (6.56) vanish when the Bethe equation are 
imposed on the parameters μi ,

ρ(μi) + ν2

ξ2 − μ2
i ν

2
−

4∑
j �=i

2

μ2
i − μ2

j

= 0, (6.58)

with i = 1, 2, 3, 4.
Based on the results presented above we can conclude that the local realisation (6.6)–(6.8) of 

the Lie algebra (6.15)–(6.19) yields the spectrum χM(λ, μ1, . . . , μM) of the generating function 
of the Gaudin Hamiltonians

χM(λ,μ1, . . . ,μM) = χ0(λ) −
M∑
i=1

8λ2

λ2 − μ2
i

⎛⎝ρ(λ) + ν2

ξ2 − λ2ν2
−

M∑
j �=i

1

λ2 − μ2
j

⎞⎠ ,

(6.59)
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and the corresponding Bethe equations which should be imposed on the parameters μi

ρ(μi) + ν2

ξ2 − μ2
i ν

2
−

M∑
j �=i

2

μ2
i − μ2

j

= 0, (6.60)

where i = 1, 2, . . . , M . Moreover, from (4.29) and (6.59) it follows that the eigenvalues of the 
Gaudin Hamiltonians (4.32) and (4.33) can be obtained as the residues of χM(λ, μ1, . . . , μM) at 
poles λ = ±αm

Em = 1

4
Resλ=αmχM(λ,μ1, . . . ,μM)

= sm(sm + 1)

2αm

+ αmsm

⎛⎝ ν2

ξ2 − α2
mν2

+
N∑

n�=m

2sn

α2
m − α2

n

⎞⎠ − 2αmsm

M∑
i=1

1

α2
m − μ2

i

,

(6.61)

and

Ẽm = −1

4
Resλ=−αmχM(λ,μ1, . . . ,μM)

= sm(sm + 1)

2αm

+ αmsm

⎛⎝ ν2

ξ2 − α2
mν2

+
N∑

n�=m

2sn

α2
m − α2

n

⎞⎠ − 2αmsm

M∑
i=1

1

α2
m − μ2

i

.

(6.62)

Evidently, the respective eigenvalues (6.61) and (6.62) of the Hamiltonians (4.32) and (4.33)
coincide. When all the spin sm are set to one half, these energies coincide with the expressions ob-
tained in [42] (up to normalisation). The Bethe equations are also equivalent, the correspondence 
between our variables and the one used in [42] being given by (the left hand sides correspond to 
our variables, the left hand sides to the ones used in [42]):

μj = λj

1 − ξ (1)
; αm = θm

1 − ξ (1)
; ξ

ν
= ξ

1 − ξ (1)
. (6.63)

However, explicit and compact form of the relevant Bethe vector ϕM(μ1, μ2, . . . , μM), for 
an arbitrary positive integer M , requires further studies and will be reported elsewhere. As it 
is evident form the formulas for the Bethe vector ϕ4(μ1, μ2, μ3, μ4) given in Appendix B, the 
main problem lies in the definition the scalar coefficients c(m)

M (μ1, . . . , μm; μm+1, . . . , μM), with 
m = 1, 2, . . . , M . Some of them can be obtained straightforwardly, but, in particular, the coeffi-
cient c(M)

M (μ1, μ2, . . . , μM) still represents a challenge, at least in the present form of the Bethe 
vectors.

7. Conclusion

Following Sklyanin’s proposal in the periodic case [3], here we have derived the generating 
function of the Gaudin Hamiltonians with boundary terms. Our derivation is based on the quasi-
classical expansion of the linear combination of the transfer matrix of the XXX Heisenberg spin 
chain and the central element, the so-called Sklyanin determinant. The corresponding Gaudin 
Hamiltonians with boundary terms are obtained as the residues of the generating function. Then 
we have studied the appropriate algebraic structure, including the classical reflection equation. 
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Our approach to the algebraic Bethe ansatz is based on the relevant Lax matrix which satisfies 
certain linear bracket and simultaneously provides the local realisation for the corresponding Lie 
algebra. By defining the appropriate Bethe vectors we have obtained the strikingly simple off 
shell action of the generating function of the Gaudin Hamiltonians. Actually, the action of the 
generating function is as simple as it could possible be since it almost coincides with the one 
in the case when the boundary matrix is diagonal [20]. In this way we have implemented the 
algebraic Bethe ansatz, obtaining the spectrum of the generating function and the corresponding 
Bethe equations.

Although the off shell action of the generating function which we have established is 
very simple, it would be important to obtain more compact formula for the Bethe vector 
ϕM(μ1, μ2, . . . , μM), for an arbitrary positive integer M . In particular, simpler expression for 
the scalar coefficients c(m)

M (μ1, . . . , μm; μm+1, . . . , μM), with m = 1, 2, . . . , M would be of ut-
most importance. Such a formula would be crucial for the off shell scalar product of the Bethe 
vectors and these results could lead to the correlations functions of Gaudin model with boundary. 
Moreover, it would be of considerable interest to establish a relation between Bethe vectors and 
solutions of the corresponding Knizhnik–Zamolodchikov equations, along the lines it was done 
in the case when the boundary matrix is diagonal [20].
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Appendix A. Basic definitions

We consider the spin operators Sα with α = +, −, 3, acting in some (spin s) representation 
space C2s+1 with the commutation relations

[S3, S±] = ±S±, [S+, S−] = 2S3, (A.1)

and Casimir operator

c2 = (S3)2 + 1

2
(S+S− + S−S+) = (S3)2 + S3 + S−S+ = �S · �S.

In the particular case of spin 1
2 representation, one recovers the Pauli matrices

Sα = 1

2
σα = 1

2

(
δα3 2δα+

2δα− −δα3

)
.

We consider a spin chain with N sites with spin s representations, i.e. a local C2s+1 space at 
each site and the operators

Sα
m = 1 ⊗ · · · ⊗ Sα︸︷︷︸

m

⊗· · · ⊗ 1, (A.2)

with α = +, −, 3 and m = 1, 2, . . . , N .
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Appendix B. Bethe vector ϕ4(μ1, μ2, μ3, μ4)

Here we present explicit formulas of the Bethe vector ϕ4(μ1, μ2, μ3, μ4). The vector 
ϕ4(μ1, μ2, μ3, μ4) is a symmetric function of its arguments and is given by

ϕ4(μ1,μ2,μ3,μ4)

= f (μ1)f (μ2)f (μ3)f (μ4)�+ + c
(1)
4 (μ4;μ1,μ2,μ3)f (μ1)f (μ2)f (μ3)�+

+ c
(1)
4 (μ3;μ1,μ2,μ4)f (μ1)f (μ2)f (μ4)�+

+ c
(1)
4 (μ2;μ1,μ3,μ4)f (μ1)f (μ3)f (μ4)�+

+ c
(1)
4 (μ1;μ2,μ3,μ4)f (μ2)f (μ3)f (μ4)�+ + c

(2)
4 (μ3,μ4;μ1,μ2)f (μ1)f (μ2)�+

+ c
(2)
4 (μ2,μ4;μ1,μ3)f (μ1)f (μ3)�+ + c

(2)
4 (μ2,μ3;μ1,μ4)f (μ1)f (μ4)�+

+ c
(2)
4 (μ1,μ4;μ2,μ3)f (μ2)f (μ3)�+ + c

(2)
4 (μ1,μ3;μ2,μ4)f (μ2)f (μ4)�+

+ c
(2)
4 (μ1,μ2;μ3,μ4)f (μ3)f (μ4)�+ + c

(3)
4 (μ2,μ3,μ4;μ1)f (μ1)�+

+ c
(3)
4 (μ1,μ2,μ4;μ2)f (μ2)�+ + c

(3)
4 (μ1,μ2,μ4;μ3)f (μ3)�+

+ c
(3)
4 (μ1,μ2,μ3;μ4)f (μ4)�+ + c

(4)
4 (μ1,μ2,μ3,μ4)�+, (B.1)

where the four scalar coefficients are

c
(1)
4 (μ1;μ2,μ3,μ4) = −ψν

ξ

(
1 − μ2

1ρ(μ1) +
4∑

i=2

2μ2
1

μ2
1 − μ2

i

)
, (B.2)

c
(2)
4 (μ1,μ2;μ3,μ4)

= −ψ2

ν2

(
ξ2 − 3μ2

2ν
2

μ2
1 − μ2

2

(
ρ(μ1) −

4∑
i=3

2

μ2
1 − μ2

i

)

− ξ2 − 3μ2
1ν

2

μ2
1 − μ2

2

⎛⎝ρ(μ2) −
4∑

j=3

2

μ2
2 − μ2

j

⎞⎠⎞⎠ − ψ2

ν2
(ξ2 − (μ2

1 + μ2
2)ν

2)

×
(

ρ(μ1) −
4∑

i=3

2

μ2
1 − μ2

i

)⎛⎝ρ(μ2) −
4∑

j=3

2

μ2
2 − μ2

j

⎞⎠ , (B.3)

c
(3)
4 (μ1,μ2,μ3;μ4)

= − ψ3

ν3ξ

(
4ξ4 + (

ξ2 + μ2
1ν

2
) (

4μ2
1 − 5(μ2

2 + μ2
3)

)
ν2

(μ2
1 − μ2

2)(μ
2
1 − μ2

3)

(
ρ(μ1) − 2

μ2
1 − μ2

4

)

+ 4ξ4 + (
ξ2 + μ2

2ν
2
) (

4μ2
2 − 5(μ2

3 + μ2
1)

)
ν2

(μ2
2 − μ2

3)(μ
2
2 − μ2

1)

(
ρ(μ2) − 2

μ2
2 − μ2

4

)

+4ξ4 + (
ξ2 + μ2

3ν
2
) (

4μ2
3 − 5(μ2

1 + μ2
2)

)
ν2

(μ2
3 − μ2

1)(μ
2
3 − μ2

2)

(
ρ(μ3) − 2

μ2
3 − μ2

4

))

− ψ3

ν3ξ

(
ξ2ν2

(
μ4

1 + μ4
2 − μ2

1μ
2
2 + 2μ2

3

(
μ2

1 + μ2
2

) − 5μ4
3

) − (
2ξ4 − μ2

1μ
2
2ν

4
) (

μ2
1 + μ2

2 − 2μ2
3

)
(μ2

1 − μ2
3)(μ

2
2 − μ2

3)
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×
(

ρ(μ1) − 2

μ2
1 − μ2

4

)(
ρ(μ2) − 2

μ2
2 − μ2

4

)

+ ξ2ν2
(
μ4

2 + μ4
3 − μ2

2μ
2
3 + 2μ2

1

(
μ2

2 + μ2
3

) − 5μ4
1

) − (
2ξ4 − μ2

2μ
2
3ν

4
) (

μ2
2 + μ2

3 − 2μ2
1

)
(μ2

2 − μ2
1)(μ

2
3 − μ2

1)

×
(

ρ(μ2) − 2

μ2
2 − μ2

4

)(
ρ(μ3) − 2

μ2
3 − μ2

4

)

+ ξ2ν2
(
μ4

3 + μ4
1 − μ2

3μ
2
1 + 2μ2

2

(
μ2

3 + μ2
1

) − 5μ4
2

) − (
2ξ4 − μ2

3μ
2
1ν

4
) (

μ2
3 + μ2

1 − 2μ2
2

)
(μ2

3 − μ2
2)(μ

2
1 − μ2

2)

×
(

ρ(μ3) − 2

μ2
3 − μ2

4

)(
ρ(μ1) − 2

μ2
1 − μ2

4

))
− ψ3

ν3
ξ

(
2ξ2 −

(
μ2

1 + μ2
2 + μ2

3

)
ν2

)
×

(
ρ(μ1) − 2

μ2
1 − μ2

4

)(
ρ(μ2) − 2

μ2
2 − μ2

4

)(
ρ(μ3) − 2

μ2
3 − μ2

4

)
. (B.4)

c
(4)
4 (μ1,μ2,μ3,μ4)

= −2ψ4

ν4

(
9ξ4 + ξ2ν2

(
27μ2

1 − 7(μ2
2 + μ2

3 + μ2
4)

) + 3μ2
1ν

4
(
8μ2

1 − 7(μ2
2 + μ2

3 + μ2
4)

)
(μ2

1 − μ2
2)(μ

2
1 − μ2

3)(μ
2
1 − μ2

4)
ρ(μ1)

+ 9ξ4 + ξ2ν2
(
27μ2

2 − 7(μ2
1 + μ2

3 + μ2
4)

) + 3μ2
2ν

4
(
8μ2

2 − 7(μ2
2 + μ2

3 + μ2
4)

)
(μ2

2 − μ2
1)(μ

2
2 − μ2

3)(μ
2
2 − μ2

4)
ρ(μ2)

+ 9ξ4 + ξ2ν2
(
27μ2

3 − 7(μ2
1 + μ2

2 + μ2
4)

) + 3μ2
3ν

4
(
8μ2

3 − 7(μ2
1 + μ2

2 + μ2
4)

)
(μ2

3 − μ2
1)(μ

2
3 − μ2

2)(μ
2
3 − μ2

4)
ρ(μ3)

+ 9ξ4 + ξ2ν2
(
27μ2

4 − 7(μ2
1 + μ2

2 + μ2
3)

) + 3μ2
4ν

4
(
8μ2

4 − 7(μ2
1 + μ2

2 + μ2
3)

)
(μ2

4 − μ2
1)(μ

2
4 − μ2

2)(μ
2
4 − μ2

3)
ρ(μ4)

)

− ψ4

ν4

(
3ξ4

(
2(μ4

1 + μ2
1μ

2
2 + μ4

2) − 3(μ2
1μ

2
3 + μ2

1μ
2
4 + μ2

2μ
2
3 + μ2

2μ
2
4 − 2μ2

3μ
2
4)

)
− 18ξ2ν2μ2

1μ
2
2(μ

2
3 + μ2

4) + ξ2ν2
(
−2(μ6

1 − 6μ4
1μ

2
2 − 6μ2

1μ
4
2 + μ6

2) − 4(μ2
1 + μ2

2)
2

×(μ2
3 + μ2

4) + 7(μ2
1 + μ2

2)(μ
2
3 + μ2

4)
2 + 2μ2

3μ
2
4(5(μ2

1 + μ2
2) − 7(μ2

3 + μ2
4))

)
+ ν4

(
14μ2

1μ
2
2(μ

4
3 + μ4

4) − (4μ2
1μ

2
2 + 7μ2

3μ
2
4)(μ

2
1 + μ2

2)(μ
2
3 + μ2

4)
)

+2ν4
(

4μ2
3μ

2
4(μ

2
1 + μ2

2)
2 − 3μ2

1μ
2
2(μ

2
1 − μ2

2)
2 − μ2

1μ
2
2(3μ2

1μ
2
2 + 5μ2

3μ
2
4)

))
× ρ(μ1)ρ(μ2)

(μ2
1 − μ2

3)(μ
2
1 − μ2

4)(μ
2
2 − μ2

3)(μ
2
2 − μ2

4)

− ψ4

ν4

(
3ξ4

(
2(μ4

1 + μ2
1μ

2
3 + μ4

3) − 3(μ2
1μ

2
2 + μ2

1μ
2
4 + μ2

2μ
2
3 + μ2

3μ
2
4 − 2μ2

2μ
2
4)

)
− 18ξ2ν2μ2

1μ
2
3(μ

2
2 + μ2

4) + ξ2ν2
(
−2(μ6

1 − 6μ4
1μ

2
3 − 6μ2

1μ
4
3 + μ6

3) − 4(μ2
1 + μ2

3)
2

× (μ2
2 + μ2

4) + 7(μ2
1 + μ2

3)(μ
2
2 + μ2

4)
2 + 2μ2

2μ
2
4(5(μ2

1 + μ2
3) − 7(μ2

2 + μ2
4))

)
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+ ν4
(

14μ2
1μ

2
3(μ

4
2 + μ4

4) − (4μ2
1μ

2
3 + 7μ2

2μ
2
4)(μ

2
1 + μ2

3)(μ
2
2 + μ2

4)
)

+2ν4
(

4μ2
2μ

2
4(μ

2
1 + μ2

3)
2 − 3μ2

1μ
2
3(μ

2
1 − μ2

3)
2 − μ2

1μ
2
3(3μ2

1μ
2
3 + 5μ2

2μ
2
4)

))
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1 − μ2

2)(μ
2
1 − μ2

4)(μ
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3 − μ2

2)(μ
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3 − μ2

4)
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3ξ4

(
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2
4 + μ4

4) − 3(μ2
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2
2 + μ2

1μ
2
3 + μ2
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2
4 + μ2
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2
4 − 2μ2

2μ
2
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− 18ξ2ν2μ2

1μ
2
4(μ

2
2 + μ2

3) + ξ2ν2
(
−2(μ6

1 − 6μ4
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2
4 − 6μ2

1μ
4
4 + μ6

4) − 4(μ2
1 + μ2
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2
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2 + μ2

3) + 7(μ2
1 + μ2

4)(μ
2
2 + μ2

3)
2 + 2μ2

2μ
2
3(5(μ2

1 + μ2
4) − 7(μ2

2 + μ2
3))

)
+ ν4

(
14μ2

1μ
2
4(μ

4
2 + μ4

3) − (4μ2
1μ

2
4 + 7μ2
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2
3)(μ

2
1 + μ2

4)(μ
2
2 + μ2
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)

+2ν4
(
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2μ

2
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2
1 + μ2
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2 − 3μ2

1μ
2
4(μ

2
1 − μ2

4)
2 − μ2
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2
4(3μ2
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2
4 + 5μ2

2μ
2
3)
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(μ2
1 − μ2

2)(μ
2
1 − μ2

3)(μ
2
4 − μ2

2)(μ
2
4 − μ2

3)
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(
3ξ4

(
2(μ4

2 + μ2
2μ

2
3 + μ4

3) − 3(μ2
1μ

2
2 + μ2

2μ
2
4 + μ2

1μ
2
3 + μ2

3μ
2
4 − 2μ2

1μ
2
4)

)
− 18ξ2ν2μ2

2μ
2
3(μ

2
1 + μ2

4) + ξ2ν2
(
−2(μ6

2 − 6μ4
2μ

2
3 − 6μ2

2μ
4
3 + μ6

3) − 4(μ2
2 + μ2

3)
2

× (μ2
1 + μ2

4) + 7(μ2
2 + μ2

3)(μ
2
1 + μ2

4)
2 + 2μ2

1μ
2
4(5(μ2

2 + μ2
3) − 7(μ2

1 + μ2
4))

)
+ ν4

(
14μ2

2μ
2
3(μ

4
1 + μ4

4) − (4μ2
2μ

2
3 + 7μ2

1μ
2
4)(μ

2
2 + μ2

3)(μ
2
1 + μ2

4)
)

+2ν4
(

4μ2
1μ

2
4(μ

2
2 + μ2

3)
2 − 3μ2

2μ
2
3(μ

2
2 − μ2

3)
2 − μ2

2μ
2
3(3μ2

2μ
2
3 + 5μ2

1μ
2
4)
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× ρ(μ2)ρ(μ3)

(μ2
2 − μ2

1)(μ
2
2 − μ2

4)(μ
2
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1)(μ
2
3 − μ2

4)
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(
3ξ4

(
2(μ4

2 + μ2
2μ

2
4 + μ4

4) − 3(μ2
1μ

2
2 + μ2

2μ
2
3 + μ2

1μ
2
4 + μ2
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2
4 − 2μ2

1μ
2
3)

)
− 18ξ2ν2μ2

2μ
2
4(μ

2
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3) + ξ2ν2
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−2(μ6

2 − 6μ4
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2
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4
4 + μ6

4) − 4(μ2
2 + μ2
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(
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(
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Abstract

The Gaudin model has been revisited many times, yet some important issues remained open so far. With 
this paper we aim to properly address its certain aspects, while clarifying, or at least giving a solid ground 
to some other. Our main contribution is establishing the relation between the off-shell Bethe vectors with 
the solutions of the corresponding Knizhnik–Zamolodchikov equations for the non-periodic s�(2) Gaudin 
model, as well as deriving the norm of the eigenvectors of the Gaudin Hamiltonians. Additionally, we 
provide a closed form expression also for the scalar products of the off-shell Bethe vectors. Finally, we 
provide explicit closed form of the off-shell Bethe vectors, together with a proof of implementation of the 
algebraic Bethe ansatz in full generality.
© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Historically, Gaudin model was first proposed almost half a century ago [1–3], and has 
promptly gained attention primarily due to its long-range interactions feature [4,5]. It was shortly 
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generalized to different underlining simple Lie algebras, as well as to trigonometric and elliptic 
types, cf. [6–9] and the references therein. The non-periodic boundary conditions were treated 
somewhat later [10–17], while in [18,19] we have derived the generating function of the s�(2)

Gaudin Hamiltonians with boundary terms and obtained the spectrum of the generating func-
tion with the corresponding Bethe equations. The very latest developments are taking the field in 
various new directions, e.g. [20–23] which shows that the topic is still very attractive.

However, in spite of the substantial interest for the topic, certain issues have not yet been, to 
our knowledge, fully addressed. First and foremost, we note that the relation of the Knizhnik–
Zamolodchikov (KZ) equations [24] with the Gaudin s�(2) model [25,26] with non-periodic 
boundary was not yet established for arbitrary spins. Hikami comes close to this goal in his pa-
per [10], but does not tackle the issue in full generality – namely, he constrains his analysis to 
a special case of equal spins at all nodes, moreover fixing these spins to the value 1

2 . He also 
does not provide the expression for the norms of the eigenvectors of the Gaudin Hamiltonians, 
which can be obtained from the KZ approach. One of our goals here is to improve on both of 
these points: we successfully establish the relation between solutions of the corresponding KZ 
equations with the off-shell Bethe vectors in the case of arbitrary spins and derive the norm 
formula.

Superior to the formula for norm of the on-shell Bethe vectors is a formula for scalar prod-
uct of arbitrary off-shell Bethe vectors. Following an approach laid in [27], we derive such an 
expression pertinent to the non-periodic s�(2) case for arbitrary spins, in a closed form. The ex-
pression involves a sum of certain matrix determinants and its significance stems from the fact 
that it represents the first step towards the correlation functions.

En route to our treatment of the KZ equations, we present a closed form expression for the off-
shell Bethe vectors and prove the implementation of the algebraic Bethe ansatz in full generality 
(for arbitrary reflection matrices and to arbitrary number of excitations). Such a development 
was a result of a suitable change of generalized Gaudin algebra basis (as compared to the one 
used in [19]), combined with observation of certain algebraic relations that we came across. The 
resulting simplifications have also facilitated calculations related to KZ equations.

The paper is structured as follows. In the next section, we introduce some standard notions 
while nevertheless relying heavily on the notation and conclusions of our previous paper [19], to 
which we direct the reader as a preliminary. The third section is devoted to the task of deriving 
the general off-shell form of the Bethe vectors and to proving its validity. As a key step to this end 
we, within the same section, first present a new basis of the generalized Gaudin algebra [28,29], 
and point to its advantages. In the fourth section we finally turn to KZ equations, establishing 
their relation to the previously derived Bethe vectors and obtaining the norm formula. In the 
same section we also present the novel formula for the scalar product of off-shell Bethe vectors. 
Finally, we summarize our results in the last section.

2. Preliminaries

The generating function of the s�(2) Gaudin Hamiltonians with boundary terms was derived 
in [19]. Besides, the suitable Lax operator, accompanied by the corresponding linear bracket and 
an appropriate non-unitary r-matrices, as well as the transfer matrix, were also obtained. In this 
section we will briefly review only the most relevant of these results, while for the details of the 
notations and derivation we refer to the [19].

We study the s�(2) Gaudin model with N sites, characterised by the local space Vm =C
2sm+1

and inhomogeneous parameter αm, implying non-periodic boundary conditions. The relevant 
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classical r-matrix was given e.g. in [6], r(λ) = −P
λ

, where P is the permutation matrix in 
C

2 ⊗C
2.

In the case of periodic boundary conditions, this structure is essentially sufficient (after pro-
ceeding in the standard manner) to obtain the complete solution of the system [6], together with 
the corresponding correlation functions [30]. However, the non-periodic case which is the sub-
ject of our present consideration is substantially more involved. In this case, of relevance is the 
classical reflection equation [31–33]:

r12(λ − μ)K1(λ)K2(μ) + K1(λ)r21(λ + μ)K2(μ) =
= K2(μ)r12(λ + μ)K1(λ) + K2(μ)K1(λ)r21(λ − μ).

(2.1)

In [19] we have derived the general form of the K-matrix solution, and have shown that it can be, 
without any loss of generality, brought into the upper triangular form:

K(λ) =
(

ξ − λν λψ

0 ξ + λν

)
, (2.2)

where neither of the parameters ξ, ψ, ν depends on the spectral parameter λ.
In the course of our analysis in [19] we arrived to the generalized s�(2) Gaudin algebra [28,

29] with generators ̃e(λ), ̃h(λ) and f̃ (λ). To facilitate later comparison with the new basis, we 
give the three nontrivial relations:[̃

h(λ), ẽ(μ)
] = 2

λ2 − μ2 (̃e(μ) − ẽ(λ)) , (2.3)

[̃
h(λ), f̃ (μ)

] = −2

λ2 − μ2

(
f̃ (μ) − f̃ (λ)

) − 2ψν

(λ2 − μ2)ξ

(
μ2h̃(μ) − λ2h̃(λ)

)
− ψ2

(λ2 − μ2)ξ2

(
μ2ẽ(μ) − λ2ẽ(λ)

)
, (2.4)

[̃
e(λ), f̃ (μ)

] = 2ψν

(λ2 − μ2)ξ

(
μ2ẽ(μ) − λ2ẽ(λ)

)
− 4

λ2 − μ2

(
(ξ2 − μ2ν2)̃h(μ) − (ξ2 − λ2ν2)̃h(λ)

)
, (2.5)

as well as the form of generating function of the Gaudin Hamiltonians in [19]:

τ(λ) = 2λ2
(

h̃2(λ) + 2ν2

ξ2 − λ2ν2 h̃(λ) − h̃′(λ)

λ

)
− 2λ2

ξ2 − λ2ν2

(
f̃ (λ) + ψλ2ν

ξ
h̃(λ) + ψ2λ2

4ξ2 ẽ(λ) − ψν

ξ

)
ẽ(λ).

(2.6)

In [19] we tried to implement the algebraic Bethe ansatz based on these generators. Although 
the approached looked promising and resulted in the conjecture for the spectra of the generating 
function τ(λ) and the corresponding Gaudin Hamiltonians, the expression for the Bethe vector 
ϕM(μ1, μ2, . . . , μM), for an arbitrary positive integer M , was missing. It turned out, as we show 
in the following section, that the full implementation of the algebraic Bethe ansatz in this case 
requires to define a new set of generators which will enable explicit expressions for the Bethe 
vectors as well as the algebraic proof of the off shell action of the generating function τ(λ) and 
its spectrum.
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3. New generators and the eigenvectors

In the algebraic Bethe ansatz it is essential to find the commutation relations between the 
generating function and a product of the creation operators in a closed form. To this end, with 
the aim to simplify the relations (2.4) and (2.5) as well as the expression (2.6), we introduce new 
generators e(λ), h(λ) and f (λ) as the following linear combinations of the previous ones:

e(λ) = ẽ(λ), h(λ) = h̃(λ) + ψ

2ξν
ẽ(λ), f (λ) = f̃ (λ) + ψξ

ν
h̃(λ) + ψ2

4ν2 ẽ(λ). (3.1)

It is straightforward to check that in the new basis we still have

[e(λ), e(μ)] = [h(λ),h(μ)] = [f (λ), f (μ)] = 0, (3.2)

while the key simplification occurs in the three nontrivial relations which are now given by

[h(λ), e(μ)] = 2

λ2 − μ2 (e(μ) − e(λ)) , (3.3)

[h(λ), f (μ)] = −2

λ2 − μ2 (f (μ) − f (λ)) , (3.4)

[e(λ), f (μ)] = −4

λ2 − μ2

(
(ξ2 − μ2ν2)h(μ) − (ξ2 − λ2ν2)h(λ)

)
. (3.5)

By using these generators the expression for the generating function of the Gaudin Hamil-
tonians with boundary terms (2.6) also simplifies. We invert the relations (3.1) and obtain the 
expression for the generating function in terms of the new generators

τ(λ) = 2λ2
(

h2(λ) + 2ν2

ξ2 − λ2ν2 h(λ) − h′(λ)

λ

)
− 2λ2

ξ2 − λ2ν2 f (λ)e(λ). (3.6)

Evidently we have achieved our first objective, as the relations (3.3)–(3.5) and the expression 
(3.6) are much simple than before. Below we will demonstrate how these new results facilitate 
the study of the Bethe vectors.

As in [19], we define the vacuum 
+ which is annihilated by e(λ), while being an eigenstate 
for h(λ):

h(λ)
+ = ρ(λ)
+, with ρ(λ) = 1

λ

N∑
m=1

(
sm

λ − αm

+ sm

λ + αm

)
=

N∑
m=1

2sm

λ2 − α2
m

. (3.7)

The next relevant remark is that the vector 
+ is an eigenvector of the generating function 
τ(λ). To show this we use (3.6) and the action (3.7):

τ(λ)
+ = χ0(λ)
+ = 2λ2
(

ρ2(λ) + 2ν2 ρ(λ)

ξ2 − λ2ν2 − ρ′(λ)

λ

)

+. (3.8)

Our main aim in this section it to prove that the generator f (λ) (3.1) defines the Bethe vectors 
naturally, that is, to show that the Bethe vector in the general case is given by the following 
symmetric function of its arguments:

ϕM(μ1,μ2, . . . ,μM) = f (μ1) · · ·f (μM)
+. (3.9)

We stress that this was not possible in the old basis (of tilde operators), and thus the general form 
of the Bethe vector lacked in [19].
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The action of the generating function of the Gaudin Hamiltonians τ(λ) on ϕM(μ1, μ2, . . . ,
μM) is given by

τ(λ)ϕM(μ1,μ2, . . . ,μM) = [τ(λ), f (μ1) · · ·f (μM)]
+ + χ0(λ)ϕM(μ1,μ2, . . . ,μM).

(3.10)

The key part of the proof will be to determine the commutator in the first term of the righthand 
side. Due to the simplicity of the new commutation relations (3.3)–(3.5) we will show that it is 
now possible to evaluate this commutator in an algebraically closed form. As the first step we 
will calculate the commutator between the generating function (3.6) and a single generator f (λ). 
A straightforward calculation yields

[τ(λ), f (μ)] = − 8λ2

λ2 − μ2 f (μ)

(
h(λ) + ν2

ξ2 − λ2ν2

)
+ 8λ2

λ2 − μ2

ξ2 − μ2ν2

ξ2 − λ2ν2 f (λ)

(
h(μ) + ν2

ξ2 − μ2ν2

)
. (3.11)

For the general case, we assert that the following holds:

[τ(λ), f (μ1) · · ·f (μM)]

= f (μ1) · · ·f (μM)

M∑
i=1

−8λ2

λ2 − μ2
i

⎛⎝h(λ) + ν2

ξ2 − λ2ν2 −
M∑

j �=i

1

λ2 − μ2
j

⎞⎠
+ 8λ2

λ2 − μ2
1

ξ2 − μ2
1ν

2

ξ2 − λ2ν2 f (λ)f (μ2) · · ·f (μM)

⎛⎝h(μ1) + ν2

ξ2 − μ2
1ν

2
−

M∑
j �=1

2

μ2
1 − μ2

j

⎞⎠
...

+ 8λ2

λ2 − μ2
M

ξ2 − μ2
Mν2

ξ2 − λ2ν2 f (μ1) · · ·f (μM−1)f (λ)

×
⎛⎝h(μM) + ν2

ξ2 − μ2
Mν2

−
M−1∑
j=1

2

μ2
M − μ2

j

⎞⎠ . (3.12)

Our proof of this statement is based on the induction method: we assume that, for some integer 
M ≥ 1, the above formula (i.e. the induction hypothesis) is satisfied and proceed to show that this 
assumption implicates the same relation for the product of M + 1 operators. To this end we write[

τ(λ), f (μ1) · · ·f (μM)f (μM+1)
] = [τ(λ), f (μ1) · · ·f (μM)]f (μM+1)

+ f (μ1) · · ·f (μM)
[
τ(λ), f (μM+1)

]
.

(3.13)

To evaluate the first term on the right-hand-side of (3.13) we use the induction assumption (3.12), 
while in the second term we apply (3.11) and obtain[

τ(λ), f (μ1) · · ·f (μM+1)
]

= f (μ1) · · ·f (μM)

M∑
i=1

−8λ2

λ2 − μ2
i

⎛⎝h(λ) + ν2

ξ2 − λ2ν2 −
M∑

j �=i

1

λ2 − μ2
j

⎞⎠f (μM+1)
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+ 8λ2

λ2 − μ2
1

ξ2 − μ2
1ν

2

ξ2 − λ2ν2 f (λ)f (μ2) · · ·f (μM)

×
⎛⎝h(μ1) + ν2

ξ2 − μ2
1ν

2
−

M∑
j �=1

2

μ2
1 − μ2

j

⎞⎠f (μM+1)

...

+ 8λ2

λ2 − μ2
M

ξ2 − μ2
Mν2

ξ2 − λ2ν2 f (μ1) · · ·f (μM−1)f (λ)

×
⎛⎝h(μM) + ν2

ξ2 − μ2
Mν2

−
M∑

j �=M

2

μ2
M − μ2

j

⎞⎠f (μM+1)

+ f (μ1) · · ·f (μM)

(
−8λ2

λ2 − μ2
M+1

f (μM+1)

(
h(λ) + ν2

ξ2 − λ2ν2

)

+ 8λ2

λ2 − μ2
M+1

ξ2 − μ2
M+1ν

2

ξ2 − λ2ν2 f (λ)

(
h(μM+1) + ν2

ξ2 − μ2
M+1ν

2

))
. (3.14)

Then, using (3.4), we rearrange the terms having f (μM+1) on the right[
τ(λ), f (μ1) · · ·f (μM+1)

]
= f (μ1) · · ·f (μM+1)

M∑
i=1

−8λ2

λ2 − μ2
i

⎛⎝h(λ) + ν2

ξ2 − λ2ν2 −
M∑

j �=i

1

λ2 − μ2
j

⎞⎠
+ f (μ1) · · ·f (μM)

M∑
i=1

−8λ2

λ2 − μ2
i

(
−2

λ2 − μ2
N+1

(f (μM+1) − f (λ))

)

+ f (μ1) · · ·f (μM+1)
−8λ2

λ2 − μ2
M+1

(
h(λ) + ν2

ξ2 − λ2ν2

)

+ 8λ2

λ2 − μ2
1

ξ2 − μ2
1ν

2

ξ2 − λ2ν2 f (λ)f (μ2) · · ·f (μM+1)

⎛⎝h(μ1) + ν2

ξ2 − μ2
1ν

2
−

M∑
j �=1

2

μ2
1 − μ2

j

⎞⎠
+ 8λ2

λ2 − μ2
1

ξ2 − μ2
1ν

2

ξ2 − λ2ν2 f (λ)f (μ2) · · ·f (μM)

(
−2

μ2
1 − μ2

M+1

(f (μM+1) − f (μ1))

)
...

+ 8λ2

λ2 − μ2
M

ξ2 − μ2
Mν2

ξ2 − λ2ν2 f (μ1) · · ·f (μM−1)f (λ)f (μM+1)

×
⎛⎝h(μM) + ν2

ξ2 − μ2
Mν2

−
M−1∑
j=1

2

μ2
M − μ2

j

⎞⎠
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+ 8λ2

λ2 − μ2
M

ξ2 − μ2
Mν2

ξ2 − λ2ν2 f (μ1) · · ·f (μM−1)f (λ)

(
−2

μ2
M − μ2

M+1

(f (μM+1) − f (μM))

)

+ 8λ2

λ2 − μ2
M+1

ξ2 − μ2
M+1ν

2

ξ2 − λ2ν2 f (μ1) · · ·f (μM)f (λ)

(
h(μM+1) + ν2

ξ2 − μ2
M+1ν

2

)
.

(3.15)

The next step is to add similar terms appropriately[
τ(λ), f (μ1) · · ·f (μM+1)

]
= f (μ1) · · ·f (μM+1)

M∑
i=1

−8λ2

λ2 − μ2
i

⎛⎝h(λ) + ν2

ξ2 − λ2ν2 −
M+1∑
j �=i

1

λ2 − μ2
j

⎞⎠
+ f (μ1) · · ·f (μM+1)

−8λ2

λ2 − μ2
M+1

⎛⎝h(λ) + ν2

ξ2 − λ2ν2 −
M∑

j=1

1

λ2 − μ2
j

⎞⎠
+ 8λ2

λ2 − μ2
1

ξ2 − μ2
1ν

2

ξ2 − λ2ν2 f (λ)f (μ2) · · ·f (μM+1)

⎛⎝h(μ1) + ν2

ξ2 − μ2
1ν

2
−

M+1∑
j �=1

2

μ2
1 − μ2

j

⎞⎠
...

+ 8λ2

λ2 − μ2
M

ξ2 − μ2
Mν2

ξ2 − λ2ν2 f (μ1) · · ·f (μM−1)f (λ)f (μM+1)

×
⎛⎝h(μM) + ν2

ξ2 − μ2
Mν2

−
M+1∑
j �=M

2

μ2
M − μ2

j

⎞⎠
+ 8λ2

λ2 − μ2
M+1

ξ2 − μ2
M+1ν

2

ξ2 − λ2ν2 f (μ1) · · ·f (μM)f (λ)

(
h(μM+1) + ν2

ξ2 − μ2
M+1ν

2

)

+ f (μ1) · · ·f (μM)f (λ)

M∑
i=1

(
−8λ2

λ2 − μ2
i

2

λ2 − μ2
M+1

+ 8λ2

λ2 − μ2
i

2

μ2
i − μ2

M+1

ξ2 − μ2
i ν

2

ξ2 − λ2ν2

)
.

(3.16)

Using the following identity

−λ2

λ2 − μ2
i

1

λ2 − μ2
M+1

+ λ2

λ2 − μ2
i

1

μ2
i − μ2

M+1

ξ2 − μ2
i ν

2

ξ2 − λ2ν2

= λ2

λ2 − μ2
M+1

1

μ2
i − μ2

M+1

ξ2 − μ2
M+1ν

2

ξ2 − λ2ν2 , (3.17)

for i = 1, . . . , N , we can bring together all the terms in the last two lines of (3.16) and obtain the 
final expression
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[
τ(λ), f (μ1) · · ·f (μM+1)

]
= f (μ1) · · ·f (μM+1)

M+1∑
i=1

−8λ2

λ2 − μ2
i

⎛⎝h(λ) + ν2

ξ2 − λ2ν2 −
M+1∑
j �=i

1

λ2 − μ2
j

⎞⎠
+ 8λ2

λ2 − μ2
1

ξ2 − μ2
1ν

2

ξ2 − λ2ν2 f (λ)f (μ2) · · ·f (μM+1)

⎛⎝h(μ1) + ν2

ξ2 − μ2
1ν

2
−

M+1∑
j �=1

2

μ2
1 − μ2

j

⎞⎠
...

+ 8λ2

λ2 − μ2
N

ξ2 − μ2
Mν2

ξ2 − λ2ν2 f (μ1) · · ·f (μM−1)f (λ)f (μM+1)

×
⎛⎝h(μM) + ν2

ξ2 − μ2
Mν2

−
M+1∑
j �=M

2

μ2
M − μ2

j

⎞⎠
+ 8λ2

λ2 − μ2
M+1

ξ2 − μ2
M+1ν

2

ξ2 − λ2ν2 f (μ1) · · ·f (μM)f (λ)

×
⎛⎝h(μM+1) + ν2

ξ2 − μ2
M+1ν

2
−

M∑
j=1

2

μ2
M+1 − μ2

j

⎞⎠ . (3.18)

Since we have already explicitly showed that the induction hypothesis is valid for M = 1 (the 
(3.11) is a special case of (3.12)), this completes our proof of (3.12) by induction.

Now, using the result (3.12), we finally find the off shell action (3.10) of the generating func-
tion τ(λ) on ϕM(μ1, μ2, . . . , μM) to be:

τ(λ)ϕM(μ1,μ2, . . . ,μM) = χM(λ,μ1,μ2, . . . ,μM)ϕM(μ1,μ2, . . . ,μM) (3.19)

+ 8λ2

λ2 − μ2
1

ξ2 − μ2
1ν

2

ξ2 − λ2ν2

⎛⎝ρ(μ1) + ν2

ξ2 − μ2
1ν

2
−

M∑
j �=1

2

μ2
1 − μ2

j

⎞⎠ϕM(λ,μ2, . . . ,μM)

...

+ 8λ2

λ2 − μ2
M

ξ2 − μ2
Mν2

ξ2 − λ2ν2

⎛⎝ρ(μM) + ν2

ξ2 − μ2
Mν2

−
M−1∑
j=1

2

μ2
M − μ2

j

⎞⎠ϕM(μ1, . . . ,μM−1, λ),

(3.20)

and the eigenvalue is

χM(λ,μ1,μ2, . . . ,μM) = χ0(λ) −
M∑
i=1

8λ2

λ2 − μ2
i

⎛⎝h(λ) + ν2

ξ2 − λ2ν2 −
M∑

j �=i

1

λ2 − μ2
j

⎞⎠ .

(3.21)
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The above off shell action of the generating function also contains the M unwanted terms which 
vanish when the following Bethe equations are imposed on the parameters μ1, . . . , μM ,

ρ(μi) + ν2

ξ2 − μ2
i ν

2
−

M∑
j �=i

2

μ2
i − μ2

j

= 0, (3.22)

where i = 1, 2, . . . , M .
Hence we have showed that the symmetric function ϕM(μ1, μ2, . . . , μM) defined in 

(3.9) is the Bethe vector of the generating function τ(λ) corresponding to the eigenvalue 
χM(λ, μ1, μ2, . . . , μM), stated above (3.21). With this proof we close the topic of the imple-
mentation of the algebraic Bethe ansatz for this model.

4. Solutions to the Knizhnik–Zamolodchikov equations

Finding the off-shell action on Bethe vectors in the previous section was, in this approach, 
a necessary prerequisite for solving of the corresponding Knizhnik–Zamolodchikov equations 
[25,27]. In this context the local realization of Gaudin algebra basis operators is also relevant:

e(λ) = −2
N∑

m=1

ξ − αmν

λ2 − α2
m

S+
m, (4.1)

h(λ) = 2
N∑

m=1

1

λ2 − α2
m

(
S3

m − ψ

2ν
S+

m

)
, (4.2)

f (λ) = 2
N∑

m=1

ξ + αmν

λ2 − α2
m

(
S−

m + ψ

ν
S3

m − ψ2

4ν2 S+
m

)
, (4.3)

where S3
m, S±

m , are the usual spin generators at the local node m (see [19]). In this local realization 
the vacuum vector 
+ has the form


+ = ω1 ⊗ · · · ⊗ ωN ∈H, (4.4)

where vector ωm belongs to local node Hilbert space Vm =C
2s+1 and:

S3
mωm = smωm and S+

mωm = 0. (4.5)

The Gaudin Hamiltonians with boundary terms are obtained as the residues of the generating 
function τ(λ) at poles λ = ±αm [19] and in order to make the paper self contained, we state these 
result also here:

Resλ=αmτ(λ) = 4Hm and Resλ=−αmτ(λ) = (−4) H̃m, (4.6)

yielding:

Hm =
N∑

n�=m

�Sm · �Sn

αm − αn

+
N∑

n=1

(
Km(αm)�SmK−1

m (αm)
)

· �Sn + �Sn ·
(
Km(αm)�SmK−1

m (αm)
)

2(αm + αn)
,

(4.7)
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and

H̃m =
N∑

n�=m

�Sm · �Sn

αm − αn

+
N∑

n=1

(
Km(−αm)�SmK−1

m (−αm)
)

· �Sn + �Sn ·
(
Km(−αm)�SmK−1

m (−αm)
)

2(αm + αn)
. (4.8)

It follows from the above relations and (3.21) that the eigenvalues of the Gaudin Hamiltonians 
(4.7) and (4.8) can be derived as the residues of χM(λ, μ1, . . . , μM), obtained in the previous 
section, at the poles λ = ±αm [19]. It turns out that the respective eigenvalues of the Hamiltonians 
(4.7) and (4.8) coincide:

Em,M = 1

4
Resλ=αmχM(λ,μ1, . . . ,μM)

= Ẽm,M = sm(sm + 1)

2αm

+ αmsm

⎛⎝ ν2

ξ2 − α2
mν2 +

N∑
n�=m

2sn

α2
m − α2

n

⎞⎠
− 2αmsm

M∑
i=1

1

α2
m − μ2

i

.

(4.9)

When all the spin sm are set to one half, these energies, as well as the Bethe equations, coincide 
with the expressions obtained in [14] (up to normalisation; for the connection of the correspond-
ing notations, cf. [19]).

The key observation in what follows will be that by taking the residue of both sides of the 
equation (3.19) at λ = αn, using (4.6), (4.7) and (4.9), and dividing both sides of the equation by 
the factor of four one obtains

HnϕM(μ1,μ2, . . . ,μM) = En,M ϕM(μ1,μ2, . . . ,μM) +
M∑

j=1

2α2
n

α2
n − μ2

j

ξ2 − μ2
j ν

2

ξ2 − α2
nν

2 ×

×
⎛⎝ρ(μj ) + ν2

ξ2 − μ2
j ν

2
−

M∑
k �=j

2

μ2
j − μ2

k

⎞⎠ ξ + αnν

αn

×
(

S−
n + ψ

ν
S3

n − ψ2

4ν2 S+
n

)
ϕM−1(μ1, . . . , μ̂j , . . . ,μM) ,

(4.10)

here the notation μ̂j means that the argument μj is not present.
The solutions to the Knizhnik–Zamolodchikov equations we seek in the form of contour inte-

grals over the variables μ1, μ2, . . . , μM [25,27]:

ψ(α1, α2, . . . , αN) =
∮

· · ·
∮

φ( �μ|�α)ϕM( �μ|�α) dμ1 · · ·dμM, (4.11)

where the integrating factor φ( �μ|�α) is a scalar function

φ( �μ|�α) = exp

(
S( �μ|�α)

κ

)
(4.12)



368 I. Salom et al. / Nuclear Physics B 939 (2019) 358–371

obtained by exponentiating a function S( �μ|�α) [34]. As in [10], from now on, the K-matrix pa-
rameters take fixed values ψ = ξ = 0 and ν = 1. For these values it is straightforward to check 
that i) the Gaudin Hamiltonians are Hermitian; and ii) Hamiltonians (4.7) and (4.8) coincide.

We find that the proper form of S( �μ|�α) in this case is:

S( �μ|�α) =
N∑

n=1

sn(sn − 1)

2 ln(αn)
+

N∑
n<m

αnαm ln(α2
n − α2

m) +
M∑

j=1

ln(μj )

+
M∑

j<k

ln(μ2
j − μ2

k) −
M∑

j=1

N∑
n=1

sn ln(α2
n − μ2

j ).

(4.13)

In order to show this, it is important to notice that the function φ( �μ|�α) as defined above also 
satisfies the following equations

κ ∂αnφ = En,M φ, (4.14)

κ ∂μj
φ = βM(μj ) φ, (4.15)

where

βM(μj ) := −μj

⎛⎝ρ(μj ) − 1

μ2
j

−
M∑

k �=j

2

μ2
j − μ2

k

⎞⎠ . (4.16)

Introducing the notation

ϕ̃
(j,n)
M−1 := S−

n ϕM−1(μ1, . . . , μ̂j , . . . ,μM) (4.17)

the equation (4.10) can be expressed in the following form

HnϕM(μ1,μ2, . . . ,μM) = En,M ϕM(μ1,μ2, . . . ,μM) +
M∑

j=1

(−2)μj

α2
n − μ2

j

βM(μj ) ϕ̃
(j,n)
M−1.

(4.18)

Using the definition of ϕM (3.9) and the local realisation of the generator f (μ) (4.3) it follows 
that

∂αnϕM = (−2)

M∑
j=1

∂μj

(
μj ϕ̃

(j,n)
M−1

μ2
j − α2

n

)
. (4.19)

Then it is straightforward to show that

κ ∂αn (φϕM) = Hn (φϕM) + κ

M∑
j=1

∂μj

(
(−2)μj

μ2
j − α2

n

φϕ̃
(j,n)

M−1

)
. (4.20)

A closed contour integration of φϕM with respect to the variables μ1, μ2, . . . , μM will cancel 
the contribution from the terms under the sum in (4.20) and therefore ψ(α1, α2, . . . , αN) given 
by (4.11) satisfies the Knizhnik–Zamolodchikov equations

κ ∂αnψ(α1, α2, . . . , αN) = Hnψ(α1, α2, . . . , αN). (4.21)
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Moreover, the interplay between the Gaudin model and the Knizhnik–Zamolodchikov equa-
tions, once the Bethe equations are imposed

∂S

∂μj

= βM(μj ) = −μj

⎛⎝ N∑
m=1

2sm

μ2
j − α2

m

− 1

μ2
j

−
M∑

k �=j

2

μ2
j − μ2

k

⎞⎠ = 0, (4.22)

enabled us to determine the on-shell norm of the Bethe vectors

||ϕM(μ1,μ2, . . . ,μM)||2 = 2M det

(
∂2S

∂μj∂μk

)
. (4.23)

It turns out to be possible to derive also a stronger formula than the one above for the norms 
[27]. Indeed, we calculate the following expression for the off-shell scalar product of arbitrary 
two Bethe vectors:


∗+e(λ1)e(λ2) · · · e(λM)f (μM) · · ·f (μ2)f (μ1)
+ = 4M
∑

σ∈SM

detMσ , (4.24)

where SM is the symmetric group of degree M and the M × M matrix Mσ is given by

Mσ
jj = −λ2

j ρ(λj ) − μ2
σ(j)ρ(μσ(j))

λ2
j − μ2

σ(j)

−
∑
k �=j

λ2
k + μ2

σ(k)

(λ2
j − λ2

k)(μ
2
σ(j) − μ2

σ(k))
, (4.25)

Mσ
jk = − λ2

k + μ2
σ(k)

(λ2
j − λ2

σ(k))(μ
2
σ(j) − μ2

σ(k))
, for j, k = 1,2, . . . ,M. (4.26)

This formula (that can be proved by commuting e(λ) operators to the right and using mathemat-
ical induction) has obvious potential applications as the first step towards the general correlation 
functions. It should be noted that in [13] a related problem was analysed in the trigonometric 
case and under certain restrictions: local spins were all fixed to the value 1

2 and it was required 
that N = 2M (in the notation of that paper). Our formula is more compact and valid for arbitrary 
spins and arbitrary number of excitations.

5. Conclusion

In this paper we addressed a number of open problems related to Gaudin model with non 
periodic boundary conditions.

First, we obtained a new basis of the generalized s�(2) Gaudin algebra, in which the com-
mutation relations and the generating function are manifestly simpler. This step allowed us to 
calculate Bethe vectors and off-shell action of the generating function upon them in a closed 
form, for arbitrary number of excitations. The obtained expressions we have proved by mathe-
matical induction.

Once having the general expressions for the Bethe vectors and for the corresponding eigen-
values, we could proceed to relate KZ equations with the Bethe vectors. Taking residues of the 
off-shell action at poles ±αm, we obtained both Gaudin Hamiltonians and their eigenvalues. By 
finding the appropriate form of the function S in (4.13), we managed to establish and prove rela-
tions (4.14) and (4.15) which led to solution to KZ equations. Proceeding in the same framework, 
we also obtained the expression for norms of Bethe vectors on shell. Moreover, we went a step 
further and provided a closed form formula for the scalar product of arbitrary two Bethe vectors.
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Abstract

We overview our recently developed DREENA-C and DREENA-B frameworks, where DREENA (Dynamical Radiative
and Elastic ENergy loss Approach) is a computational implementation of the dynamical energy loss formalism; C stands
for constant temperature and B for the medium evolution modeled by Bjorken expansion. At constant temperature our
predictions overestimate v2, in contrast to other models, but consistent with simple analytical estimates. With Bjorken
expansion, we obtain good agreement with both RAA and v2 measurements. We find that introducing medium evolution
has a larger effect on v2 predictions, but for precision predictions it has to be taken into account in RAA predictions as
well. We also propose a new observable, which we call path length sensitive suppression ratio, for which we argue
that the path length dependence can be assessed in a straightforward manner. We also argue that Pb + Pb vs. Xe + Xe
collisions make a good system to assess the path length dependence. As an outlook, we expect that introduction of more
complex medium evolution (beyond Bjorken expansion) in the dynamical energy loss formalism can provide a basis for
a state of the art QGP tomography tool – e.g. to jointly constrain the medium properties from the point of both high-p⊥
and low-p⊥ data.

Keywords: relativistic heavy ion collisions, quark-gluon plasma, energy loss, hard probes, heavy flavor

1. Introduction

Energy loss of high-p⊥ particles traversing QCD medium is considered to be an excellent probe of
QGP properties [1, 2, 3]. The theoretical predictions can be generated and compared with a wide range
of experimental data, coming from different experiments, collision systems, collision energies, centralities,
observables. This comprehensive comparison of theoretical predictions and high p⊥ data, can then be used
together with low p⊥ theory and data to study the properties of created QCD medium [4, 5, 6, 7], that is,
for precision QGP tomography. However, to implement this idea, it is crucial to have a reliable high p⊥
parton energy loss model. With this goal in mind, during the past several years, we developed the dynamical
energy loss formalism [8]. Contrary to the widely used approximation of static scattering centers, this model
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takes into account that QGP consists of dynamical (moving) partons, and that the created medium has finite
size. The calculations are based on the finite temperature field theory, and generalized HTL approach. The
formalism takes into account both radiative and collisional energy losses, is applicable to both light and
heavy flavor, and has been recently generalized to the case of finite magnetic mass and running coupling [9].
Most recently, we also relaxed the soft-gluon approximation within the model [15]. Finally, the formalism is
integrated in an up-to-date numerical procedure [9], which contains parton production [10], fragmentation
functions [11], path-length [12, 13] and multi-gluon fluctuations [14].

The model up-to-now explained a wide range of RAA data [9, 16, 17, 18], with the same numerical
procedure, the same parameter set, and with no fitting parameters, including explaining puzzling data and
generating predictions for future experiments. This then strongly suggests that the model provides a realistic
description of high p⊥ parton-medium interactions. However, the model did not take into account the
medium evolution, so we used it to provide predictions only for those observables that are considered to be
weakly sensitive to QGP evolution.

Therefore, our goal, which will be addressed in this proceedings, is to develop a framework which will
allow systematic comparison of experimental data and theoretical predictions, obtained by the same formal-
ism and the same parameter set. In particular, we want to develop a framework, which can systematically
generate predictions for different observables (both RAA and v2), different collision systems (Pb + Pb and
Xe+Xe), different probes (light and heavy), different collision energies and different centralities [19, 20, 21].
Within this, our major goal is to introduce medium evolution in the dynamical energy loss formalism [20],
where we start with 1+1D Bjorken expansion [22], and where our developments in this direction, will also
be outlined in this proceedings. Finally, we also want to address an important question of how to differen-
tiate between different energy loss models; in particular, what is the appropriate observable, and what are
appropriate systems, to assess energy loss path-length dependence [21]. Note that only the main results are
presented here; for a more detailed version, see [19, 20, 21], and references therein.

2. Results and discussion

As a first step towards the goals specified above, we developed DREENA-C framework [19], which is
a fully optimized computational suppression procedure based on our dynamical energy loss formalism in
constant temperature finite size QCD medium. Within this framework we, for the first time, generated joint
RAA and v2 predictions based on our dynamical energy loss formalism. We generated predictions for both
light and heavy flavor probes, and different centrality regions in Pb + Pb collisions at the LHC (see [19] for
more details). We obtained that, despite the fact that DREENA-C does not contain medium evolution (to
which v2 is largely sensitive), it leads to qualitatively good agreement with this data, though quantitatively,
the predictions are visibly above the experimental data.

The theoretical models up-to-now, faced difficulties in jointly explaining RAA and v2 data, i.e. lead to
underprediction of v2, unless new phenomena are introduced, which is known as v2 puzzle [23]. Having this
in mind, the overestimation of v2, obtained by DREENA-C, seems surprising. However, by using a simple
scaling arguments, where fractional energy loss is proportional to T a and Lb , and where, within our model
a, b are close to 1, we straightforwardly obtain that in constant T medium, RAA ≈ 1 − ξT L and v2 ≈ ξTΔL

2 ,
while in evolving medium RAA retains the same expressions and v2 ≈ ξTΔL−ξΔT L

2 (see [19] for more details,
ξ is a proportionality factor that depends on initial jet p⊥). So, it is our expectation that, within our model,
the medium evolution will not significantly affect RAA, while it will notably lower the v2 predictions.

To check the reliability of these simple estimates, we developed DREENA-B framework [20], which is
our most recent development within dynamical energy loss formalism. Here B stands for 1+1D Bjorken
expansion [22], i.e. the medium evolution is introduced in dynamical energy loss formalism in a simple
analytic way. We provided first joint RAA and v2 predictions with dynamical energy loss formalism in
expanding QCD medium, which are presented in Fig. 1 (for charged hadrons), and we observe very good
agreement with both RAA and v2 data. We equivalently obtained the same good agreement for D mesons,
and predicted non-zero v2 for high p⊥ B mesons.

In Fig. 2, we further present predictions for Xe+Xe data [21], where we note that these predictions were
generated before the data became available. In this figure (see also Fig. 1), we compare DREENA-C and
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Fig. 1. Joint RAA and v2 predictions for charged hadrons in 5.02 TeV Pb + Pb collisions. Upper panels: Predictions for RAA
vs. p⊥ are compared with ALICE [24] (red circles) and CMS [25] (blue squares) charged hadron experimental data in 5.02 TeV
Pb + Pb collisions. Lower panels: Predictions for v2 vs. p⊥ are compared with ALICE [26] (red circles) and CMS [27] (blue squares)
experimental data in 5.02 TeV Pb + Pb collisions. Full and dashed curves correspond, respectively, to the predictions obtained with
DREENA-B and DREENA-C frameworks. In each panel, the upper (lower) boundary of each gray band corresponds to μM/μE = 0.6
(μM/μE = 0.4). Columns 1-6 correspond, respectively, to 0 − 5%, 5 − 10%, 10 − 20%,..., 40 − 50% centrality regions. The figure is
adapted from [19, 20] and the parameter set is specified there.

DREENA-B frameworks, to assess the importance of including medium evolution on RAA and v2 observ-
ables. We see that introduction of expanding medium affects both RAA and v2 data. That is, it systematically
somewhat increase RAA, while significantly decreasing v2; this observation is in agreement with our estimate
provided above. Consequently, we see that this effect has large influence on v2 predictions, confirming pre-
vious arguments that v2 observable is quite sensitive to medium evolution. On the other hand, this effect is
rather small on RAA, consistent with the notion that RAA is not very sensitive to medium evolution [28, 29].
However, our observation from Figs. 1 and 2 is that medium evolution effect on RAA, though not large,
should still not be neglected in precise RAA calculations, especially for high p⊥ and higher centralities.

Fig. 2. Joint RAA and v2 predictions for charged hadrons

in 5.44 TeV Xe + Xe collisions. Predictions for RAA vs. p⊥
and v2 vs. p⊥ are shown on upper and lower panels, respec-
tively. Columns 1-3, respectively, correspond to 5 − 10%,
20 − 30% and 40 − 50% centrality regions. Full and dashed
curves correspond, respectively, to the predictions obtained
with DREENA-B and DREENA-C frameworks. The figure is
adapted from [20] and the parameter set is specified there.

Fig. 3. Path-length sensitive suppression ratio (RXePb
L ) for

light and heavy probes. Predictions for RXePb
L vs. p⊥ is

shown for charged hadrons (full), D mesons (dashed) and B
mesons (dot-dashed). First and second column, respectively,
correspond to 30 − 40% and 50 − 60% centrality regions.
μM/μE = 0.4. The figure is adapted from [21] and the pa-
rameter set is specified there.

Finally, as the last topic of this proceedings, we address a question on how to differentiate between
different energy loss models. With regard to this, note that path length dependence provides an excellent
signature differentiating between different energy loss models, and consequently also between the underly-
ing energy loss mechanisms. For example, some energy loss models have linear, some have quadratic, and
our dynamical energy loss has the path-length dependence between linear and quadratic, which is due to
both collisional and radiative energy loss mechanisms included in the model. To address this question, we
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first have to answer what is an appropriate system for such a study. We argue that comparison of suppres-
sions in Pb+Pb and Xe+Xe is an excellent way to study the path length dependence: From the suppression
calculation perspective, almost all properties of these two systems are the same. That is, we show [21] that
these two systems have very similar initial momentum distributions, average temperature for each centrality
region and path length distributions (up to rescaling factor A1/3). That is, the main property differentiating
the two systems is its size, i.e. rescaling factor A1/3, which therefore makes comparison of suppressions in
Pb + Pb and Xe + Xe collisions an excellent way to study the path length dependence.

The second question is what is appropriate observable? With regards to that, the ratio of the two RAA

seems a natural choice, as has been proposed before. However, in this way the path length dependence
cannot be naturally extracted, as shown in [21]. For example, this ratio approaches one for high p⊥ and high
centralities, suggesting no path length dependence, while the dynamical energy loss has strong path length
dependence. Also, the ratio has strong centrality dependence. That is, from this ratio, no useful information
can be deduced. The reason for this is that this ratio includes a complicated relationship (see [21] for more
details) which depends on the initial jet energy and centrality; so extracting the path-length dependence from
this observable would not be possible.

However, based on the derivation presented in [21], we propose to use the ratio of 1-RAA instead. From
this estimate, we see that this ratio RXePb

L ≡ 1−RXeXe
1−RPbPb

≈
(

AXe
APb

)b/3
has a simple dependence on only the size of

the medium (A1/3 ratio) and the path length dependence (exponent b). In Fig. 3 we plot this ratio, where we
see that the path length dependence can be extracted from this ratio in a simple way, and moreover there is
only a weak centrality dependence. Therefore, 1-RAA ratio seems as a natural observable, which we propose
to call path-length sensitive suppression ratio.
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Abstract

We construct the three-body permutation symmetric hyperspherical harmonics to be used in the non-
relativistic three-body Schrödinger equation in three spatial dimensions (3D). We label the state vectors 
according to the S3 ⊗ SO(3)rot ⊂ O(2) ⊗ SO(3)rot ⊂ U(3) � S2 ⊂ O(6) subgroup chain, where S3 is the 
three-body permutation group and S2 is its two element subgroup containing transposition of first two par-
ticles, O(2) is the “democracy transformation”, or “kinematic rotation” group for three particles; SO(3)rot

is the 3D rotation group, and U(3), O(6) are the usual Lie groups. We discuss the good quantum numbers 
implied by the above chain of algebras, as well as their relation to the S3 permutation properties of the 
harmonics, particularly in view of the SO(3)rot ⊂ SU(3) degeneracy. We provide a definite, practically 
implementable algorithm for the calculation of harmonics with arbitrary finite integer values of the hyper 
angular momentum K, and show an explicit example of this construction in a specific case with degeneracy, 
as well as tables of K ≤ 6 harmonics. All harmonics are expressed as homogeneous polynomials in the Ja-
cobi vectors (λ, ρ) with coefficients given as algebraic numbers unless the “operator method” is chosen for 
the lifting of the SO(3)rot ⊂ SU(3) multiplicity and the dimension of the degenerate subspace is greater 
than four – in which case one must resort to numerical diagonalization; the latter condition is not met by 
any K ≤ 15 harmonic, or by any L ≤ 7 harmonic with arbitrary K. We also calculate a certain type of ma-
trix elements (the Gaunt integrals of products of three harmonics) in two ways: 1) by explicit evaluation of 
integrals and 2) by reduction to known SU(3) Clebsch–Gordan coefficients. In this way we complete the 
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calculation of the ingredients sufficient for the solution to the quantum-mechanical three-body bound state 
problem.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The quantum mechanical three-body bound-state problem is an old one: it has a huge litera-
ture in which the hyperspherical harmonics, Refs. [1–23], form one of the most firmly established 
theoretical tools – for recent reviews, see Refs. [24–29].1 Classification of wave functions into 
distinct classes under permutation symmetry is a fundamental property of non-relativistic quan-
tum mechanics with non-trivial consequences in the three-body system. Permutation symmetric 
three-body hyperspherical harmonics in three dimensions, however, are explicitly known only in 
a few special cases such as the total orbital angular momentum L = 0, 1 ones, cf. Refs. [5,6,8,19]. 
Hyperspherical harmonics with higher values of L can be constructed by means of a (numerical) 
recursive procedure that symmetrizes non-permutation-symmetric hyperspherical harmonics, see 
Refs. [20,21].

In so doing one loses track, however, of a certain dynamical O(2) symmetry that is related to 
the so-called “kinematic rotation”, Ref. [2], or equivalently to the “democracy” transformations, 
Refs. [6,8,12]. This “kinematic rotation” invariance, or “democracy” symmetry was viewed as 
mathematical esoterics, until recently Ref. [30] showed it to be the dynamical symmetry of area-
dependent potentials, which class includes the so-called Y-string potential in QCD. The Y-string 
is the leading candidate for the confinement mechanism of three quarks in QCD, Refs. [30–34]. 
Consequently followed the increased interest in the properties of the “kinematic rotation” invari-
ant, or “democratic” potentials and in their spectra.

In two spatial dimensions (2D) the problem of constructing permutation symmetric hyper-
spherical harmonics was solved, at first by Smith, Ref. [4], and then in Ref. [35] in a general 
way that makes the “kinematic rotation” O(2) invariance (or “democracy” symmetry) explicit, 
following certain fairly abstract internal geometric (“shape space”) considerations by Iwai, 
Refs. [36,37]. These 2D permutation-symmetrized SO(4) hyperspherical harmonics are closely 
related to the (3D magnetic) monopole harmonics, Ref. [38], and to so-called spin-weighted 
spherical harmonics, Ref. [39]. In Refs. [40–42] we have used these symmetrized hyperspher-
ical harmonics with the “kinematic rotation” O(2) label to solve the Schrödinger equation for 
three-body bound states in two spatial dimensions with area-dependent potentials based on the 
so(2) ⊕ soL(2) ⊂ so(3) ⊕ so(3) ⊂ so(4) chain of algebras (where soL(2) is the total angular mo-
mentum part and so(2) is the “democracy” transformation, or “kinematic rotation” generator). 
Those results show explicitly the role of the “kinematic rotation” O(2) invariance in the energy 
level-degeneracy and/or splitting in area-dependent potentials in 2D.

Similarly to the three-body problem in two dimensions (2D), Refs. [40–42], the knowledge of 
the three-body permutation symmetric hyperspherical harmonics in three dimensions (3D) with 
the “kinematic rotation” O(2) label would allow one to calculate the discrete part of the energy 
spectrum of the three-body problem. A systematic construction of (all) permutation symmetric 

1 It is commonly assumed that Faddeev’s work on quantum-mechanical three-body equations has solved the three-body 
problem – that is only partially true: Faddeev’s equations allow one to solve the three-body scattering problem, but do 
not affect the bound state problem significantly.
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hyperspherical harmonics in 3D, based on the S3 ⊗SO(3)rot ⊂ O(2) ⊗SO(3)rot ⊂ U(3) �S2 ⊂
O(6) “chain” of subgroups for labeling purposes, is the first basic contribution of the present 
paper. This construction is complete in the sense that a definite algorithm is provided for the 
construction of arbitrary-integer-K harmonics (where K is the hyper angular, or “grand angular” 
momentum), that has been used to construct harmonics up to some finite value of K. We do not 
have a simple formula for arbitrary-K harmonics, however. As the second basic contribution of 
this paper, we provide explicit results of the evaluation of an integral over tri-linear products 
of harmonics (this is the SO(6) analogon of the Gaunt formula), in terms of (known) SU(3)

Clebsch–Gordan coefficients.
The basic idea that we used is not new: we started out by constructing certain homogeneous

polynomials of the two Jacobi vectors, just as Simonov did in Ref. [5], but without the restriction 
to scalars under spatial rotations. In so doing we used the O(6) group labels to classify the hyper-
spherical harmonics. In this way the three-body problem in three dimensions can be effectively 
reduced to an O(6) group theoretical problem. By a careful study of the labeling of three-body 
states, we arrive at the subgroup “chain” S3 ⊗ SO(3)rot ⊂ O(2) ⊗ SO(3)rot ⊂ U(3) � S2 ⊂
O(6). Here SOrot (3) is the total angular momentum part and O(2) is the subgroup of so-called 
“democracy” transformations, Ref. [12], or equivalently “kinematic rotations”, Ref. [2], and the 
S3 and S2 are the (discrete) three-particle permutation group and the two-particle permutation 
(of particles 1 and 2) group, respectively, that are also subgroups of these “democracy” transfor-
mations.

As the first step, we construct “core polynomials” of order K that have particular predefined 
transformation properties w.r.t. the U(1) ⊗ SO(3)rot subgroup action, where U(1) ≡ SO(2) is 
the unit determinant subgroup of the O(2) group of “democracy” transformations containing 
only cyclic, i.e., even particle permutations. In the following step these core polynomials are 
“filtered out”, i.e., projected so as to become harmonic, i.e., to obtain sharp values of the hyper-
angular momentum K.

The obtained harmonic polynomials, however, are still plagued with what is known as 
the multiplicity problem in SU(3) group theory, Refs. [43–47]: in general, the labels of the 
U(1) ⊗ SO(3)rot subgroup together with the hyperangular momentum K are insufficient to 
uniquely specify the SO(6) harmonics. We offer two possible solutions to this “multiplicity prob-
lem”: i) the traditional approach, Refs. [43–47], based on the introduction of a multiplicity lifting 
operator, that must be diagonalized, where we discuss several different such operators, primarily 
in the light of the (so-induced) permutation properties of the harmonics; and ii) a novel (non-
traditional) approach, based on a new auxiliary integer label, that is introduced in the process 
of constructing the harmonics. Both of these choices present definite algorithms for the con-
struction of an arbitrary (positive integer) K-th order SO(6) three-body permutation-symmetric 
hyperspherical harmonic, albeit with different advantages and drawbacks.

In the first case, the resulting hyperspherical harmonics can be, in general, expressed in closed 
algebraic form only when K ≤ 15 and/or L ≤ 7, whereas, beyond K ≥ 16 and L ≥ 8 some 
harmonics have to be expressed numerically, due to restrictions imposed by Galois theory. Conse-
quently, such harmonics cannot be used for the study of arbitrary-K, L properties, e.g. the Regge 
trajectories, of three-body states. We present here the SO(6) three-body permutation-symmetric 
hyperspherical harmonics, based on the Racah degeneracy-lifting operator, Ref. [43], together 
with their transformation properties under permutations, i.e., the irreducible representations of 
the permutation group S3.

In the second case, the multiplicity labeling procedure does not rely on solving any operator 
eigenvalue problem, so that all hyperspherical harmonics can be expressed in a closed algebraic 
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form. Such a significant simplification comes at a price, however, viz. the new auxiliary label does 
not have a clear SU(3) group-theoretical meaning. Consequently, it has not been used to evaluate 
the corresponding Clebsch–Gordan coefficients in the literature (see below). For this reason, here 
we shall merely state some of the implications of this choice and proceed with further discussion 
based exclusively on the first type of solution to the multiplicity problem.

Hyperspherical harmonics obtained through the described procedure are labeled according to 
the subgroup chain U(1) ⊗ SO(3)rot ⊂ U(3) ⊂ SO(6), plus the multiplicity label (that may, or 
may not be related to the so(6) enveloping algebra). However, odd particle permutations do not 
belong to this chain, as they correspond to transformations of the six-dimensional configuration 
space with determinant equal to −1. In the concluding step of construction of the permutation 
symmetric harmonics we discuss their action (in a separate section on permutation properties) 
which then extends the symmetry group/chain to S3 ⊗ SO(3)rot ⊂ O(2) ⊗ SO(3)rot ⊂ U(3) �
S2 ⊂ O(6). The final result are hyperspherical harmonics with clearly established and manifest 
S3 permutation properties, that are simple linear combinations of the previously derived SO(6)

harmonic functions.
Then we calculated a certain class of integrals (matrix elements) over trilinear products of 

hyperspherical harmonics that appear in standard quantum-mechanical three-body problems, 
Ref. [48–50]. We did so firstly by explicit evaluation, i.e., by a reduction to certain gamma 
(�) function type of integrals, and secondly by group theoretical techniques, i.e., by reduction, 
at first to a product of two SO(6) Clebsch–Gordan coefficients, which are not well known, and 
then we used a one-to-one relation between the SO(6) hyperspherical harmonics and the SU(3)

irreducible representations, to express the integrals as a product of two SU(3) Clebsch–Gordan 
coefficients, which are quite well known, [51–57]. We do not foresee further simplifications of 
our results, at least not in matters of principle, though we cannot exclude potential improvements 
of numerical algorithms used for their evaluation. In this way, we have reduced these integrals 
over trilinear products of hyperspherical harmonics to their simplest form that is also amenable 
to straightforward numerical evaluation.

Our results are not specific to any particular three-body problem, i.e., they can, and we hope 
they will, find application in many realistic 3D three-body problems, such as in the three-quark 
problem in hadronic physics, as well as in atomic and molecular physics.

As stated above, symmetrized three-body hyper-spherical harmonics have been pursued be-
fore, albeit without emphasis on the “kinematic rotation” O(2) symmetry label. To our knowl-
edge, aside from the special case (L = 0) results of Simonov and of Dragt, Refs. [5–7], and the 
L = 1 results of Lévy-Leblond and of Barnea and Mandelzweig, Refs. [8,19], several other at-
tempts, based on the so-called “tree pruning” techniques, exist in the literature, Refs. [18,23,28], 
beside the recursively symmetrized N-body hyperspherical harmonics of Barnea and Novosel-
sky, Refs. [20,21]. The latter are based on the O(3) ⊗SN ⊂ O(3N − 3) chain of algebras, which 
does not include the “kinematic rotation”/“democracy” O(2) symmetry. Moreover, no explicit 
examples of three-body symmetrized hyperspherical harmonics were given in Refs. [20,21], as 
they were meant primarily for numerical computations, and not for fundamental studies.

In several early papers, Refs. [6–8], and, somewhat later, also in Refs. [14,15], the same 
SU(3) group was used to label and construct some three-particle continuum states with K ≤ 12, 
but their applications to bound state problems was not considered. Refs. [14,15] are particularly 
close in spirit to our approach, albeit not in technical detail. For a fuller discussion of these other 
approaches and their relation to the present work, see Sect. 9.

This paper consists of nine sections. After providing the necessary preliminaries in Sect. 2, 
we explain our SO(6) algebraic methods for constructing the core polynomials in Sect. 3. Then, 
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we project out the core polynomials to get harmonic three-body hyper-spherical polynomials in 
Sect. 4. In Sect. 5 we discuss how to resolve the multiplicity of three-body hyper-spherical har-
monic polynomials in general, and in Sect. 6 we illustrate the procedure with a few examples. 
Then in Sect. 7 we discuss the permutation symmetry and define final expressions for the har-
monics that possess simple and manifest transformation properties with respect to the subgroup 
chain S3 ⊗ SO(3)rot ⊂ O(2) ⊗ SO(3)rot ⊂ U(3) � S2 ⊂ O(6). In Sect. 8 we show the cal-
culation of a certain type of matrix elements, and discuss their group theoretical ramifications. 
Finally, in Section 9 we present a summary and discussion of the results and of their relation 
to other papers in the literature. Some useful integrals are shown in Appendix A, the details of 
SO(6) Clebsch–Gordan coefficients are shown in Appendix B, and a list of h.s. harmonics with 
K ≤ 6 is given in Appendix C.

2. Preliminaries

2.1. Three-body hyper-spherical harmonics

Coordinates of three (identical) particles (with equal masses) in the center-of-mass (c.m.) rest 
frame are given by two Jacobi three-vectors:

λ = 1√
6
(r1 + r2 − 2r3), (1)

ρ = 1√
2
(r1 − r2). (2)

The kinetic energy in the rest frame is of the form:

T = m

2

(
λ̇

2 + ρ̇2
)

, (3)

possessing an O(6) symmetry that is made manifest by introducing six-dimensional coordinate 
hyper-vector xμ = (λ, ρ): the kinetic energy Eq. (3) can be written as

T = m

2
Ṙ2 + K2

μν

2mR2
(4)

where R ≡
√

λ2 + ρ2 is the hyper-radius and the “grand angular”, or hyper-angular momentum 
tensor Kμν , μ, ν = 1, 2, . . . , 6 reads

Kμν = m
(
xμẋν − xν ẋμ

)
= (xμpν − xνpμ

)
. (5)

It has 15 linearly independent components and generates an SO(6) group acting in this six-
dimensional space. Among these 15 generators are also the three components of the “ordinary” 
(total) orbital angular momentum: L = lρ + lλ = m 

(
ρ × ρ̇ + λ × λ̇

)
. In addition to the SO(6)

group action that generates linear transformations of the 6-dimensional space with unit determi-
nant, particle permutations also constitute a part of the symmetries of the kinetic energy, Eq. (3). 
The odd permutations, however, correspond to six-dimensional linear transformations with de-
terminant equal to −1, thus extending the full symmetry group to O(6).

Once the potential energy V is introduced, this large symmetry is generally broken to some 
extent, sometimes all the way down to the product of the three-body permutation symmetry S3
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and the rotation symmetry SO(3) (or O(3)), and sometimes with an additional remnant dynam-
ical symmetry. This is a motivation to split the three-particle wave-function into a hyper-radial 
part (which is a function solely of the hyper-radius R) and the hyper-angular part (which is a 
function of xμ/R), where the natural basis for the latter one are 6-dimensional hyper-spherical 
harmonics.

Hyper-spherical harmonics (in any dimension D) transform as symmetric tensor representa-
tions of SO(D) group, which is (for D > 3) only a subset of all tensorial representations. In 
turn, this means that any hyper-spherical harmonic is labeled by a single integer K that is also 
an irreducible representation label, matching the order of the symmetric tensor representation 
(K corresponds to the highest weight (K, 0, 0, 0, . . . ) irreducible representation, following the 
usual definitions, or to the Young diagram with K boxes in a single row). Ordinary (D = 3)

spherical harmonics are eigenfunctions of the square of the angular momentum operator K (this 
operator is, in the D = 3 context, usually denoted as L) with the eigenvalue K(K + 1), whereas 
D-dimensional hyper-spherical harmonics are eigenfunctions of the square of the hyper-angular 
momentum operator K with the eigenvalue K(K + D − 2).

In addition to the irreducible representation label K, hyper-spherical harmonics carry ad-
ditional labels specifying a concrete vector within that representation, usually describing the 
transformation properties of the hyper-spherical harmonic with respect to (w.r.t.) certain sub-
groups of the orthogonal group SO(D).

In the context of three-particle wave functions, additional labels ought to be introduced in a 
way that respects physically important features, i.e., the remnant symmetries of the system in 
question. As most three-body potentials in physics are rotationally invariant, the hyper-spherical 
harmonics should have definite transformation properties under rotations, i.e., they should carry 
labels L and m (the “magnetic” quantum number) of the rotational subgroup SO(3). Permuta-
tion symmetry is often a remnant symmetry, so once we construct the SO(6) hyper-spherical 
harmonics we shall address the question of how the particle transpositions, i.e., the full O(6)

group, act upon them.

2.2. The SO(6) group structure

The rotational group here appears as the diagonal SO(3) subgroup of the six-dimensional 
rotations SO(3)rot = SO(3)diag ⊂ SO(6), i.e., the rotations act equally on the first three co-
ordinates (λ) and the last three coordinates (ρ) of the six-dimensional coordinate xμ. As we 
shall shortly demonstrate, the space of 15 generators of the SO(6) Lie algebra decomposes as 
(3)rot + (3) + (3) + (5) + (1) w.r.t. SO(3)rot , so there is exactly one “additional” generator of 
SO(6) that commutes with the rotations. This decomposition becomes manifest upon introduc-
tion of complex coordinates:

X±
i = λi ± iρi, i = 1,2,3. (6)

One basis of the so(6) algebra generating SO(6) transformations of hyper-coordinates xμ is 
given by the 15 operators {Kμν ≡ i(xμ∂ν − xν∂μ)|μ, ν = 1, . . .6}. Of a greater physical signifi-
cance is the following basis, written in terms of the new coordinates:

Lij ≡ −i

(
X+

i

∂

∂X+
j

+ X−
i

∂

∂X−
j

− X+
j

∂

∂X+
i

− X−
j

∂

∂X−
i

)
, (7)

Qij ≡ 1

2

(
X+

i

∂

∂X+
j

− X−
i

∂

∂X−
j

+ X+
j

∂

∂X+
i

− X−
j

∂

∂X−
i

)
, (8)
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�Lij ≡ −i

(
X+

i

∂

∂X−
j

+ X−
i

∂

∂X+
j

− X+
j

∂

∂X−
i

− X−
j

∂

∂X+
i

)
, (9)

Wij ≡
(

X+
i

∂

∂X−
j

− X−
i

∂

∂X+
j

− X+
j

∂

∂X−
i

+ X−
j

∂

∂X+
i

)
. (10)

Of these, the Lij (corresponding to orbital angular momentum), the �Lij (equal to the differ-
ence Lλ

ij − L
ρ
ij ) and the Wij are antisymmetric tensors, thus having three components each. The 

(“quadrupole”) tensor Qij is symmetric, thus decomposing into an irreducible second-rank ten-
sor (with five components) and a scalar (with one component) under rotations. The trace of Qij

is the scalar:

Q ≡ Qii =
3∑

i=1

X+
i

∂

∂X+
i

−
3∑

i=1

X−
i

∂

∂X−
i

(11)

which (obviously) commutes with the rotation generators and its eigenvalue is therefore the nat-
ural choice for the additional label of the hyper-spherical harmonics.

Apart from its mathematical significance, the operator Q is also physically important, as it 
generates the so-called “democracy” transformations [2,12] that are closely related to permuta-
tions of three particles. Moreover, as mentioned in Introduction, some interactions preserve this 
quantum number (e.g., due to [Q, |λ×ρ|] = 0, such are all three-particle potentials that are func-
tions of the area of the subtended triangle, |λ × ρ|, which potentials are of importance in QCD). 
Note that the polynomials in X can only have integer eigenvalues of Q: these eigenvalues corre-
spond to the difference d+ − d−, where d+, d− are polynomial degrees in X+ and X− variables, 
respectively.

The centralizer of the element Q in the so(6) algebra, i.e., the subalgebra of the so(6) algebra 
consisting of elements that commute with Q, is larger than the rotational subalgebra so(3)rot : 
Q commutes not only with operators Lij , but also with operators Qij . The three rotation genera-
tors Lij together with five linearly independent components of the traceless Q̃ij ≡ Qij − 1

3δijQ

part of the symmetric (quadrupole) tensor Qij form eight generators of an su(3) subalgebra of 
so(6).

Labeling of the SO(6) hyper-spherical harmonics with labels K, Q, L and m thus corresponds 
to the subgroup chain U(1) ⊗ SO(3)rot ⊂ U(3) ⊂ SO(6) Note, however, that the SU(3) sub-
group does not introduce any new quantum numbers into the hyper-spherical harmonics labels 
(K, Q, L, m). For more details on SU(3) aspect of the three particle h.s. harmonics, see Sec-
tion 8.3.

Yet, these four quantum numbers are generally insufficient to uniquely specify an SO(6)

hyper-spherical harmonic: it is well known, see Ref. [43,44,47], that SU(3) representations in 
general have nontrivial multiplicity w.r.t. decomposition into SO(3) subgroup representations, 
and such a multiplicity also appears here. We shall deal with this multiplicity issue in Sect. 5 in 
a general way, and then again in Sects. 6 and 7, in more specific ways.

3. Core polynomials

Six-dimensional hyper-spherical harmonics with hyper-angular momentum K can be ex-
pressed as harmonic homogeneous polynomials of order K in variables xμ (when restricted to 
the unit hyper-sphere). Our first goal is to construct such polynomials (which we shall call “core 
polynomials”) that have pre-determined sharp values of quantum numbers Q, L and m. Once 
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this goal has been achieved, we shall address the problem of how to project out parts of these 
polynomials that have also well defined values of K.

We begin by considering polynomials:

Pd+d−
L+m+L−m−(X) = (X+ · X+) d+−L+

2
(
X− · X−) d−−L−

2 ỸL+
3,m+(X

+)ỸL−
3,m−(X

−), (12)

where d±, L±, m± are integers such that d± − L± are even and non-negative. Here ỸL
3,m(X)

denotes an SO(3) spherical harmonic function expressed as a homogeneous polynomial (of de-
gree L) in the three coordinates Xi , cf. Ref. [58], i.e. ỸL

3,m(X)/|X|L = YL
3,m(X), where YL

3,m(X)

is a standard SO(3) spherical harmonic function.
These polynomials are of degree d+ in variables X+

i and d− in variables X−
i , meaning 

that they yield a sharp eigen-value q = d+ − d− of the operator Q. The polynomials Eq. (12)
are homogeneous functions of order (d+ + d−) in coordinates x, but they are not harmonic, 
i.e., they don’t have a vanishing Laplacian, which is, in this context, equivalent to stating that 
they are not eigenfunctions of K2 ≡ ∑ 1

2 KμνKμν . This, in turn, implies that the polynomial 

Pd+d−
L+m+L−m−(X) contains components with various values of K, though none larger then d++d−, 

i.e. K ≤ d+ + d−.
Furthermore, the maximum value of K appearing in the decomposition of Pd+d−

L+m+L−m− (re-
stricted to the unit hyper-sphere) into hyper-spherical harmonics is exactly d+ + d−. The latter 
statement follows from the fact that Pd+d−

L+m+L−m− as a polynomial is not divisible by R2.
The SO(3) rotational properties of the polynomials Eq. (12) are determined by the coupling 

of angular momenta L+ and L−; therefore Pd+d−
L+m+L−m−(X) decomposes into SO(3) spheri-

cal harmonics with L ranging from |L+ − L−| to L+ + L−. By forming linear combinations 
of polynomials Eq. (12) we define the following homogeneous “core polynomials”, that have 
good quantum numbers Q, L and m and maximal 6-dimensional hyper-angular momentum equal 
to K:

PKQ
(L+L−)L,m

(X) ≡
∑

m+,m−
C

L+L−L
m+m−mP

K+Q
2

K−Q
2

L+m+L−m−(X), (13)

where CL+L−L
m+m−m is an “ordinary” SO(3) Clebsch–Gordan coefficient.

In addition, in the definition Eq. (13), the following is required to hold (the motivation for this 
will be given below):

L+ + L− = L or L+ + L− = L + 1. (14)

These polynomials exist and are nonzero only when all of the exponents appearing in Eqs. (12)

and (13), i.e., K+Q
2 and K−Q

2 , are non-negative integers and all the Clebsch–Gordan coefficients 

and 3-dim spherical harmonics are nonvanishing. In particular, this implies that: K − Q, K+Q
2 −

L+ and K−Q
2 − L− are all even and nonnegative, m ≤ L and |L+ − L−| ≤ L ≤ L+ + L− (due 

to (14), the last requirement is relevant only when L+ = 0 or L− = 0). From this, it also follows 
that K ≡ L+ + L− (mod 2).

The core polynomials Eq. (13) have sharp values of quantum numbers Q, L and m irrespec-
tively of the condition Eq. (14). The condition in Eq. (14) is only necessary to ensure that the 

decomposition of PKQ
(L+L−)L,m

(X) into SO(6) hyper-spherical harmonics contains a component 

with the hyper-angular momentum K = K. The argument goes as follows. A 3-dim SO(3) spher-
ical harmonic polynomial ỸL

3,m(X) can be related to a symmetric tensor (ỸL
3,m)i1i2...iL of order 
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L, that is trace-free in every pair of indices, as ỸL
3,m(X) =∑i1i2...iL

(ỸL
3,m)i1i2...iLXi1Xi2 . . .XiL

(again, restricted to the unit hyper-sphere). Coupling of two polynomials ỸL+
3,m+(X

+) and 

ỸL−
3,m−(X

−) to yield a polynomial transforming as a representation with SO(3) angular mo-
mentum L < L+ + L− involves contracting indices in the product of the corresponding ten-
sors. On the other hand, simply contracting an index from (ỸL+

3,m+)
i1i2...iL+ with an index from 

(ỸL−
3,m−)

j1j2...jL− corresponds to a polynomial that is proportional to X+ ·X− = R2. This, in turn, 

means that the entire polynomial Eq. (13) would be proportional to R2 and thus its maximal 
value K in the decomposition would be less than K, which contradicts our original assumption.

The only allowed contraction that would not effectively lower the K value is a contraction 
with the Levi-Civita tensor, and such a contraction can be applied only once (two successive 
contractions of this sort are again equivalent to a direct contraction discussed above). Such a 
single contraction with the Levi-Civita tensor results in a polynomial that transforms w.r.t. spatial 
rotations as a vector from representation of angular momentum L = L+ +L− −1. Therefore, two 
distinct types of core polynomials exist: those not contracted at all, with L = L+ +L−, and those 
once contracted with Levi-Civita tensor, with L = L+ + L− − 1. Due to K ≡ L+ + L− (mod 2)

the two possibilities are distinguished by K−L ≡ 0 (mod 2) and K−L ≡ 1 (mod 2), respectively, 
and in general:

L+ + L− = L + (K − L (mod 2)). (15)

The core polynomials PKQ
(L+L−)L,m(X), when restricted to a unit hyper-sphere, are thus equal 

to a linear combination of 6-dim hyper-spherical harmonics YKQv
L,m (X), with v accounting for 

possible multiplicity:

1

RK
PKQ

(L+L−)L,m
(X) =

K∑
K=0

∑
v

cK,vYKQv
L,m (X), (16)

where at least one cK,v is nonzero. Let V K denote the space spanned by all spherical harmonics 
having hyper-angular momentum less or equal to K, and V K

QLm denote a subspace of V K with 

given values of Q,L and m. Then, the functions { 1
RK

PKQ
(L+L−)L,m

(X)|K = 0, 1, 2, . . . , Kmax}, 
though not orthonormal, span the subspace V Kmax

QLm . (It can be checked that the number of all core 

polynomials with given K equals (K+3)!(K+2)

12K! , equal to the number of spherical harmonics with 

K = K, Ref. [5].) Conversely, the 6-dim hyper-spherical harmonics can be obtained from the core 
polynomials by a procedure of orthogonalization and normalization, such as the Gram–Schmidt 
one.

4. Harmonic polynomials

As mentioned earlier, the core polynomials Eq. (13) are not harmonic, as they contain com-
ponents with K < K belonging to some V K−1. We introduce a shorthand notation Pa(X) for the 

polynomials PKQ
(L+L−)L,m(X) with fixed given values of Q,L,m, with K < K, and L+, L− taking 

all of the allowed values. That is: V K−1
QLm = span{Pa(

X
R

), a = 1, 2, . . .dim(V K−1
QLm)}.
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The harmonic polynomial PH
KQ
(L+L−)L,m(X) can be obtained from the core polynomial 

PKQ
(L+L−)L,m(X) by removing the components that belong to V K−1

QLm:

PH
KQ
(L+L−)L,m(X) =PKQ

(L+L−)L,m(X) −
∑
a

caR
K−KaPa(X), (17)

with ca being the coefficients to be deduced from orthogonality conditions:〈
Pa

∣∣∣PH
KQ
(L+L−)L,m

〉
= 0. (18)

These conditions readily lead to:

ca =
∑

b

(M−1)abAb, with: Mab ≡
〈
Pa

∣∣∣Pb

〉
, Aa ≡

〈
Pa

∣∣∣PKQ
(L+L−)L,m

〉
. (19)

The above scalar product is naturally given by the integration over a unit 6-dimensional hyper-
sphere:

〈
Pa

∣∣∣Pb

〉
≡
∫
	

P∗
a (

X

R
)Pb(

X

R
)d	. (20)

This is, in turn, can be calculated by using the following formula (cf. Eq. (A.4) in Appendix A) 
for integration over the sphere of monomials in xμ:

∫
	

1

R6
x

m1
1 x

m2
2 · · ·xm6

6 d	 = 2

∏6
μ=1

1+(−1)mμ

2 �(
mμ+1

2 )

�(3 +∑μ mμ)
, (21)

where �(n) is the usual gamma function.
It is now convenient to introduce a “spherical” version of the X± coordinates:

X
(±)
± ≡ X

(±)
1 ± X

(±)
2 , X

(±)
0 ≡ X

(±)
3 , (22)

as they are particularly suitable for explicit writing of the core polynomials PKQ
(L+L−)L,m(X) for 

m = L:

PKQ
(L+L−)L++L−,L++L−(X) = |X+|K+Q

2 −L+ |X−|K−Q
2 −L− (X++)L+(X−+)L− , (23)

PKQ
(L+L−)L++L−−1,L++L−−1(X)

=
√

2L+L−
L++L− |X+|K+Q

2 −L+ |X−|K−Q
2 −L−

(
(X++)L+(X−+)L−−1(X−

0 )

− (X++)L+−1(X+
0 )(X−+)L−

)
, L+,L− 
= 0, (24)

where |X±|2 = X± ·X± = X±+X±− + (X±
0 )2. Note that the formula Eq. (23) is only relevant when 

K ≡ L (mod 2), and the formula Eq. (24) should be used otherwise.
Expressions for the scalar products of core polynomials with forms of Eq. (23) and Eq. (24)

turn out to be relatively simple, due to the following identity (derivable from Eq. (21), or 
Eq. (A.4) in Appendix A):
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∫
	

|X+|k+|X−|k−
(X++)k

++ (X+−)k
+− (X+

0 )k
+
0 (X−+)k

−+ (X−−)k
−− (X−

0 )k
−
0 d	 =

2π3

(2 +
∑

k

2 )!

k+
2∑

l=0

( k+
2
l

)( k−
2

l + k++ − k−−

)
22l+k+++k+− (l + k++)!(l + k+−)!(k+ − 2l + k+

0 )! · (25)

δ(
∑

k+,
∑

k−) · δ(k++ + k−+, k+− + k−−),

where 
∑

k± = k± + k±+ + k±− + k±
0 and 

∑
k =∑k+ +∑k−, while δ(a, b) = δab is the Kro-

necker delta symbol. The formula allows us not only to directly calculate the scalar products 
of the core polynomials, but also any spherical integral of the product of arbitrarily many core 
polynomials. The result is particularly simple if all polynomials in the product have the property 
that m = L.

Furthermore, due to the SO(3) rotational symmetry reasons (i.e., due to the Wigner–Eckart 
theorem) the scalar products of two core polynomials must be independent of the magnetic quan-
tum number m, so that by combining Eqs. (23), (24) and (25) we may write the result in full 
generality:〈

PK
′
Q′

(L′+L′−)L′,m′
∣∣∣PKQ

(L+L−)L,m

〉
= δmm′

〈
PK

′
Q′

(L′+L′−)L′,L′
∣∣∣PKQ

(L+L−)L,L

〉

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π3δQQ′ δJJ ′ δmm′
(2+ K+K′

2 )!
∑ k+

2
l=0 22l+L++L′−

( k+
2
l

)×
( k+

2 +L+−L′+
k+
2 −l

)
(l + L+)!(l + L′−)!(k+ − 2l)!

if K − L ≡ K
′ − L′ ≡ 0 (mod 2)

2π3δQQ′ δJJ ′ δmm′
(2+ K+K′

2 )!
2
√

L+L−L′+L′−
1+L

∑ k+
2

l=0 22l+L++L′−
( k+

2
l

)×[( k+
2 +L+−L′+

k+
2 −l

)
(l + L+ − 1)!(l + L′− − 1)!(k+ − 2l + 1)! l+L+1

2

−( k+
2 +L+−L′+

k+
2 −l−1

)
(l + L+)!(l + L′−)!(k+ − 2l)!

]
if K − L ≡ K

′ − L′ ≡ 1 (mod 2)

0 if K − L 
≡ K
′ − L′ (mod 2),

(26)

where k+ = K+K
′

2 + L+ − L′− and it is implied that 
(
m
n

) ≡ 0 whenever n < 0 or n > m. Scalar 
product of a polynomial of form Eq. (23) with a polynomial of form Eq. (24) always yields zero: 
this case corresponds to K−L 
≡ K

′ −L′ (mod 2) which, combined with requirement that L = L′
leads to K+K

′ ≡ 1 (mod 2). And, as the integration of any polynomial of odd order over the unit 
hyper-sphere yields zero, we conclude that the scalar product (26) when K−L 
≡ K

′ −L′ (mod 2)

is also zero.
Relations Eqs. (17), (19) and (26) combined give us expressions for PH

KQ
(L+L−)L,m(X) – the 

homogeneous harmonic polynomials of order K, that are eigenfunctions of the 6-dim hyper-
angular momentum and that have well defined values of quantum numbers Q, L and m. In 
addition to these 4 quantum numbers that are eigenvalues of the corresponding Casimir or Cartan 
subalgebra operators, harmonic polynomials PH

KQ
(L+L−)L,m(X) are also labeled by two numbers 

L+ and L−, only one of which is independent due to the relation Eq. (15). Existence of this 
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additional freedom demonstrates the nontrivial multiplicity of the totally symmetric tensorial 
representations of SO(6) w.r.t. decomposition into U(1) ⊗ SO(3)rot subrepresentations. As the 
L+ is non-negative; for any given values of K, Q and L the value of L+ can only change in 
steps of 2; it cannot exceed L + 1; and it cannot take the values of 0 and L + 1 within the 
same degenerate subspace, therefore the maximal multiplicity degree that can occur for a given 
L is [L/2] + 1, where [n] is the integer part of n. The same holds for L−. That implies that a 
non-trivial multiplicity can occur only for harmonics with L ≥ 2.

Naturally, either L+ or L− can be taken to label this multiplicity, though more convenient 
choices, both mathematically and physically, will be discussed below. A basic option for the 
multiplicity label is to introduce the difference

�l ≡ L+ − L−, (27)

(not to be confused with �Lij in Eq. (9)) as the multiplicity label, which is essentially the same 
as choosing L+, or L−, for that purpose, yet �l is more convenient, as we shall explain shortly. 
In this sense, the harmonic polynomials obtained in the previous section would now be labeled 
as PH

KQ
(�l)L,m(X).

5. Multiplicity of degenerate harmonic polynomials

In general, two harmonic polynomials PH
KQ
(�l)L,m

(X) and PH
KQ

(�l′)L,m
(X), that differ only in 

the multiplicity label, are not orthogonal. An orthonormal basis has to be introduced in the de-
generate subspace of harmonic polynomials with given K, Q, L and m, and this can be done in 
(infinitely) many ways. For example, the Gram–Schmidt ortho-normalization procedure can be 
carried out, choosing as the first vector the normalized (in the sense of Eq. (20)) harmonic polyno-
mial with the highest �l in this subspace, and then taking the polynomial with the next-to-highest 
value of �l, subtracting from it a component proportional to the first vector and normalizing it, 
and so on.

In this process, care should be taken to preserve the symmetry between X+ and X− coor-
dinates, viz. of complex conjugation, that had been present thus far – we shall demonstrate in 
Section 7 that this symmetry is directly related to the permutational symmetry S2. In practice 
this means that if we begin the orthonormalization procedure with the highest �l value in the 
subspaces with Q > 0, then we must start with the lowest �l value in subspaces with Q < 0
(this is due to �l → −�l when X+ ↔ X−). In the limiting case of Q = 0, the optimal strategy 
is firstly to introduce symmetric and antisymmetric combinations of harmonic polynomials with 
opposite values of �l:

PH
K,0
(|�l|,±)L,m(X) ≡PH

K,0
(�l)L,m(X) ± (−1)K−LPH

K,0
(−�l)L,m(X). (28)

Of these polynomials, those labeled with the plus sign will turn out to be symmetric w.r.t. trans-
position of particles 1 and 2, whereas those labeled with the minus sign will be asymmetric – and 
the factor of (−1)K−L will be necessary to establish this property, see Eq. (65) in Section 7. In 
turn, this implies that for Q = 0 it is sufficient to perform Gram–Schmidt procedure separately 
on these two subsets – since the polynomials from different subsets are mutually orthogonal, and 
that no ortho-normalization procedure is necessary when multiplicity degree equals (only) two.

Note that the harmonic polynomials that are nondegenerate w.r.t. numbers K, Q, L and m
should also be normalized, as they are already orthogonal to all other harmonic polynomials 
Eq. (17).



I. Salom, V. Dmitrašinović / Nuclear Physics B 920 (2017) 521–564 533

The set of polynomials obtained by such an ortho-normalization procedure, when restricted 
to a unit hyper-sphere, constitutes a system of SO(6) hyper-spherical harmonics that we will 
denote as YKQ�l

L,m (X), and is labeled by four quantum numbers: K, Q, L, and m, together with 
an additional multiplicity label �l. Advantages of this method for multiplicity labeling are the 
following: i) all of the harmonics can be expressed in analytical form; ii) multiplicity lifting pro-
cedure is computationally efficient, since it relies only on Gram–Schmidt ortho-normalization; 
iii) the label �l takes only integer values.

Nevertheless, from the physical viewpoint, it is often convenient to choose a basis that di-
agonalizes some physically significant operator in this degenerate subspace – e.g. the potential 
energy. Any operator V that has no degenerate eigenvalues when reduced to this subspace, can 
be used for this purpose. Moreover, there are certain operators commonly used for multiplicity 
lifting in the literature (in the context of SO(3) ⊂ SU(3) multiplicity) and sticking to one of 
these choices is good from a compatibility aspect (some general results, such as the values of 
Clebsch–Gordan coefficients, can then be directly used here – cf. Section 8.3).

To address this approach in full generality, we firstly introduce an abbreviated single-letter no-
tation for labeling harmonic polynomials spanning a given degenerate subspace V K,Q

L,m : {PH a|a =
1, 2, . . .dimV

K,Q
L,m }, and let:

Vab ≡ 〈PH a|V |PH b〉 , Mab ≡
〈
PH a

∣∣∣PH b

〉
. (29)

The goal is to find an orthonormal basis of hyper-spherical harmonic polynomials Ỹa(X) =∑
b cabPH b that diagonalizes V :〈

Ỹa

∣∣∣Ỹb

〉
= δab, (30)〈

Ỹa

∣∣∣V ∣∣∣Ỹb

〉
= δabva. (31)

From Eq. (30) it follows:

c†Mc = I, (32)

where I is a unit matrix and † denotes conjugate transpose matrix. As the matrix M is hermitian, 
it follows that matrix (

√
Mc) is a unitary matrix, that we shall denote as U :

U ≡ √
Mc, U†U = I. (33)

From the condition Eq. (31) we know that the matrix c†Vc = U†(M− 1
2 VM− 1

2 )U has to be diag-

onal, i.e., a unitary matrix U can be found that diagonalizes the hermitian matrix (M− 1
2 VM− 1

2 ):

U−1(M− 1
2 VM− 1

2 )U = diag(v1, v2, . . . vdim). (34)

Therefore, resolving the multiplicity problem reduces to finding a unitary matrix U that sat-
isfies Eq. (34); thereafter the hyper-spherical harmonic polynomials, labeled by K, Q, L, m and 
va , are calculated as:

Ỹa(X) =
∑

b

(M− 1
2 U)abPH b. (35)

Note that the same procedure, when applied to a non-degenerate one-dimensional subspace V K,Q
L,m

simply normalizes the corresponding harmonic polynomial.
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Polynomials ỸKQv
L,m (X) obtained by this procedure, when reduced to the unit hyper-sphere 

– that is, when divided by RK, give a set of orthonormal SO(6) hyper-spherical harmonics 
YKQv

L,m (X), labeled by the 6-dimensional hyper-angular momentum K, the eigenvalue of the Q
operator, the total (orbital) angular momentum of the system L, the projection m of the total 
(orbital) angular momentum and the eigenvalue of the reduced V operator:

YKQv
L,m (X) = ỸKQv

L,m (X)/RK. (36)

In the context of the SO(3) ⊂ SU(3) multiplicity, the operator:

VJQJ ≡
∑
ij

LiQijLj (37)

(where Li = 1
2εijkLjk and Qij is given by Eq. (8)) has often been used in the literature, see 

Refs. [43–47], to label the multiplicity. This operator has the desirable property that it commutes 
both with the angular momentum Li , and with the “democracy rotation” generator Q:[

VJQJ ,Li

]= 0; [
VJQJ ,Q

]= 0.

Of course, this is not the only operator that commutes with Li , and with Q, so there is a certain 
degree of freedom left in this choice that can, perhaps, be used so as to optimize the h.s. har-
monics to a particular application, see e.g. Ref. [43–47]. For example, the area of the triangle 
“operator” |λ × ρ| commutes with Li , and Q: [Q, |λ × ρ|] = 0, [Li, |λ × ρ|] = 0, and can also 
be used for this purpose. We shall show below that these two operators have “opposite” transfor-
mation properties under certain permutations (transpositions) and, in some sense, represent the 
only two possible classes of such operators.

In Appendix C we list the hyper-spherical harmonics labeled by the operator VJQJ , up to 
K ≤ 6, and compare them with the few explicit harmonics that already exist in the literature, 
Ref. [5]. There is only a handful of harmonics with non-trivial multiplicity in this range of 
K-values, so they can be readily calculated and examined with the alternative degeneracy-lifting 
(“area”) operator. The result is that the two multiplicity-lifting operators are for all practical 
purposes equivalent. Other examples of degeneracy-lifting operators have been discussed in 
Refs. [45–47], irrespectively of their geometrical meaning in the three-body problem.

We note that no solution to Eq. (34) is unique and that this arbitrariness directly corresponds 
to the freedom of choosing multiplicative phase factors for the obtained basis functions. This 
arbitrariness should be fixed by adopting a definite phase convention: e.g. in the explicit calcula-
tions in the remainder of this paper, we shall adjust the overall sign of hyper-spherical harmonic 
in Eq. (35) so that the projection of each vector Ỹa(X) on the sum 

∑
b PH b is non-negative, i.e.,∑

b

〈
PH b

∣∣∣Ỹa(X)
〉
≥ 0. (38)

It should be clear that the process of using an operator to lift degeneracy amounts to the 
diagonalization of the chosen operator in a finite-dimensional space. That, in turn, boils down 
to solving an algebraic eigenvalue equation, that can be solved in closed form (“surds”) only so 
long as the order of the equation is less than five (due to Galois’ theory) and that solutions to 
higher-order degeneracy-lifting problems must necessarily be numerical.

The choice of optimal degeneracy-lifting operator(s) is a problem in SU(3) group theory that 
has been essentially solved in Ref. [47], where it was noted that “it is not possible to choose a 
complete set of operators whose eigenvalues are all integers and whose eigenfunctions can be 
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constructed analytically. The price we have to pay for having orthonormal basis functions and a 
physically meaningful operator, providing the missing label in the SU(3) ⊃ O(3) scheme, and 
thus providing selection rules, etc., is that many of the computations involved will be numerical 
by necessity.” On the other hand, if we give up insisting on a “physically meaningful operator” to 
label the states, we can account for the multiplicity by the value of �l, Eq. (27), and retain both 
the algebraic form of hyper-spherical harmonics and an integer-valued degeneracy-lifting label.

Thus, with the concept of degeneracy-lifting clarified, we see that the entire construction of 
three particle hyper-spherical harmonics can be automatized/programmed using (several) com-
mercially available computer software codes for symbolic computation, with the understanding 
that, if using operator approach for multiplicity lifting, then for sufficiently high value(s) of 
harmonic labels some of the results will necessarily be numerical. More specifically, maximal 
SO(3) ⊂ SU(3) multiplicity that occurs for a given K grows as [K/4] + 1 and for a given L
grows as [L/2] + 1. Effectively, this means that it is unavoidable to resort to numerical solutions 
only when K ≥ 16 and L ≥ 8, and even then not for all harmonics (to give some impression of 
these numbers, we note that there are 27132 hyperspherical harmonicas with K < 16).

Now that we have established a mathematical procedure for calculating SO(6) h.s. harmonics, 
in the next section we will treat in detail a few examples of this procedure. In particular, we shall 
illustrate the application of two different multiplicity lifting operators, so as to demonstrate the 
concept and to clarify the limitations on computability of arbitrary h.s. harmonics, imposed by 
the degeneracy problem, Ref. [46].

6. Examples of harmonic construction

In order to illustrate the procedure for obtaining the hyper-spherical harmonics described in 
this paper, we shall explicitly calculate several h.s. harmonics with two different degeneracy-
lifting operators.

For the purpose of this demonstration we look for hyper-spherical harmonics with quantum 
numbers K = 4, Q = 0 and L = 2, as this is the simplest case with nontrivial multiplicity. As 
for the quantum number m, we will first demonstrate how to obtain the harmonic function that 
corresponds to maximal value m = L, in this particular case m = 2. After that we will discuss 
how to obtain harmonics with arbitrary values of m, −L ≤ m ≤ L.

The first step is to calculate necessary core polynomials Eq. (13). There are two core polyno-

mials PKQ
(L+L−)L,m(X) with quantum numbers Q = 0, L = 2 and m = 2, that have K = 4:

P4,0
(2,0)2,2(X) = (X++

)2 ∣∣X−∣∣2 and P4,0
(0,2)2,2(X) = (X−+

)2 ∣∣X+∣∣2 . (39)

It can be easily checked that these are eigenfunctions of the operators Q, L2 ≡ 1
2

∑
LijLij and 

L3 ≡ L12. These are not eigenfunctions of the square of hyper-angular momentum, however, due 
to the appearance of additional terms on the right-hand-side of the Eqs. (40), (41):

K2P4,0
(2,0)2,2(X) = 4(4 + 6 − 2)P4,0

(2,0)2,2(X) − 16R2X++X−+, (40)

K2P4,0
(0,2)2,2(X) = 4(4 + 6 − 2)P4,0

(0,2)2,2(X) − 16R2X++X−+. (41)

The additional terms are identical, and proportional to the core polynomial P2,0
(1,1)2,2(X):

P4,0
(1,1)2,2(X) = X++X−+, (42)
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and this explicitly demonstrates the necessity of the procedure, described in section 4, to obtain 

the truly harmonic polynomials. The polynomial P2,0
(1,1)2,2(X) is also the only polynomial with 

quantum numbers Q = 0, L = 2 and m = 2 that has K < 4. In the notation of section 4 this means 
that in this case the space V K−1

QLm is one dimensional, and therefore that the calculation (highly) 
simplifies as the index a takes only one value.

In order to find the harmonic polynomial PH
4,0
(2,0)2,2(X) from the core polynomial P4,0

(2,0)2,2(X), 
we follow the projection procedure, Eq. (17) and use Eq. (26), to readily find:

M11 = π3

3
, (M−1)11 = 3

π3
, A1 = 4π3

15
, c1 = 4

5
, (43)

leading to

PH
4,0
(2,0)2,2(X) =P4,0

(2,0)2,2(X) − 4

5
R2P2,0

(1,1)2,2(X) = (X++
)2 ∣∣X−∣∣2 − 4

5
R2X++X−+. (44)

In an identical manner one obtains:

PH
4,0
(0,2)2,2(X) =P4,0

(0,2)2,2(X) − 4

5
R2P2,0

(1,1)2,2(X) = (X−+
)2 ∣∣X+∣∣2 − 4

5
R2X++X−+. (45)

Now it can be verified that these polynomials are indeed harmonic, in the sense that they satisfy 
the Laplace equation:

∇2PH
4,0
(2,0)2,2(X) = ∇2PH

4,0
(0,2)2,2(X) = 0 (46)

and that they are eigen-functions of the operator K2:

K2PH
4,0
(2,0)2,2(X) = 4(4 + 6 − 2)PH

4,0
(2,0)2,2(X),

K2PH
4,0
(0,2)2,2(X) = 4(4 + 6 − 2)PH

4,0
(0,2)2,2(X). (47)

Being harmonic and having good quantum numbers K, Q, L and m, these polynomials in-

deed represent the sought-after hyper-spherical harmonics, i.e. functions PH
4,0
(2,0)2,2(X)/R4 and 

PH
4,0
(0,2)2,2(X)/R4, reduced to the R = 1 unit sphere. The fact that there are two different polyno-

mials with the same set of numbers K, Q, L, m means that there is nontrivial multiplicity present.
These functions have certain shortcomings, however: first, these two functions are not mutu-

ally orthogonal:

〈
PH

4,0
(2,0)2,2(X)

∣∣∣PH
4,0
(0,2)2,2(X)

〉
= −8π3

225
. (48)

Secondly, these states are not normalized, as yet.
In order to obtain an ortho-normal basis of harmonic functions and to have the multiplicity 

labeled in some more precise way, we can follow one of the procedures laid out in section 5.
In the following we shall demonstrate three ways to label the multiplicity: i) by the difference 

�l in Sect. 6.1; ii) by the transposition-odd operator VJQJ , Eq. (37) in Sect. 6.2; and iii) by using 
the transposition-even area operator |ρ × λ| in Sect. 6.3. In Section 7 we discuss the particle 
permutation properties of the harmonics and show that the symmetric (even) and antisymmetric 
(odd) multiplicity-lifting operators are the only two relevant classes.
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6.1. �l as the multiplicity label

As this is a Q = 0 subspace, we will define symmetric and antisymmetric combinations 

Eq. (28) of the polynomials PH
4,0
(2,0)2,2(X) and PH

4,0
(0,2)2,2(X), that, after normalization, take 

form:

PH
4,0
(|�l|=2,+)2,2(X) =

3
(
−8R2X++ X−+ + 5

(
X−+
)2 ∣∣X+∣∣2 + 5

(
X++
)2 ∣∣X−∣∣2)

2
√

7π 3/2R4
(49)

PH
4,0
(|�l|=2,−)2,2(X) =

√
15
((

X−+
)2 ∣∣X+∣∣2 − (X++

)2 ∣∣X−∣∣2)
2π3/2R4

(50)

By virtue of different transformation properties w.r.t. transposition of first two particles, these 
combinations are now already mutually orthogonal, even without any Gram–Schmidt procedure 
(however, had the multiplicity degree been larger than 2 such a procedure would have been 
necessary). Once we have found and normalized these combinations, we can return to the labeling 
YKQ�l

L,m (X), where �l takes both positive and negative values:

Y4,0,�l=2
2,2 (X)

≡ 1√
2

(
PH

4,0
(|�l|=2,+)2,2(X) +PH

4,0
(|�l|=2,−)2,2(X)

)

=
−12

√
14R2X++X−+ +

√
105

(
11 + √

105
)(

X−+
)2 ∣∣X+∣∣2 +

√
105

(
11 − √

105
)(

X++
)2 ∣∣X−∣∣2

14π3/2R4
,

(51)

Y4,0,�l=−2
2,2 (X)

≡ 1√
2

(
PH

4,0
(|�l|=2,+)2,2(X) −PH

4,0
(|�l|=2,−)2,2(X)

)

=
−12

√
14R2X++X−+ +

√
105

(
11 − √

105
)(

X−+
)2 ∣∣X+∣∣2 +

√
105

(
11 + √

105
)(

X++
)2 ∣∣X−∣∣2

14π3/2R4
.

(52)

By using relation Eq. (25) we can also explicitly verify orthonormality of the obtained hyper-
spherical harmonics:∫

	

Y∗ 4,0,�l=2
2,2 (X)Y4,0,�l=−2

2,2 (X)d	 = 0,

∫
	

|Y4,0,�l=2
2,2 (X)|2d	 =

∫
	

|Y4,0,�l=−2
2,2 (X)|2d	 = 1. (53)

6.2. Harmonics with antisymmetric degeneracy lifting operator

Next we demonstrate the use the operator VJQJ in Eq. (37) to label the multiplicity. Combin-
ing Eqs. (7)–(8) and Eq. (25) we obtain the following values for matrices V and M , defined by 
Eqs. (29):
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V = 14π3

15

(−1 0
0 1

)
, M = 2π3

225

(
11 −4
−4 11

)
(54)

leading to

M− 1
2 = 1

2π3/2

√
15

7

⎛
⎜⎜⎝
√(

11 + √
105
) √(

11 − √
105
)

√(
11 − √

105
) √(

11 + √
105
)
⎞
⎟⎟⎠ ,

M− 1
2 VM− 1

2 = √
105

(−1 0
0 1

)
. (55)

As the matrix M− 1
2 VM− 1

2 is already diagonal (generally this is not so), the U matrix is trivial 
and from Eqs. (35), (36) we finally obtain the hyper-spherical harmonics:

Y4,0,
√

105
2,2 (X)

=

√
15
7

(
11 + √

105
)

2π3/2
PH

4,0
(2,0)2,2(X)/R4 +

√
15
7

(
11 − √

105
)

2π3/2
PH

4,0
(0,2)2,2(X)/R4

=
−12

√
14R2X++X−+ +

√
105

(
11 + √

105
)(

X−+
)2 ∣∣X+∣∣2 +

√
105

(
11 − √

105
)(

X++
)2 ∣∣X−∣∣2

14π3/2R4

(56)

Y4,0,−√
105

2,2 (X)

=

√
15
7

(
11 + √

105
)

2π3/2
PH

4,0
(0,2)2,2(X)/R4 +

√
15
7

(
11 − √

105
)

2π3/2
PH

4,0
(2,0)2,2(X)/R4

=
−12

√
14R2X++X−+ +

√
105

(
11 − √

105
)(

X−+
)2 ∣∣X+∣∣2 +

√
105

(
11 + √

105
)(

X++
)2 ∣∣X−∣∣2

14π3/2R4

(57)

We observe that two obtained hyper-spherical harmonics are identical to Y4,0,�l=2
2,2 (X) and 

Y4,0,�l=−2
2,2 (X).

6.3. Harmonics with symmetric degeneracy lifting operator

By an identical procedure, only taking this time operator V to be square of area of the sub-
tended triangle, we obtain the only two K = 4 h.s. harmonics with degeneracy:

Y4,0, 1
8

2,2 (X) =
√

15
((

X−+
)2 ∣∣X+∣∣2 − (X++

)2 ∣∣X−∣∣2)
2π3/2R4

(58)

which turns out to be antisymmetric w.r.t. particle transpositions, and

Y4,0, 47
280

2,2 (X) =
3
(
−8R2X++ X−+ + 5

(
X−+
)2 ∣∣X+∣∣2 + 5

(
X++
)2 ∣∣X−∣∣2)

2
√

7π 3/2R4
(59)
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which is symmetric under permutations.
Of course, these two h.s. harmonics have to be equal to the symmetric and antisymmetric 

combinations PH
4,0
(|�l|=2,+)2,2(λ, ρ) and PH

4,0
(|�l|=2,−)2,2(λ, ρ), and thus also equal to linear com-

binations of harmonics Y4,0,
√

105
2,2 and Y4,0,−√

105
2,2 (previously obtained by using VJQJ as the 

degeneracy-lifting operator). This is indeed the case:

Y4,0, 1
8

2,2 (λ,ρ) = PH
4,0
(|�l|=2,−)2,2(λ,ρ) = 1√

2

(
Y4,0,

√
105

2,2 (λ,ρ) −Y4,0,−√
105

2,2 (λ,ρ)
)

and

Y4,0, 47
280

2,2 (λ,ρ) = PH
4,0
(|�l|=2,+)2,2(λ,ρ) = 1√

2

(
Y4,0,

√
105

2,2 (λ,ρ) +Y4,0,−√
105

2,2 (λ,ρ)
)

.

6.4. Harmonics with m < L

Finally, as we have thus far presented an algorithm for the construction only of hyper-spherical 
harmonics with m = L, we should clarify how one can obtain the hyper-spherical harmonics with 
m < L. This can be done in (at least) two ways. One is to repeat the procedure above, this time 
starting from the core polynomials with some given value of m, such that m < L. However, 
in this case all of the intermediate expressions will be significantly more complicated. More 
optimal way is to find the corresponding hyper-spherical harmonic with m = L first and than to 
use lowering operators L− ≡ L1 − iL2 to obtain harmonics with lower values of m, following 
the well known recurrence formula:

L− YKQv
L,m (X) =√L(L + 1) − m(m − 1)YKQv

L,m−1(X). (60)

For example:

Y4,0,−√
105

2,1 (X) = L− Y4,0,−√
105

2,2 (X)/2

= 1

35π3/2R4

(
5

√
7

2
X−

0

((√
105 − 15

)
X−+
∣∣X+∣∣2 + 12R2X++

)

−5X+
0

(√
105

(
11 + √

105
)
X++
∣∣X−∣∣2 − 6

√
14R2X−+

))
. (61)

Clearly the spherical harmonics can also be expressed in terms of the initial variables, the 
Jacobi vectors, e.g.:

Y4,0,−√
105

2,2 (λ,ρ)

= 1

14π3/2
(
λ2

1 + λ2
2 + λ2

3 + ρ2
1 + ρ2

2 + ρ2
3

)2
×
(√

105
(

11 + √
105
)(

(λ1 − iρ1)
2 + (λ2 − iρ2)

2 + (λ3 − iρ3)
2
)

× (λ1 + i (λ2 + ρ1 + iρ2))
2 − 12

√
14 (λ1 + iλ2 − iρ1 + ρ2)

×
(
λ2

1 + λ2
2 + λ2

3 + ρ2
1 + ρ2

2 + ρ2
3

)
(λ1 + i (λ2 + ρ1 + iρ2)) +

√
105

(
11 − √

105
)
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× (λ1 + iλ2 − iρ1 + ρ2)
2
(
(λ1 + iρ1)

2 + (λ2 + iρ2)
2 + (λ3 + iρ3)

2
))

, (62)

by inverting definitions Eq. (6) and Eq. (22). By comparing the forms of Eq. (56) and Eq. (62)
it becomes clear that the expressions are much more compact when written in terms of spherical 
complex coordinates X±± ,X±

0 , Eq. (22).
Next, we turn to consider the permutation properties of these h.s. harmonics, which, in turn, 

fixes (some of) the phase ambiguities, and corroborates our basic claim stated in the title of this 
paper.

7. Permutation properties

From the viewpoint of applications of the three particle hyperspherical harmonics in physics, 
it is of some importance that the wave functions have simple and manifest transformation prop-
erties with respect to both the spatial rotations and permutations of the three particles. Of course, 
the rotational properties of the functions YKQv

L,m (λ, ρ) are manifestly given by the values of cor-
responding SO(3)rot labels L and m, so it is the permutation properties that must be established 
here.

Properties of functions YKQv
L,m (λ, ρ) under particle permutations are (readily) inferred from 

the (simple) transformation properties of the coordinates X±
i . Namely, under the transpositions 

(two-body permutations) {T12, T23, T31} of pairs (1, 2), (2, 3) and (3, 1), the Jacobi coordinates 
transform as:

T12 : λ → λ, ρ → −ρ,

T23 : λ → −1

2
λ +

√
3

2
ρ, ρ → 1

2
ρ +

√
3

2
λ, (63)

T31 : λ → −1

2
λ −

√
3

2
ρ, ρ → 1

2
ρ −

√
3

2
λ.

That induces the following transformations of complex coordinates X±
i :

T12 : X±
i → X∓

i , T23 : X±
i → e± 2iπ

3 X∓
i , T31 : X±

i → e∓ 2iπ
3 X∓

i . (64)

Note that Eqs. (63) imply that the transpositions Tij correspond to O(6) transformations of xμ

with detTij = −1, i.e. they form a set of (parity-like in odd-D spaces; though in D=6 the usual 
parity (i.e., the reflection of all 6 coordinates) transformation’s determinant equals +1) “reflec-
tion transformation” in the 6-D space and as such do not belong to SO(6) group of proper 
hyper-rotations. Such reflections generally lead to an appearance of phases, see below.

It follows from Eqs. (7)–(10) and Eq. (64) that none of the quantum numbers K, L and m
change under permutations of particles, whereas the value of the “democracy label” Q is inverted 
under all transpositions: Q → −Q. The fact that K is not changed by particle transpositions 
implies that the set of SO(6) hyper-spherical harmonics with given K also carry an irreducible 
representation of the entire O(6) group (and, in this sense, these functions are equally O(6)

hyper-spherical harmonics). Group-theoretically, change in the label Q is a consequence of the 
fact that the discrete group of permutations S3 is not a subgroup of the U(1) group generated by 
operator Q, but of the group O(2) = U(1) � S2 instead. The behavior of the multiplicity label v
under transpositions manifestly depends on the choice of the multiplicity-lifting operator V , but 
this choice is effectively reduced to the choice of the sign change of v under transpositions.
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To explain this, we first note that the set of even permutations of the three particles constitutes 
a discrete subgroup of the SO(6) group of hyper-rotations generated by Kμν : each transpo-
sition corresponds to an orthogonal matrix with determinant −1, so that the combination of 
even number of transpositions has determinant +1. More specifically, by comparing the ac-

tions on the 6-dimensional coordinates, it turns out that T12T23 = e
2iπQ

3 and T23T12 = e− 2iπQ
3 , 

as (11) and (64) yield T12T23X
±
i T23T12 = e

2iπQ
3 X±

i e− 2iπQ
3 . However, due to the requirement that 

multiplicity lifting operator V must commute with generator Q, we conclude that even permuta-

tions of particles must leave the operator V invariant: T12T23VT23T12 = e
2iπQ

3 Ve− 2iπQ
3 = V and 

T23T12VT12T23 = e− 2iπQ
3 Ve

2iπQ
3 = V . On the other hand, only one-dimensional irreducible rep-

resentations of permutation group S3 (i.e. symmetric and antisymmetric representation) have this 
property that the even permutations are mapped onto the unit operator, whereas the remaining 
two-dimensional (mixed) representation does not have this property.

In other words, this means that multiplicity lifting operator V itself can transform according 
to the one-dimensional antisymmetric representation of S3, or transform as the one-dimensional 
symmetric representation, or be a nontrivial linear combination of antisymmetric and symmetric 
components. We dismiss the third option (linear combinations) both on physical grounds, as 
there can hardly be physical motivation for the introduction of such an operator, and on practical 
grounds, as that choice would lead to unnecessarily complicated transformation properties. Put 
together, these two reasons render such a choice of operator inappropriate for multiplicity lifting. 
Therefore we consider only two choices for the multiplicity-lifting operator: a) operators that 
are antisymmetric under permutations, i.e., TijVTij = −V ; and b) the symmetric ones under 
permutations, i.e., TijVTij = V . For example, the VJQJ operator is of the antisymmetric type, 
whereas the triangle area operator is a representative of the symmetric type.

In conclusion, the action of a single transposition Tij on the label v of a permutation sym-
metric h.s. harmonic can lead at most to a (minus) sign for the multiplicity label: v → ±v. In 
the next subsection, we shall also show that only the antisymmetric degeneracy-lifting operators 
lead to a completely unambiguous set of permutation properties of h.s. harmonics.

As far as the permutation properties are concerned, the choice of �l, Eq. (27), for the mul-
tiplicity label v is no different than using eigenvalues of any antisymmetric multiplicity lifting 
operator, because the value of �l = L+ −L− (obviously) changes the sign upon the interchange 
of X+ and X−.2 Therefore, the case of using �l to label multiplicity need not be treated sepa-
rately, as it is already included in the case of a general antisymmetric multiplicity lifting operator.

Apart from the changes in labels, transpositions of two particles generally also result in the 
appearance of an additional phase factor multiplying the hyper-spherical harmonic. For values 
of K, Q, L and m with no multiplicity, the transformation properties of h.s. harmonics under 
(two-particle) particle transpositions coincide with the corresponding properties of the core poly-
nomials, so that Eq. (13) and Eq. (64) readily lead to:

T12 : YKQv
L,m (λ,ρ) → (−1)K−LYK,−Q,v′

L,m (λ,ρ),

T23 : YKQv
L,m (λ,ρ) → (−1)K−Le

2Qiπ
3 YK,−Q,v′

L,m (λ,ρ), (65)

T31 : YKQv
L,m (λ,ρ) → (−1)K−Le− 2Qiπ

3 YK,−Q,v′
L,m (λ,ρ),

2 The fact that an operator with eigenvalues that exactly match the values �l cannot be (easily) written down, does 
not change anything in principle, because such an operator V�l can always be formally defined by its action on the 
hyperspherical harmonics: V�lYKQ�l

L,m
(X) = �lYKQ�l

L,m
(X).
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where v′ is the transposition-transformed value of v: v′ = Tij (v). We note that the phase factor 
(−1)K−L in Eqs. (65) comes about from the transformation properties of the Clebsch–Gordan 
coefficient CL+L−L

m+m−m in Eq. (13) under the replacement L+, m+ ↔ L−, m−, induced by the trans-

formation X+
i ↔ X−

i : CL−L+L
m−m+m = (−1)L++L−−LC

L+L−L
m+m−m and (−1)L++L−−L = (−1)K−L due 

to Eq. (15).

7.1. Irreducible representations of the permutation group

There are three distinct irreducible representations of the S3 permutation group – two one-
dimensional (the symmetric S and the antisymmetric A ones) and a two-dimensional (the mixed 
M one). In order to determine to which representation of the permutation group any particular 
h.s. harmonic YKQv

L,m (λ, ρ) belongs, we start by considering multiplicity free cases.

7.1.1. Multiplicity-free case
When Q = 0, we can see from Eq. (65) that the action of transpositions reduces to

Tij : YK,0,v
L,m (λ,ρ) → (−1)K−LYK,0,v

L,m (λ,ρ) (66)

We obtained this relation by replacement v′ = v, which necessarily follows from the “multiplic-
ity-free” assumption, i.e. the assumption than numbers K, Q, L and m uniquely specify this h.s. 
harmonic (in particular, v = v′ is always true for permutation-symmetric V , whereas here it 
holds only as v = v′ = 0 for permutation-antisymmetric V). Thus, multiplicity-free h.s. harmon-
ics YK0v

L,m(λ, ρ) belong either to the symmetric (S) representation of S3, for even values of K −L, 
or to the antisymmetric (A) representation, for odd values of K − L.

When Q 
= 0, the action of permutations on h.s. harmonics is reduced to two-dimensional 

subspaces spanned by pairs of harmonics 
{
YKQv

L,m (λ,ρ),YK,−Q,v′
L,m (λ,ρ)

}
, as can be seen from 

Eq. (65). In this basis, the three transposition operators of Eq. (65) have the following matrix 
representations:

T12 → (−1)K−L

(
0 1
1 0

)
,T23 → (−1)K−L

(
0 e

2iπQ
3

e− 2
3 iπQ 0

)
,

T31 → (−1)K−L

(
0 e− 2

3 iπQ

e
2iπQ

3 0

)
. (67)

For Q 
≡ 0 (mod 3), this representation of the permutation group S3 is irreducible, therefore such 
h.s. harmonics belong to two dimensional mixed representation.

For Q ≡ 0 (mod 3), this 2 ×2 matrix representation reduces to two one-dimensional represen-
tations, one of which is symmetric and the other antisymmetric; the representations are spanned 
by the following pair of linear combinations of the harmonics:

Tij : 1√
2

(
YKQv

L,m (λ,ρ) +YK,−Q,v′
L,m (λ,ρ)

)

→ (−1)K−L 1√
2

(
YKQv

L,m (λ,ρ) +YK,−Q,v′
L,m (λ,ρ)

)
, (68)
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Tij : 1√
2

(
YKQv

L,m (λ,ρ) −YK,−Q,v′
L,m (λ,ρ)

)

→ (−1)K−L+1 1√
2

(
YKQv

L,m (λ,ρ) −YK,−Q,v′
L,m (λ,ρ)

)
. (69)

7.1.2. Cases with multiplicity
When there is a (nontrivial) multiplicity of h.s. harmonics with a given set of quantum num-

bers K, Q, L, m, then the transformation properties under permutations clearly depend also on 
the choice of multiplicity lifting operator V .

As explained above, there are two types of admissible choices for the multiplicity-lifting oper-
ator: a) the antisymmetric ones; and b) the symmetric ones under permutations. For both of these 
types, the relations Eqs. (65) still hold with v′ = −v and v′ = v, respectively, albeit possibly with 
additional phase factors on the right-hand sides of Eqs. (65). These additional phases can be, in 
principle, introduced by multiplicity lifting procedure (Section 5), and hence the transformation 
properties in cases with multiplicity can no longer be inferred from the corresponding properties 
of the core polynomials.

However, these possible additional phase factors can be absorbed into the definition of h.s. 
harmonics, i.e. into the phase convention, in all cases, except one: when both the operator V is 
symmetric and Q = 0. Only in this one case of nontrivial multiplicity with v′ = v does the same 
h.s. harmonic appear on both sides of Eqs. (65), i.e., Eqs. (65) then lead to Eq. (66) with the 
aforementioned phase factor eiφ on the righthand side:

Tij : YK0v
L,m(λ,ρ) → eiφ(−1)K−LYK0v

L,m(λ,ρ), (70)

and it is clear that no redefinition of YK0v
L,m(λ, ρ) can remove this factor. Due to idempotency of 

transpositions, this phase factor eiφ can be either +1 or −1. In the former case the h.s. harmonic 
obtains under transpositions a factor of (−1)K−L, and of (−1)K−L+1 in the latter, but which one 
of the two cannot be established without providing further details about the chosen operator V .

Exactly such an example was illustrated in the Section 6.3: a priori – i.e. based solely on 

the values of the labels – it is not possible to determine which one of the h.s. harmonics Y4,0, 1
8

2,2

and Y4,0, 47
280

2,2 in Eqs. (58), (59) belongs to the symmetric and which one to the antisymmetric 
representations of S3.

In all other cases (i.e. apart from the case of symmetric degeneracy-lifting operator V at 
Q = 0) the same reasoning as in Eqs. (67)–(69) holds and we again conclude that for Q 
≡ 0
(mod 3), the h.s. harmonics belong to the mixed representation of S3, whereas for Q ≡ 0 (mod 3) 
the two linear combinations Eq. (68) and Eq. (69) belong to the one-dimensional representations, 
acquiring, respectively, factor of (−1)K−L and (−1)K−L+1 under transpositions.

7.1.3. Summary of the permutation properties
In order to summarize the above results it is convenient to introduce the following linear 

combinations of the h.s. harmonics, which are no longer eigenfunctions of Q operator, but are 
instead eigenfunctions of transposition T12:

YK|Q|v
L,m,±(λ,ρ) ≡ 1√

2

(
YK|Q|v

L,m (λ,ρ) ± (−1)K−LYK,−|Q|,v′
L,m (λ,ρ)

)
. (71)
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The normalization factor 1√
2

ought to be changed to 1
2 in the cases when the both terms in the 

bracket are equal (instead of orthogonal) and do not cancel each out.
Apart from the specific case when V is symmetric under permutations, the multiplicity is 

nontrivial, and Q = 0 (and when the conclusions further depend on the details of the operator V), 
the following holds:

1. the transposition T12 is a pure sign: T12 : YK|Q|v
L,m,±(λ, ρ) → ±YK|Q|v

L,m,±(λ, ρ),

2. for Q 
≡ 0 (mod 3), the harmonics YK|Q|v
L,m,±(λ, ρ) belong to the mixed representation M,

3. for Q ≡ 0 (mod 3), the harmonic YK|Q|v
L,m,+(λ, ρ) belongs to the symmetric representation S 

and YK|Q|v
L,m,−(λ, ρ) belongs to the antisymmetric representation A.

Note that the above statements also implicitly contain our previous conclusions about the behav-
ior of Q = 0 multiplicity-free harmonics Eq. (66), and thus summarize all of the previous results 
specifying the representation of S3 to which any given harmonic belongs.

Above, we have tacitly assumed that the phase convention, i.e., the choice of how to fix 
the otherwise arbitrary phases of harmonics, obeys Eq. (65). This assumption is satisfied in the 
(specific) case of the multiplicity-resolving operator Eq. (37) together with the phase conven-
tion, Eq. (38): VJQJ is antisymmetric (which is readily derived from Eq. (7) and Eq. (8)), thus 
any transposition simply flips the sign of v: v′ = −v, and the relations Eqs. (65) hold in full 
generality. q.e.d.

8. Matrix elements of SO(6) harmonics

In applications to the quantum mechanical three-body problem, Ref. [50], one often needs to 
know the SO(6) hyper-angular matrix elements of the form

〈YK′′
[m′′](	5)|YKQv

00 (α,φ)|YK′
[m′](	5)〉 (72)

This kind of integral can be readily evaluated using formulas from Appendix A so long as the HS 
harmonics YK′

[m′](	5) are explicitly known as polynomials of the integration variables, with the 
result expressed in terms of � function, see Eq. (A.4), see Tables 1 and 2. By the procedure laid 
out in the previous sections, it is possible to find the required polynomial expressions and thus 
to evaluate matrix elements of the type shown in Eq. (72) yielding algebraic numbers whenever 
the multiplicity of the hyperspherical harmonics with equal K, Q and L is less than five3 or the 
integer �l is used as a multiplicity label, as already explained in Sect. 5.

In a great number of practical applications, however, there is no need to calculate explicitly the 
h.s. harmonics, apart from evaluating matrix elements of the form shown in Eq. (72). As the cal-
culation of h.s. harmonic functions, as well as the application of the formulas from Appendix A, 
can be considerably involved for higher values of K, it is very useful to have some more direct 
method for evaluation of such matrix elements involving three h.s. harmonics. In this section we 
shall therefore discuss matrix elements Eq. (72) per se, both in the SO(6) and SU(3) context, 
finally evaluating them as a closed form expression, apart from a single SU(3) Clebsch–Gordan 
coefficient.

3 There are alleviating circumstances here that sometimes allow algebraic solutions in cases with multiplicities higher 
than five, e.g. due to discrete S3 numbers in Q = 0 cases, or in cases discussed in Sects. 3. and 4. of Ref. [46].
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Table 1
The values of the three-body potential hyper-angular diagonal matrix elements 〈 Y4,|0|,0

0,0,+ 〉ang, 〈 Y6,|6|,0
0,0,+ 〉ang and 

〈 Y8,|0|,0
0,0,+ 〉ang, for K ≤ 4 states (for all allowed orbital waves L). The correspondence between the S3 permutation group 

irreps. and SU(6)FS symmetry multiplets of the three-quark system: S ↔ 56, A ↔ 20 and M ↔ 70. The table values are 
independent of the angular moment projection m.

K (K, |Q|,L, ν,±) [SU(6),LP ] π
√

π〈Y4,|0|,0
0,0,+ 〉ang π

√
2π〈Y6,|6|,0

0,0,+ 〉ang π
√

π〈Y8,|0|,0
0,0,+ 〉ang

2 (2, |2|,0,0,±) [70,0+] 1√
3

0 0

2 (2, |0|,2,0,+) [56,2+]
√

3
5 0 0

2 (2, |2|,2,−3,±) [70,2+] − 1
5
√

3
0 0

2 (2, |0|,1,0,−) [20,1+] − 1√
3

0 0

3 (3, |3|,1,−1,−) [20,1−] 1√
3

−1 0

3 (3, |3|,1,−1,+) [56,1−] 1√
3

1 0

3 (3, |1|,1,3,±) [70,1−] 0 0 0

3 (3, |1|,2,−5,±) [70,2−] − 1√
3

0 0

3 (3, |1|,3,−2,±) [70,3−] 5
7
√

3
0 0

3 (3, |3|,3,−6,+) [56,3−] −
√

3
7

2
7 0

3 (3, |3|,3,−6,−) [20,3−] −
√

3
7 − 2

7 0

4 (4, |4|,0,0,±) [70,0+]
√

3
2 0 1

2
√

5

4 (4, |0|,0,0,+) [56,0+] 0 0 2√
5

4 (4, |2|,1,2,±) [70,1+] 0 0 − 1√
5

4
(

4, |0|,2,
√

105,+
)

[56,2+] − 12
√

3
35 0

√
5

7

4
(

4, |0|,2,
√

105,−
)

[20,2+] 0 0 − 1√
5

4 (4, |2|,2,2,±) [70,2+] 4
√

3
35 0

√
5

7

4 (4, |4|,2,−3,±) [70′,2+] 2
√

3
7 0 − 1

7
√

5

4 (4, |2|,3,−13,±) [70,3+] − 5
√

3
14 0 1

14
√

5

4 (4, |0|,3,0,−) [20,3+] − 3
√

3
14 0 −

√
5

14

4 (4, |0|,4,0,+) [56,4+] 5
√

3
14 0 3

14
√

5

4 (4, |2|,4,−5,±) [70,4+] 3
√

3
14 0 −

√
5

42

4 (4, |4|,4,−10,±) [70′,4+] − 3
√

3
14 0 1

42
√

5

8.1. Some matrix elements and their properties

Decomposition into hyperspherical harmonics with manifest permutation properties highly 
simplifies solving of Schrödinger’s equation. The benefits are most notable when the three-body 
potential is permutation symmetric. The decomposition of any such potential into h.s. harmonics 
has a low number of nonzero components due to the permutation symmetry constraints: e.g. up 
to K ≤ 11 the only h.s. harmonics that can appear in such decomposition are Y0,|0|,0

0,0,+ , Y4,|0|,0
0,0,+ , 

Y8,|0|,0
0,0,+ and Y6,|6|,0

0,0,+ . In Tables 1 and 2, we show the nonzero matrix elements between states of 
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Table 2
The values of the off-diagonal matrix elements of 
the hyper-angular part of the three-body potential 
π

√
2π〈[SU(6)f , LP

f
]| Y6,|6|,0

0,0,+ |[SU(6)i , LP
i

]〉ang, for 
various K = 4 states (for all allowed orbital waves L).

K [SU(6)f ,LP
f

] [SU(6)i ,L
P
i

] π
√

2π〈Y6,|6|,0
0,0,+ 〉ang

4 [70,2+] [70′,2+] 6
7

√
6
5

4 [70′,2+] [70,2+] 6
7

√
6
5

4 [70,4+] [70′,4+] 8
21

4 [70′,4+] [70,4+] 8
21

4 [20,L+] [20,L+] 0
4 [56,L+] [56,L+] 0
4 [20,L+] [56,L+] 0

same K, K ≤ 4. These matrix elements are sufficient to evaluate the matrix elements of permu-
tation symmetric sums of arbitrary one-, two- and three-body operators, such as the three-body 
potential, and thus to solve Schrödinger’s equation in the first order of perturbation theory (in 
K ≤ 4 subspace). These harmonics have been applied to three homogeneous confining potentials 
in Ref. [49].

We observe that generally, the SO(6) matrix elements obey the following selection rules that 
reduce the number of non-zero values: they are subject to the “triangular” conditions K′ + K′′ ≥
K ≥ |K′ −K′′| plus the condition that K′ +K′′ +K = 0, 2, 4, . . . , and the angular momenta satisfy 
the selection rules: L′ = L′′, m′ = m′′. Moreover, Q is an Abelian (i.e. additive) quantum number 
that satisfies the simple selection rule: Q′′ = Q′ + Q.

The aforementioned selection rules naturally follow since the hyper-angular matrix element 
Eq. (72) can be reduced to a product of two SO(6) group Clebsch–Gordan coefficients.

8.2. Matrix elements as functions of SO(6) Clebsch–Gordan coefficients

In the case of SO(3) harmonics holds the Gaunt formula [60]∫
Y ∗

LM(θ,φ)Yl1m1(θ,φ)Yl2m2(θ,φ) sin θdθdφ

=
[
(2l1 + 1)(2l2 + 1)

4π(2L + 1)

]1/2

C
l1 l2 L
m1m2M

C
l1 l2 L
0 0 0 , (73)

where Cl1 l2 L
m1m2M

is the SO(3) Clebsch–Gordan coefficient. In the context of the Wigner–Eckart 

theorem, the Clebsch–Gordan coefficient Cl1 l2 L
0 0 0 in Eq. (73) is proportional to/defines the “re-

duced matrix element” 〈L||Tl1 ||l2〉, in this case of the SO(3) spherical harmonic Tl1 = Yl1 : 
〈LM|Tl1m1 |l2m2〉 = 〈LM|l2l1m2m1〉〈L||Tl1 ||l2〉. Of course, the precise definition of the reduced 
matrix element depends on the conventions used, see e.g. Refs. [58,59], but the right-hand side 
of Eq. (73) is independent of convention.

The equivalent formula holds also for SO(n) groups with higher-values of n (see Appendix B
for derivation), and the integral of three SO(6) harmonics is, similarly, proportional to products 
of two SO(6) group Clebsch–Gordan coefficients:
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∫
M

Y∗K[m](	5)YK1[m1](	5)YK2[m2](	5)d	5

= 1√
VM

√
dim(K1) dim(K2)

dim(K)
C

K1 K2 K
[m1] [m2] [m]C

K1 K2 K
[0H ] [0H ] [0H ], (74)

where VM = π3 is the “volume”of the coset space M = SO(6)/SO(5), dimSO(6)(K) =
(K+3)!(K+2)

12K! = (K+3)(K+2)2(K+1)
12 and [0H ] are labels of the vector that is invariant w.r.t. SO(5)

subgroup (because a sphere in 6 dimensions is isomorphic with SO(6)/SO(5) coset space, see 
Appendix B).

Now, this does not necessarily simplify the problem at hand, because the SO(6) Clebsch–
Gordan coefficients are not well known in general. The prospect of evaluating these Clebsch–
Gordan coefficients or finding their values in literature is further complicated by the fact that the 
physical context dictates the choice of the basis, SO(6) ⊃ U(3) ⊃ SO(3) × U(1), which is not 
the simplest one from the mathematical viewpoint, instead of the simpler one SO(6) ⊃ U(3) ⊃
U(2) ⊃ U(1). It is a (physical) necessity to have manifest transformation properties w.r.t. the 
(physical) angular momentum SO(3) that spoils such attempts – if it were not for this, the mul-
tiplicity problem would not arise and both the construction of SO(6) H.H. and calculation of 
SO(6) Clebsch–Gordan coefficients would be much simpler.

Nevertheless, certain general properties of the matrix elements Eq. (72) can be inferred based 
on elemental SO(6) group-theoretical arguments. For example, the following dimensional C.G. 
series (the reduction of tensor products) immediately give information, for some lower dimen-
sional cases, when the value of the matrix element in Eq. (72) is allowed to be nonzero:

6 ⊗ 1 = 6

6 ⊗ 6 = 1 ⊕ 20

6 ⊗ 20 = 6 ⊕ 50

6 ⊗ 50 = 20 ⊕ 105 (75)
...

where boldface numbers denote dimensions of SO(6) irreps. In general:

[1] ⊗ [K′] = [K′ − 1] ⊕ [K′ + 1].
This result, and the property that the left-hand and right-hand sides of these equations do not 

agree arithmetically, e.g., 6 × 6 = 36 
= 1 + 20 = 21, are direct consequences of the fact that 
h.s. harmonics transform as totally symmetric tensors of SO(6) and that the rest of irreps (e.g. 
antisymmetric ones) are absent from the right hand side.

Unlike the SO(6) Clebsch–Gordan coefficients, the SU(3) Clebsch–Gordan coefficients are 
quite well known in various bases, Refs. [51–57,63], including the multiplicity problem of SU(3)

to SO(3) reduction, Ref. [43,44,46,47]. We shall exploit this fact in the following subsection.

8.3. Matrix elements as functions of SU(3) Clebsch–Gordan coefficients

We have already shown that the U(3) subgroup appears as an intermediary step in the re-
duction SO(6) ⊃ U(3) ⊃ U(1) ⊗ SO(3) that dictates our choice of basis. On the other hand 
the SU(3) subgroup does not introduce any new quantum numbers into the hyper-spherical har-
monics labels (K, Q, L, m) – the reason being that SU(3) irreducible representations contained 
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within the SO(6) harmonics are already fully determined by the integers K and Q. Namely, 
coordinates X+

i , Eq. (6) transform as the fundamental SU(3) unitary irreducible representation 
(UIR) of the U(3) subgroup, i.e., one box Young diagram, whereas the coordinates X−

i trans-
form as the conjugate representation of U(3), i.e., a two-box column Young diagram. Therefore, 
an SU(3) representation with given K and Q corresponds to a Young diagram with K boxes in 
the first row, and (K − Q)/2 boxes in the second one.4

Moreover, it easy to see, Ref. [14,15], that three-particle hyper-spherical harmonics can be 
also viewed as functions on the SU(3)/SU(2) coset space. In decomposition of the Hilbert 
space of square integrable functions over SU(3)/SU(2) coset space into SU(3) irreducible 
components, each SU(3) UIR appears exactly once. In other words, there is exactly one three 
particle harmonic transforming as each of the SU(3) UIR’s (and the state vectors within), i.e. 
there is one set of harmonics for each allowed combination of K and Q (where by “allowed”, 
we mean |Q| ≤ K and Q ≡ K (mod 2)). That much ought to be clear already from our con-
struction of hyper-spherical harmonics, as the polynomials with given degrees K and Q cannot 
constitute more than one copy of the same SU(3) UIR, and yet there are polynomials for each 
combination of (K, Q) (one of the ways to verify the first part of this statement is to note that 
there is only one polynomial with the highest weight for that representation).5 In accordance 
with this, an SO(6) symmetric tensor representation of order K decomposes to SU(3) UIR’s 
(K, Q), Q = −K, −K + 2, . . .K, each UIR appearing only once in the decomposition – as the 
sum of dimensions of SU(3) irreducible representations building up the order-K harmonics, con-
firms:

nK =
∑

Q=−K,−K+2,...K

dim(K,Q) =
∑

Q=−K,−K+2,...K

1

8
(K + 2)(K − Q + 2)(K + Q + 2)

= 1

8
(K + 2)

∑
Q=−K,−K+2,...K

(K + 2)2 − (Q)2 = 1

12
(K + 1)(K + 2)2(K + 3),

where dim(K, Q) = 1
8 (K + 2)(K − Q + 2)(K + Q + 2) and indeed dimO(6)(K) = nK =

(K+3)!(K+2)
12K! = 1

12 (K + 3)(K + 2)2(K + 1).
The embeddings of S3 ⊗ SO(3) and SU(3) multiplets in SO(6) multiplets is illustrated in 

Table 3. Note that each (complete) SU(3) irreducible representations appears once and only once 
among all the H.H.s – there is no repetition. Moreover, one must be careful not to double-count 
the self-conjugate irreps, such as the (1, 1) = 8 one.

The same multiplicity issue that we have dealt with in Sect. 5 has been studied in the SU(3)

context. It is well known, see Refs. [43,46,47], that SU(3) representations in general have non-
trivial multiplicity w.r.t. decomposition into SO(3) subgroup representations, see e.g. the two 
K = 4, L = 2 states ∈ 27-plet in Table 3.6 Different multiplicity lifting operators were consid-
ered in the literature, and the corresponding bases constructed Refs. [43,44,46,47].

4 Notice that giving the pair K, Q differs from the usual SU(3) irreducible representation labeling described by two 
integers (p, q) that correspond to a Young diagram with p + q boxes in the first row, and q boxes in the second one, see 
e.g. Ref. [62].)

5 Another way to prove this property is by invoking the Frobenius reciprocity theorem, as in Ref. [14,15].
6 Note that non-trivial multiplicities do not exist for L = 0, 1 states, thus also explaining why these two series of states 

have been explicitly constructed in Refs. [5,8,19].
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Table 3
The labels of distinct K ≤ 4 h.s. harmonics YK,Q,v

L,m
(three-body states, with allowed orbital angular momentum value L; 

only L = m labels are shown). The correspondence between the S3 permutation group irreps. and SU(6)FS symmetry 
multiplets of the three-quark system: S ↔ 56, A ↔ 20 and M ↔ 70. The number of states in an SO(3) irrep is nL =
2L + 1, and the number of states in an O(6) multiplet/H.H. is nK =∑dimS3 × nL =∑dimSU(3) , where the sum 
goes over all the O(3) multiplets, or over all SU(3) multiplets contained in the O(6) H.H. The sign ± in front of Q
values (second column) denotes mixing of mutually conjugate SU(3) representations, which occurs as a consequence of 
S3 
⊂ U(3).

K (K,Q,L,m,v) [SU(6),LP ] S3 irrep. SU(3) irrep. (λ1, λ2) dimS3 × nL NK

0 (0,0,0,0,0) [56,0+] S 1 (0,0) 1×1 1

1 (1,±1,1,1,∓1) [70,1−] M 3, 3̄ (1,0), (0,1) 2×3 6

2 (2,±2,0,0,0) [70,0+] M 6, 6̄ (2,0), (0,2) 2×1 20
2 (2,∓2,2,2,±3) [70,2+] M 6, 6̄ (2,0), (0,2) 2×5 20
2 (2,0,2,2,0) [56,2+] S 8 (1,1) 1×5 20
2 (2,0,1,1,0) [20,1+] A 8 (1,1) 1×3 20

3 (3,∓3,1,1,±1) [20,1−] A 10,10 (3,0), (0,3) 1×3 50
3 (3,∓3,1,1,±1) [56,1−] S 10,10 (3,0), (0,3) 1×3 50
3 (3,±3,3,3,∓6) [56,3−] S 10,10 (3,0), (0,3) 1×7 50
3 (3,±3,3,3,∓6) [20,3−] A 10,10 (3,0), (0,3) 1×7 50
3 (3,±1,1,1,±3) [70,1−] M 15,15 (2,1), (1,2) 2×3 50
3 (3,∓1,2,2,±5) [70,2−] M 15,15 (2,1), (1,2) 2×5 50
3 (3,∓1,3,3,±2) [70,3−] M 15,15 (2,1), (1,2) 2×7 50

4 (4,±4,0,0,0) [70,0+] M 15′,15
′

(4,0), (0,4) 2×1 105

4 (4,±4,2,2,∓3) [70′,2+] M 15′,15
′

(4,0),(0,4) 2×5 105

4 (4,∓4,4,4,±10) [70′,4+] M 15′,15
′

(4,0), (0,4) 2×9 105
4 (4,±2,1,1,±2) [70,1+] M 24,24 (3,1), (1,3) 2×3 105
4 (4,±2,2,2,±2) [70,2+] M 24,24 (3,1),(1,3) 2×5 105
4 (4,∓2,3,3,±13) [70,3+] M 24,24 (3,1),(1,3) 2×7 105
4 (4,∓2,4,4,±5) [70,4+] M 24,24 (3,1), (1,3) 2×9 105
4 (4,0,0,0,0) [56,0+] S 27 (2,2) 1×1 105

4
(

4,0,2,2,∓√
105
)

[56,2+] S 27 (2,2) 1×5 105

4
(

4,0,2,2,∓√
105
)

[20,2+] A 27 (2,2) 1×5 105

4 (4,0,3,3,0) [20,3+] A 27 (2,2) 1×7 105
4 (4,0,4,4,0) [56,4+] S 27 (2,2) 1×9 105

Of special interest is the fact that the SU(3) Clebsch–Gordan coefficients are known for cer-
tain choices of multiplicity lifting operator, [51–57,63]. This means that an SU(3) analogon of 
formula, Eq. (74), has substantial practical utility (Appendix B.3):∫

M

Y∗KQv
L,m (X)YK1Q1v1

L1,m1
(X)YK2Q2v2

L2,m2
(X)dX3 =

= 1√
VM

√
dim(K1,Q1) dim(K2,Q2)

dim(K,Q)
C

{K1,Q1} {K2,Q2} {K,Q}
{L1,m1,v1} {L2,m2,v2} {L,m,v}C

{K1,Q1} {K2,Q2} {K,Q}
0H 0H 0H

, (76)

where Xi are the complex coordinates defined in Eq. (6), the integration is over SU(3)/SU(2)

coset space which is parameterized by X subjected to constraint |X| = 1, 0H is the unique vector 
from the given SU(3) UIR that is invariant w.r.t. SU(2) subgroup, VM = π3, and dim(K, Q) =
1
8 (K + 2)(K − Q + 2)(K + Q + 2). Since SU(3) Clebsch–Gordan coefficients appearing in the 
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above formula are known entities, whose numerical evaluation has been carefully studied in the 
literature, Refs. [54,55,57], in various SU(3) bases, (and no longer the obscure CG coefficients 
of the SO(6) group), it means that Eq. (76) can be used to evaluate matrix elements, Eq. (72), in 
practice.

Furthermore, another nice thing is that this formula can be made even more explicit, that is, 
less dependent on knowledge of (tables of) SU(3) CG coefficients:

1) The first Clebsch–Gordan coefficient in Eq. (76) factors into an SO(3)rot part and the 
reduced Clebsch–Gordan coefficient, see pp. 360 in Ref. [63],

C
{K1,Q1} {K2,Q2} {K,Q}
{L1,m1,v1} {L2,m2,v2} {L,m,v} = CL1L2L

m1m2m
Cr

{K1,Q1} {K2,Q2} {K,Q}
{L1,v1} {L2,v2} {L,v} . (77)

When applied to Eq. (72), the SO(3) coefficient becomes simply a product of two Kronecker 
delta functions: CL′0L′′

m′0m′′ = δL′,L′′δm′,m′′ . The values of the reduced Clebsch–Gordan coefficient 
can be found in literature, Refs. [54,55,57], at least in their numerical form.

2) The second of the two SU(3) Clebsch–Gordan coefficients (the “reduced matrix element”) 
in Eq. (76) does not depend on the L, m, v labels and can be explicitly evaluated in closed form, 
as follows,

C
{K1,Q1} {K2,Q2} {K,Q}

0H 0H 0H
=
(
A

K1,Q
0 A

K2,Q
0 A

K,Q
0

√
π3 dim(K,Q)

dim(K1,Q1) dim(K2,Q2)

×
K1∑

K′
1=|Q1|,|Q1|+2,...

K2∑
K′

2=|Q2|,|Q2|+2,...

K∑
K′=|Q|,|Q|+2,...

�
K1,Q1
K′

1
�

K2,Q2
K′

2
�

K,−Q

K′

× 2π3

(
K′

1+K′
2+K′

2 + 1)(
K′

1+K′
2+K′

2 + 2)
δQ1+Q2,Q

) 1
2

(78)

where

A
K,Q
0 = (−1)

K−|Q|
2

( K∑
K1,K2=|Q|,|Q|+2,...

�
K,Q
K1

�
K,Q
K2

2π3

(K1+K2
2 + 1)(K1+K2

2 + 2)

)− 1
2

(79)

and

�
K,Q

K′ =
K′−2∏

K′′=|Q|,|Q|+2,...

(
1 − (K + 2)2 − Q2

(K′′ + 2)2 − Q2

)
. (80)

Combining the simplifications shown above, we finally obtain:

〈YK′′
[m′′](	5)|YKQv

00 (α,φ)|YK′
[m′](	5)〉 = 1√

π3

√
dim(K,Q) dim(K′,Q′)

dim(K′′,Q′′)

× δL′,L′′δm′,m′′Cr
{K,Q} {K′,Q′} {K′′,Q′′}
{0,0} {L′,v′} {L′′,v′′} C

{K,Q} {K′,Q′} {K′′,Q′′}
0H 0H 0H

, (81)

The remaining SU(3)/SO(3) reduced Clebsch–Gordan coefficient cannot be further simpli-
fied/analytically evaluated in general, for two reasons: i) its value depends on the choice of 
multiplicity lifting operator; ii) due to conclusions of Moshinsky et al. [47], irrespectively of 
the choice of multiplicity lifting operator some of the values inevitably have to be numerical. 
Therefore, Eq. (81), together with Eqs. (78), (79), (80), represents our final result.

These results can be difficult to interpret without specifying the phase- and other conventions, 
both for the state vectors (both SO(6) and SU(3)) and for the Clebsch–Gordan coefficients.
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8.4. Conventions for SO(6) and SU(3) states and Clebsch–Gordan coefficients

It is well known [64] that the Clebsch–Gordan coefficients of SO(3), and/or SU(2) can be 
chosen to be real under a specific convention on the phase of the state vectors. Our construction 
of the SO(6) hyperspherical harmonics in Sects. 3, 4 provides a specific set of conventions that 
lead to the reality of matrix elements in Eq. (72). That, in turn, does not guarantee the reality 
of the SO(6) Clebsch–Gordan coefficients, but the converse statement 7 is assured. We shall 
henceforth assume that (all of) the relevant SO(6) Clebsch–Gordan coefficients are real with our 
choice of phases for the SO(6) hyperspherical harmonics.

Even after such a convention is imposed, however, there is one “remnant” sign ambiguity left 
over, in the form of the overall sign of the Clebsch–Gordan matrix, which is conventionally fixed, 
say by the Condon–Shortley definition. Such a remnant sign ambiguity does not affect the Gaunt 
formula either in the SO(3), or in the SO(6) case, because the right-hand sides of Eqs. (73), 
(74) are bi-linear in their respective Clebsch–Gordan coefficients. Similarly, we shall assume8

that the SU(3) Clebsch–Gordan coefficients appearing in Eq. (81) are real, as well, which is a 
common/standard convention, see Refs. [51,53–55,57].

The above relation between the SO(6) and SU(3) Clebsch–Gordan coefficients calls for yet 
another comment about the conventions adopted here. When dealing with Clebsch–Gordan co-
efficients of an SU(n) group with n > 2, there is also a certain freedom related to the so called 
“outer multiplicity”, Ref. [62]. This freedom amounts to the fact that not only some of the 
phase factors depend on the adopted phase conventions (as in the SU(2) case), but that there 
are other more general phase ambiguities. Namely, the Kronecker product of two irreducible 
SU(n) representations contains more often than not, a multiplicity, i.e., the reduction of the Kro-
necker product (the “Clebsch–Gordan series”) contains more than one copy of one and the same 
irreducible representation, Ref. [62]. Consequently, the SU(3) Clebsch–Gordan tables must gen-
erally have a number of (different) coefficients for each triplet ({K,Q} {K′,Q′} {K′′,Q′′}) of 
SU(3) state labels.9 Therefore, in cases when the Clebsch–Gordan series contains outer multi-
plicity, an additional label, or some other method of identification must be specified to distinguish 
between otherwise identical copies of irreducible representations. This ambiguity “spills over” 
into the evaluation of Eq. (81), as follows.

In the case when existing programs (e.g. Refs. [55,57]) for the evaluation (“tables”) of 
SU(3) Clebsch–Gordan coefficients feature more than one coefficient for the given triplet 
({K,Q} {K′,Q′} {K′′,Q′′}) of SU(3) labels, the question arises how to tell which one corre-
sponds to the decomposition of hyperspherical harmonics and should be plugged into Eq. (81), 
that is, how does one tell which one (of sometimes many) copies of the same UIR appearing after 
the reduction of the Kronecker product is relevant to application here?

The answer to this question, and the behavior of the decomposition of the three-particle hyper-
spherical harmonics product into SU(3) UIR’s, are governed by the very value of the coefficient 
C

{K,Q} {K′,Q′} {K′′,Q′′}
0H 0H 0H

: The value of this coefficient is nonzero in only one, of many, copies of 

7 The reality of the SO(6) Clebsch–Gordan coefficients guarantees the reality of matrix elements in Eq. (72).
8 As explained earlier, checking this convention would be equivalent to an explicit calculation of all SO(6) coefficients, 

which is beyond our scope here.
9 Up till now, we had worked under the assumption that only one well-defined Clebsch–Gordan coefficient exists for 

each triplet of SU(3) state labels. The basis for this assumption was the fact that such an outer multiplicity does not 
appear in the context of products of SO(6) hyperspherical harmonics, as we already noted that in the decomposition of 
the Hilbert space of functions over SU(3)/SU(2) cosets, each SU(3) UIR appears exactly once.
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the same SU(3) UIR, and that fact effectively implies that there is no outer multiplicity in the 
Clebsch–Gordan decomposition of Kronecker products of three-particle hyperspherical harmon-
ics.

In practice, this means the following. Let there be n copies of UIR (K, Q) appearing in the 
product of (K1, Q1) and (K2, Q2), distinguished by the value of an additional label α = 1, 2, . . . n
(obviously, there is freedom in choosing orthonormal bases within the sum of these irreducible 
spaces). A look-up in a Clebsch–Gordon table in a such case generally reveals the n ≥ 2 values 
for the coefficients C{K,Q} {K′,Q′} {K′′,Q′′}

0H 0H 0H
: C1

0 , C2
0 , . . .Cn

0 . Nevertheless, the “overall magnitude” 

of these values 
√

(C1
0)2 + (C2

0)2 + · · · + (Cn
0 )2 is independent of any conventions and must co-

incide with the value determined by Eq. (78). Let us, for convenience call C1
r , C2

r , . . .Cn
r the 

multiple values of the reduced CG coefficient Cr
{K,Q} {K′,Q′} {K′′,Q′′}
{0,0} {L′,v′} {L′′,v′′} needed in Eq. (81). Then, 

the proper value of the CG coefficient to be plugged in Eq. (81) is the one “projected” on the 
relevant UIR, where C{K,Q} {K′,Q′} {K′′,Q′′}

0H 0H 0H
coefficient is nonzero:

Cr
{K,Q} {K′,Q′} {K′′,Q′′}
{0,0} {L′,v′} {L′′,v′′} = (C1

r C1
0 + C2

r C2
0 + · · · + Cn

r Cn
0 )√

(C1
0)2 + (C2

0)2 + · · · + (Cn
0 )2

.

This formula further assumes that the value of C{K,Q} {K′,Q′} {K′′,Q′′}
0H 0H 0H

coefficient is taken to be 
positive, which is in agreement with our convention, that amounts to fixing the positive sign in 
Eq. (78), when compared with Eq. (B.21).

Explicit applications of the described method by using programs for the evaluation of SU(3)

Clebsch–Gordan coefficients, Refs. [54,55,57], confirm the above analysis (taking into account 
additional sign conventions used by the authors of these tables) and yield results identical with 
the values obtained by integration of explicit expressions for HSH (Appendix A).

9. Summary, discussion and conclusions

In summary, we have constructed the three-body permutation symmetric SO(6) hyper-
spherical harmonics in three spatial dimensions. We used a method of constructing homogeneous
harmonic polynomials that are labeled by SO(6) group’s indices. In this way we arrived at the 
subgroup chain S3 ⊗ SO(3)rot ⊂ O(2) ⊗ SO(3)rot ⊂ U(3) � S2 ⊂ SO(6) (where SOrot (3) is 
the group of spatial rotations, O(2) is the group of so-called “democracy” transformations where 
the permutation group S3 is a (discrete) subgroup of the so-called “kinematic rotations”, Ref. [2], 
or equivalently the “democracy” transformation (continuous) group O(2), Ref. [12]).

The constructed symmetrized hyperspherical harmonics can be used to reformulate the three-
body Schrödinger equation in three spatial dimensions, [48,50]. Then we calculated a certain 
type of integrals that appear in the three-body Schrödinger equation. We reduced these integrals 
at first to a product of two SO(6) Clebsch–Gordan coefficients, and then to the product of two 
SU(3) Clebsch–Gordan coefficients, that are readily available in the literature, Refs. [51–57,63], 
at least in their numerical form.

Next we give a brief discussion of some previous attempts at constructing symmetrized three-
body hyperspherical harmonics and their relation to ours.

The first attempts to systematically construct all hyperspherical wave functions with well 
defined permutational symmetry go back to Aquilanti et al., Ref. [18] and subsequent papers. 
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They used something they called “tree pruning” technique (that appears to be related to the 
“tree” method of Vilenkin, Kuznetsov, and Smorodinskii, Ref. [61], see below) to obtain certain 
partial results in both 2D and 3D. Ultimately, this approach has not yielded a definitive answer – 
for a recent review of this approach see Ref. [28].

Second, Barnea and Novoselsky constructed hyperspherical wave functions with orthogonal 
and permutational symmetry in Ref. [20], where they used “a recursive algorithm for the (effi-
cient) construction of N-body wave functions that belong to a given irreducible representation 
(irrep) of the orthogonal group and are at the same time characterized by a well-defined per-
mutational symmetry.” Whereas, in the final instance, Barnea and Novoselsky’s work ought to 
be related to ours, we note the following basic differences: a) their work is based on a differ-
ent subgroup chain, with a missing link in comparison with ours: O(3) ⊗ S3 ⊂ O(6) vs. our 
U(1) ⊗ SO(3)rot ⊂ U(3) ⊂ SO(6); b) theirs is an essentially recursive-numerical method rely-
ing on the knowledge of tables of the symmetric group S3 Clebsch–Gordan coefficients, whereas 
ours is a group-theoretical approach; c) their S3 hyperspherical states are expressed in terms 
of S2 hyperspherical states, that are coupled, via the “tree” method of Vilenkin, Kuznetsov, and 
Smorodinskii, Ref. [61]; whereas ours makes no reference to any two-body substate; d) they eval-
uated only matrix elements of two-body operators, whereas we can treat all kinds of three-body 
operators.

Third, it ought to be said that Wang and Kuppermann Ref. [23] used symbolic algebra pro-
grams to calculate certain three- and four-body hyperspherical harmonics that were used in 
atomic and molecular physics. Their method does not seem to be based on a clearly defined 
algorithm, or group structure, however.

Last, but not least, we re-iterate that Dragt, Ref. [6] had used the SU(3) ⊂ SO(6) chain 
of algebras to label three-particle scattering states as early as 1965, with follow-up work in 
Refs. [8,14,15], albeit with an emphasis on the applications to three-body decays, as opposed 
to our emphasis on applications to the three-body bound-state problem. Of course, these results, 
particularly those in the all but forgotten/unnoticed Refs. [14,15], must be closely related to 
ours, but this relation is not straightforward to see, due to their use of different kinematic vari-
ables (Dalitz–Fabri coordinates vs. hyperspherical angles) and to different construction methods. 
Ref. [15] in particular shows tables of some (L ≤ 6, K ≤ 12) harmonics and their matrix ele-
ments. Ref. [14] on the other hand, gives “classification of three particle states according to an 
orthonormal SU(3) ⊃ SO(3) basis” and then some. These authors simply could not evaluate 
the triple-harmonic matrix elements in terms of SU(3) Clebsch–Gordan coefficients without the 
benefit of more recent developments, such as those in Refs. [54,55].

We conclude that we have provided (all of) the previously missing pieces that are sufficient 
for a complete reduction and efficient solution of the three-body Schrödinger equation, as in 
Refs. [48,50], and thus we opened the doors to simplified algebraic and faster numerical solutions 
to many specific physical three-body problems.
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Appendix A. Integrals over the SO(6) hyper-sphere

Let f (x1, x2, . . . xn) be a homogeneous function of degree K of n coordinates xi, i =
1, 2, . . . n:

fK(ax1, ax2, . . . axn) = aKfK(x1, x2, . . . xn), a 
= 0. (A.1)

In particular, it holds fK(x1, x2, . . . xn) = RKf (x1
R

, x2
R

, . . . xn

R
), where R is the radius in 

the n-dimensional space: R =
√

x2
1 + x2

2 + · · · + x2
n . The weighted integral of the function 

fK(x1, x2, . . . xn) by the factor e−aR2
over the entire volume of the hyper-space V can be evalu-

ated via an unit-radius hyper-sphere 	 surface integral as follows:

∫
V

fK(x1, x2, . . . xn)e
−aR2

dV =
∞∫

0

RKe−aR2
Rn−1dR

∫
	

f (
x1

R
,
x2

R
, . . .

xn

R
)d	. (A.2)

This leads to the following connection of hyper-sphere surface and volume integrals:∫
	

f (
x1

R
,
x2

R
, . . .

xn

R
)d	 =

∫
V

fK(x1, x2, . . . xn)e
−aR2

dV

1
2a− K+n

2 �(K+n
2 )

. (A.3)

In the particular case when the function is a homogeneous polynomial fK(x1, x2, . . . xn) =
x

K1
1 x

K2
2 · · ·xKn

n with 
∑

i Ki = K the right-hand-side can be explicitly evaluated:

∫
	

1

RK x
K1
1 x

K2
2 · · ·xKn

n d	 =
∏n

i=1
1+(−1)Ki

2 a− Ki+1
2 �(

Ki+1
2 )

1
2a− K+n

2 �(K+n
2 )

= 2

∏n
i=1

1+(−1)Ki

2 �(
Ki+1

2 )

�(K+n
2 )

.

(A.4)

If the hyper-spherical integrand on the left side is evaluated on the unit radius sphere, the 1
RK

factor can be obviously left out.

Appendix B. Three-body SO(6) hyperspherical harmonics as Wigner D-functions on the 
SU(3)/SU(2) coset space

B.1. Spherical harmonics as Wigner D-functions

Spherical (hyperspherical) harmonics in a generalized sense are functions on a given man-
ifold M of interest that have certain given properties w.r.t. action of some group G that acts 
transitively on M (here we will constrain to the cases when G is a compact Lie group). More 
precisely, (hyper)spherical harmonics are usually required to transform as basis vectors of uni-
tary irreducible representations of G, and are given labels accordingly. E.g. harmonic function 
YL

m(	), 	 ∈ M is required to transform under action of G as basis vector m of the irreducible 
representation L of G:

g : YL
m(	) →

∑
m′

DL
m′m(g)YL

m′(	), g ∈ G, (B.1)

where DL
m′m(g) is matrix representing element g in irreducible representation given by la-

bel(s) L:
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DL
m′m(g) = 〈Lm′

∣∣D(g)
∣∣L
m

〉
. (B.2)

Seen as functions of g, matrix elements DL
m′m(g) are known as Wigner D-functions.

We proceed by considering square integrable functions on the G group manifold. Hilbert 
space of such functions we denote as L2(G) and its vectors are of the form:

|φ〉 =
∫
G

φ(g) |g〉dg, g ∈ G, (B.3)

where φ is a square integrable function on the manifold of group G parameters, |g〉 are (gener-
alized) basis vectors and dg is the normalized Haar measure.

The usual (left) action of the group G elements is given by:

g′ |φ〉 = g′
∫

φ(g) |g〉dg =
∫

φ(g)
∣∣g′g

〉
dg, g′, g ∈ G. (B.4)

Note that this action induces the following transformation of the function φ:

g′ : φ(g) → φ′(g) = φ(g′−1
g). (B.5)

The functions belonging to L2(G) that transform according to (B.1) are (complex conjugate) 
Wigner D-functions D∗L

mk(g), as can be easily verified:

g′ : D∗L
mk(g) → D∗L

mk(g
′−1

g) =
∑
m′

D∗L
mm′

−1
(g′)D∗L

m′k(g) =
∑
m′

DL
m′m(g′)D∗L

m′k(g). (B.6)

Notice that index k above, that corresponds to a vector of UIR L, is arbitrary.
If the manifold M were to coincide with the group G manifold, then it is these functions 

D∗L
mk(g) that would play the role of the (hyper) spherical harmonics. However, in most cases of 

practical interest that is not the case. Instead, each point 	 of the manifold M has nontrivial 
stabilizer (isotropy) subgroup H	 ⊂ G such that H	 ·	 = 	. As we already assumed that action 
of G is transitive on M, all stabilizer subgroups H	 are mutually conjugate, isomorphic to some 
group H , and the manifold M is homogeneous space G/H .

To obtain hyperspherical harmonics on M we need functions of 	 that transform according 
to (B.1). Let g(	) be a mapping from M to a set of coset representatives in G. Then arbitrary 
group element g can be written as g(	)h for some 	 ∈M and h ∈ H . To obtain (hyper)spherical 
functions on M in the sense of definition (B.1), we can use the arbitrariness of choice of vector 
k in Eq. (B.6), by choosing it to be invariant w.r.t. action of subgroup H , i.e. k = 0H where:

D(h)
∣∣L
0H

〉= ∣∣L0H

〉
,∀h ∈ H. (B.7)

Now the Wigner D-function D∗L
mk(g) reduces to a function on the coset space M by:

D∗L
m0H

(g) = D∗L
m0H

(g(	)h) = 〈Lm∣∣D(g(	))D(h)
∣∣L
0H

〉= D∗L
m0H

(g(	)) ≡ D∗L
m0H

(	). (B.8)

Therefore, functions D∗L
m0H

(	), where 
∣∣L
0H

〉
is invariant w.r.t. H action, are functions on man-

ifold M = G/H that properly transform, in the sense of (B.1), under the action of group G, i.e. 
transform as vector 

∣∣L
m

〉
of the UIR labeled by L. Thus we can establish proportionality between 

generalized (hyper)spherical harmonics and Wigner D-functions:

YL
m(	) = N(L)D∗L

m0H
(	), (B.9)
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with N(L) being a proportionality constant possibly dependent on L. In addition to transforma-
tion properties (B.1), it is usual to require that a (hyper)spherical harmonic should be normalized 
to unity. From:

∫
M

Y∗L
m (	)YL′

m′ (	)d	 =
∫
M

N(L)N(L′)DL
m0H

(	)D∗L
m′0H

(	)d	

= N(L)N(L′)
VH

∫
M

∫
H

DL
m0H

(g(	)h)D∗L
m′0H

(g(	)h)d	dh

= N(L)N(L′)
VH

∫
G

DL
m0H

(g)D∗L
m′0H

(g)dg

= N(L)N(L′)
VH

VG

dim(L)
δJJ ′δmm′, (B.10)

where d	 is a measure on M, VH and VG are volumes of H and G group manifolds (cor-
responding to measures dh and dg) and dim(L) is the dimension of the UIR L, it follows 

N(L) =
√

dim(L)
VM

. (Compactness of the subgroup H and of the manifold M follows from the 
presumed compactness of G.) Finally we conclude:

YL
m(	) =

√
dim(L)

VM
D∗L

m0H
(	), (B.11)

while, of course, arbitrariness of choice of overall complex phase in the definition necessarily 
remains.

B.2. Integral of three (hyper)spherical harmonics

Expressing (hyper)spherical harmonics via Wigner D-functions allows immediate evaluation 
of integral of three (or more) of h.s. harmonics in terms of group G Clebsch–Gordan coefficients. 
Namely:

∫
M

Y∗L
m (	)YL1

m1
(	)YL2

m2
(	)d	

=
√

dim(L) dim(L1) dim(L2)

V 3
M

∫
M

DL
m0H

(	)D
∗L1
m10H

(	)D
∗L2
m20H

(	)d	

= 1
VH

√
dim(L) dim(L1) dim(L2)

V 3
M

∫
G

DL
m0H

(g)D
∗L1
m10H

(g)D
∗L2
m20H

(g)dg

= 1√
VM

√
dim(L1) dim(L2)

dim(L)
CL1 L2 L

m1 m2 mC
L1 L2 L
0H 0H 0H

, (B.12)

where CL1 L2 L
m1 m2 m denotes a G group Clebsch–Gordan coefficient and the well known formulas for 

integral of three Wigner D-functions were used.
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B.3. Application to three particle systems

It is known, Ref. [14,15], that three-particle hyper-spherical harmonics can be viewed as func-
tions on the SU(3)/SU(2) coset space. Thus all of the previous considerations directly apply to 
this case. Of particular importance for the evaluation of interaction matrix elements is the formula 
for integral of three three-particle h.s. harmonics, that now takes the form:∫

M

Y∗KQv
L,m (X)YK1Q1v1

L1,m1
(X)YK2Q2v2

L2,m2
(X)dX3

= 1√
VM

√
dim(K1,Q1) dim(K2,Q2)

dim(K,Q)
C

{K1,Q1} {K2,Q2} {K,Q}
{L1,m1,v1} {L2,m2,v2} {L,m,v}C

{K1,Q1} {K2,Q2} {K,Q}
0H 0H 0H

,

(B.13)

where Xi are the complex coordinates (6), dim(K, Q) = 1
8 (K + 2)(K − Q + 2)(K + Q + 2)

and VM = π3. The SU(3) Clebsch–Gordan coefficients appearing in the above formula are well 
known entities, whose (numerical) evaluation is well studied in the literature [57], in various 
SU(3) bases.

The second of the two Clebsch–Gordan coefficients can be evaluated in the following way. 
From (B.13) it follows that

|C{K1,Q1} {K2,Q2} {K,Q}
0H 0H 0H

|

=
(√

VM
√

dim(K,Q)
dim(K1,Q1) dim(K2,Q2)

∫
M

Y∗{K,Q}
0H

(X)Y{K1,Q1}
0H

(X)Y{K2,Q2}
0H

(X)dX3
) 1

2
.

(B.14)

Now, Y{K,Q}
0H

(X) is an SU(3) harmonic on SU(3)/SU(2) that is invariant w.r.t. SU(2) subgroup, 
and for the sake of concreteness, let it be the subgroup that nontrivially acts on indices 1 and 2. 
That means that Y{K,Q}

0H
(X) is of the form:

Y{K,Q}
0H

(X) =
K∑

K′=|Q|,|Q|+2,...

A
K,Q

K′ · (X+
3 )

K′+Q
2 (X−

3 )
K′−Q

2 , (B.15)

where sum over K′ goes only over odd or over even integers and AK,Q

K′ are algebraic coeffi-

cients that can be determined from two requirements: i) the functions Y{K,Q}
0H

(X) must be SO(6)

harmonics, i.e., �Y{K,Q}
0H

(X) = 0 and ii) they have to be normalized to unity, i.e.,∫
M

Y∗{K,Q}
0H

(X)Y{K,Q}
0H

(X)dX3 = 1. (B.16)

From the first requirement one obtains:

A
K,Q

K′ = A
K,Q
0 �

K,Q

K′ (B.17)

where AK,Q
0 is a remaining constant, yet to be determined, and

�
K,Q

K′ =
K′−2∏

K′′=|Q|,|Q|+2,...

(
1 − (K + 2)2 − Q2

(K′′ + 2)2 − Q2

)
, (B.18)
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where the product over K′′, yet again takes only every other integer value, even or odd, as the 
case may be.

By plugging Eq. (B.15) into Eq. (B.16) and by using integration formulas from Appendix A
one determines the absolute value of the remaining constant as

|AK,Q
0 | =

( K∑
K1,K2=|Q|,|Q|+2,...

�
K,Q
K1

�
K,Q
K2

2π3

(K1+K2
2 + 1)(K1+K2

2 + 2)

)− 1
2

. (B.19)

Although the phase factor will turn out to be irrelevant for our purposes, for completeness’ sake 
we note that the phase of the constant AK,Q

0 and thus the overall phase of the harmonic Y{K,Q}
0H

(X)

can be recovered from the consistency requirement obtained from (B.11) by taking 	 to be the 
coset of the unit group element:∫

M

√
dim(K,Q)

π3 Y∗{K,Q}
0H

(X)YK′Q′ν
L,m (X)dX3 = YK′Q′ν

L,m (X)

∣∣∣
X1=0,X2=0,X3=1

. (B.20)

Thus we conclude that AK,Q
0 = (−1)

K−|Q|
2 |AK,Q

0 |.
Finally, we plug the resulting expressions for Y{K,Q}

0H
(X) into Eq. (B.14) and obtain:

|C{K1,Q1} {K2,Q2} {K,Q}
0H 0H 0H

| =
(
A

K1,Q
0 A

K2,Q
0 A

K,Q
0

√
π3 dim(K,Q)

dim(K1,Q1) dim(K2,Q2)
·

K1∑
K′

1=|Q1|,|Q1|+2,...

K2∑
K′

2=|Q2|,|Q2|+2,...

K∑
K′=|Q|,|Q|+2,...

�
K1,Q1
K′

1
�

K2,Q2
K′

2
�

K,−Q

K′

× 2π3

(
K′

1+K′
2+K′

2 + 1)(
K′

1+K′
2+K′

2 + 2)
δQ1+Q2,Q

) 1
2
. (B.21)

Appendix C. Tables of hyper-spherical harmonics

Below we explicitly list all hyper-spherical harmonics up to K = 6, where multiplicity is 
resolved by using the operator Eq. (37). We list only the harmonics with m = L and Q ≥ 0, as 
the rest can be easily obtained by acting on them with standard lowering operators Eq. (60) and 
by using the permutation symmetry Eqs. (63), (65): YKQv

L,m (λ, ρ) = (−1)K−LYK−Q−v
L,m (λ, −ρ). 

We write the K ≤ 3 harmonics in both complex spherical and Jacobi coordinates.
Of the harmonics listed below, expressions for Y4,0,0

0,0 (X) and Y6,6,0
0,0 (X) can be compared 

with the corresponding expressions in [5], where a few particular examples for L = 0 are ex-
plicitly shown. After taking into account the differences in notation it is easily verified that the 
expressions coincide.

Y0,0,0
0,0 (X) = 1

π3/2

Y1,1,−1
1,1 (X) =

√
3
2X++

π3/2R
=

√
3
2 (λ1 + i (λ2 + ρ1 + iρ2))

π3/2
√

λ2
1 + λ2

2 + λ2
3 + ρ2

1 + ρ2
2 + ρ2

3

Y2,0,0
1,1 (X) =

√
3
(
X−+X+

0 − X++X−
0

)
π3/2R2

= 2
√

3 (λ3 (ρ2 − iρ1) + i (λ1 + iλ2) ρ3)

π3/2
(
λ2

1 + λ2
2 + λ2

3 + ρ2
1 + ρ2

2 + ρ2
3

)
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Y2,0,0
2,2 (X) =

√
3X++X−+
π3/2R2

=
√

3 (λ1 + i (λ2 + ρ1 + iρ2)) (λ1 + iλ2 − iρ1 + ρ2)

π3/2
(
λ2

1 + λ2
2 + λ2

3 + ρ2
1 + ρ2

2 + ρ2
3

)
Y2,2,0

0,0 (X) =
√

2
∣∣X+∣∣2

π3/2R2

=
√

2
(
2iλ1ρ1 + 2iλ2ρ2 + 2iλ3ρ3 + λ2

1 + λ2
2 + λ2

3 − ρ2
1 − ρ2

2 − ρ2
3

)
π3/2

(
λ2

1 + λ2
2 + λ2

3 + ρ2
1 + ρ2

2 + ρ2
3

)

Y2,2,−3
2,2 (X) =

√
3
2

(
X++
)2

π3/2R2
=

√
3
2 (λ1 + i (λ2 + ρ1 + iρ2))

2

π3/2
(
λ2

1 + λ2
2 + λ2

3 + ρ2
1 + ρ2

2 + ρ2
3

)

Y3,1,3
1,1 (X) =

√
6
(
X−+
∣∣X+∣∣2 − 1

2R2X++
)

π3/2R3

=
√

6

π3/2
(
λ2

1 + λ2
2 + λ2

3 + ρ2
1 + ρ2

2 + ρ2
3

)3/2

×
(

(λ1 + iλ2 − iρ1 + ρ2)
(
(λ1 + iρ1)

2 + (λ2 + iρ2)
2 + (λ3 + iρ3)

2
)

− 1

2
(λ1 + i (λ2 + ρ1 + iρ2))

(
λ2

1 + λ2
2 + λ2

3 + ρ2
1 + ρ2

2 + ρ2
3

))

Y3,1,−5
2,2 (X) =

√
5X++

(
X−+X+

0 − X++X−
0

)
π3/2R3

= 2
√

5 (λ1 + i (λ2 + ρ1 + iρ2)) (λ3 (ρ2 − iρ1) + i (λ1 + iλ2) ρ3)

π3/2
(
λ2

1 + λ2
2 + λ2

3 + ρ2
1 + ρ2

2 + ρ2
3

)3/2

Y3,1,−2
3,3 (X) =

√
15
(
X++
)2

X−+
2π3/2R3

=
√

15 (λ1 + i (λ2 + ρ1 + iρ2))
2 (λ1 + iλ2 − iρ1 + ρ2)

2π3/2
(
λ2

1 + λ2
2 + λ2

3 + ρ2
1 + ρ2

2 + ρ2
3

)3/2

Y3,3,−1
1,1 (X) =

√
3X++

∣∣X+∣∣2
π3/2R3

=
√

3 (λ1 + i (λ2 + ρ1 + iρ2))
(
2iλ1ρ1 + 2iλ2ρ2 + 2iλ3ρ3 + λ2

1 + λ2
2 + λ2

3 − ρ2
1 − ρ2

2 − ρ2
3

)
π3/2

(
λ2

1 + λ2
2 + λ2

3 + ρ2
1 + ρ2

2 + ρ2
3

)3/2

Y3,3,−6
3,3 (X) =

√
5
(
X++
)3

2π3/2R3
=

√
5 (λ1 + i (λ2 + ρ1 + iρ2))

3

2π3/2
(
λ2

1 + λ2
2 + λ2

3 + ρ2
1 + ρ2

2 + ρ2
3

)3/2

Y4,0,0
0,0 (X) = −

√
3
(
R4 − 2

∣∣X−∣∣2 ∣∣X+∣∣2)
π3/2R4
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Y4,0,−√
105

2,2 (X)

=
−12

√
14R2X++X−+ +

√
105

(
11 − √

105
)(

X−+
)2 ∣∣X+∣∣2 +

√
105

(
11 + √

105
)(

X++
)2 ∣∣X−∣∣2

14π3/2R4

Y4,0,
√

105
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Abstract

The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when 
both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors 
is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modi-
fication, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield 
the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the 
spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called 
quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric 
Gaudin Hamiltonians with boundary terms.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The quantum inverse scattering method (QISM) is an approach to construct and solve quan-
tum integrable systems [1–3]. In the framework of the QISM the algebraic Bethe ansatz is a 
powerful algebraic approach, which yields the spectrum and corresponding eigenstates for the 
systems for which highest weight type representations are relevant, like for example quantum 
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spin systems, Gaudin models, etc. In particular, the Heisenberg spin chain [4], with periodic 
boundary conditions, has been studied by the algebraic Bethe ansatz [1,3], including the ques-
tion of completeness and simplicity of the spectrum [5].

A way to introduce non-periodic boundary conditions compatible with the integrability of 
one-dimensional solvable quantum systems was developed in [6]. The boundary conditions are 
expressed in the form of the left and right reflection matrices. The compatibility conditions be-
tween the bulk and the boundary of the system take the form of the so-called reflection equation, 
at the left site, and the dual reflection equation, at the right site of the system. The matrix form 
of the exchange relations between the entries of the Sklyanin monodromy matrix is analogous to 
the reflection equation. Together with the dual reflection equation they yield the commutativity 
of the open transfer matrix [6–8].

There is a renewed interest in applying the algebraic Bethe ansatz to the open XXX and XXZ 
chains with non-periodic boundary conditions compatible with the integrability of the systems 
[9–17]. Other approaches include the Bethe ansatz based on the functional relation between the 
eigenvalues of the transfer matrix and the quantum determinant and the associated T-Q relation 
[18–20], functional relations for the eigenvalues of the transfer matrix based on fusion hierarchy 
[21] and the Vertex-IRF correspondence [22,23]. For a review of the coordinate Bethe ansatz for 
non-diagonal boundaries see [24]. For the latest results, as well as an excellent review, on the 
application of the separation of variables method on the 6-vertex model and the associate XXZ 
quantum chains see [25]. However, we will focus on applying the algebraic Bethe ansatz to the 
XXZ Heisenberg spin chain in the case when system admits the so-called pseudo-vacuum, or 
the reference state. In his seminal work on boundary conditions in quantum integrable models 
Sklyanin has studied the XXZ spin chain with diagonal boundaries [6]. As opposed to the case of 
the open XXX Heisenberg chain were both reflection matrices can be simultaneously brought to 
a triangular form by a single similarity transformation which leaves the R-matrix invariant and it 
is independent of the spectral parameter [10–12], here the triangularity of the K-matrices has to 
be imposed by hand. The algebraic Bethe ansatz was applied to the XXZ spin- 1

2 chain with upper 
triangular reflection matrices [13,14]. The spectrum and the corresponding Bethe equations were 
obtained [13] and the Bethe vectors were defined using a family of creations operators [14].

This work is centered on the study of the Bethe vectors which are fundamental in the 
implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain when the 
corresponding reflection matrices have the upper-triangular form. Seeking the Bethe vectors 
�̃M(μ1, μ2, . . . , μM) which would in the scaling limit coincide with the ones of the XXX 
Heisenberg chain [12], we have also found certain identities yielding the general form of the 
Bethe vectors for a fixed M . The general form of Bethe vectors is given as a sum of a partic-
ular vector and the linear combination of lower order Bethe vectors. Due to certain identities 
this linear combination of lower order Bethe vectors corresponds the same eigenvalue as the 
particular vector. Although we have obtained explicitly the Bethe vectors �̃M(μ1, μ2, . . . , μM)

for M = 1, 2, 3, 4, unfortunately they do not admit a compact closed form for an arbitrary M . 
However, a detailed analysis yields a particular form of the Bethe vectors �M(μ1, μ2, . . . , μM)

which admits the recurrence formulas for the coefficient functions analogous to the once used in 
the study of the XXX Heisenberg chain [12]. These Bethe vectors are defined explicitly, for an 
arbitrary natural number M , as some polynomial functions of the creation operators. Also, the 
off-shell action of the transfer matrix on these Bethe vectors is strikingly simple since it almost 
coincides with the corresponding action in the case when the two boundary matrices are diagonal. 
As expected, the off-shell action yields the spectrum of the transfer matrix and the corresponding 
Bethe equations. To explore further these results we use the so-called quasi-classical limit and 
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obtain the off-shell action of the generating function of the trigonometric Gaudin Hamiltonians 
with boundary terms, on the corresponding Bethe vectors.

Originally in his approach, Gaudin defined these models as a quasi-classical limit of the in-
tegrable quantum chains [26,27]. The Gaudin models were extended to any simple Lie algebra, 
with arbitrary irreducible representation at each site of the chain [27]. Sklyanin studied the ratio-
nal s�(2) model in the framework of the quantum inverse scattering method using the s�(2) in-
variant classical r-matrix [28]. A generalization of these results to all cases when skew-symmetric 
r-matrix satisfies the classical Yang-Baxter equation [29] was relatively straightforward [30,31]. 
Therefore, considerable attention has been devoted to Gaudin models corresponding to the clas-
sical r-matrices of simple Lie algebras [32–34] and Lie superalgebras [35–39].

Hikami showed how the quasi-classical expansion of the XXZ transfer matrix, calculated at 
the special values of the spectral parameter, yields the Gaudin Hamiltonians in the case when both 
reflection matrices are diagonal [40]. Then the algebraic Bethe ansatz was applied to open Gaudin 
model in the context of the Vertex-IRF correspondence [41–43]. Also, results were obtained for 
the open Gaudin models based on Lie superalgebras [44]. An approach to study the open Gaudin 
models based on the classical reflection equation [45] and the non-unitary r-matrices [46–48]
was developed, see [49–53] and the references therein. For a review of the open Gaudin model 
see [54].

In [55] we have derived the generating function of the trigonometric Gaudin Hamiltonians 
with boundary terms following Sklyanin’s approach for the periodic boundary conditions [28,
56]. Analogously to the rational case [52,12], our derivation is based on the quasi-classical ex-
pansion of the linear combination of the transfer matrix of the XXZ Heisenberg chain and the 
central element, the so-called Sklyanin determinant. Here we use this result with the objective to 
derive the off-shell action of the generating function. As we will show below, the quasi-classical 
expansion of the Bethe vectors we have defined for the XXZ Heisenberg spin chain yields the 
Bethe vectors of the corresponding Gaudin model. The importance of these Bethe vectors stems 
from the striking simplicity of the off-shell action of the generating function of the trigonometric 
Gaudin Hamiltonians with boundary terms.

This paper is organized as follows. In Section 2 we review the suitable R-matrix as well as 
the Lax operator and the corresponding monodromy as the fundamental tools of the quantum 
inverse scattering method in the study of the inhomogeneous XXZ Heisenberg spin chain. The 
general solutions of the relevant reflection equation and the corresponding dual reflection equa-
tion are surveyed in Section 3. In Section 4 we briefly expose the Sklyanin approach to the 
inhomogeneous XXZ Heisenberg spin chain with non-periodic boundary conditions, in partic-
ular the derivation of the relevant commutation relations. The implementation of the algebraic 
Bethe ansatz and most notably the study of the Bethe vectors, as one of the main results of the 
paper, are presented in Section 5. The corresponding Gaudin model is studied through the quasi-
classical limit in Section 6. Our conclusions are presented in the Section 7. In Appendix A are 
given some basic definitions for the convenience of the reader. The commutation relations rel-
evant for the implementation of the algebraic Bethe ansatz for the XXZ Heisenberg chain are 
given in the Appendix B. Finally, detailed presentation of the illustrative example of the Bethe 
vector �̃3(μ1, μ2, μ3), including its general form and some important identities, are given in 
Appendix C.

2. Inhomogeneous XXZ Heisenberg spin chain

The starting point in our study of the XXZ Heisenberg spin chain is the R-matrix [1,2,57,58]
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R(λ,η) =

⎛⎜⎜⎜⎜⎝
sinh(λ + η) 0 0 0

0 sinh(λ) sinh(η) 0

0 sinh(η) sinh(λ) 0

0 0 0 sinh(λ + η)

⎞⎟⎟⎟⎟⎠ . (2.1)

This R-matrix satisfies the Yang-Baxter equation [59,57,58,1,2] in the space C2 ⊗C
2 ⊗C

2

R12(λ − μ)R13(λ)R23(μ) = R23(μ)R13(λ)R12(λ − μ), (2.2)

and it also has other relevant properties such as

U(1) symmetry
[
σ 3

1 + σ 3
2 ,R12(λ)

] = 0;
unitarity R12(λ)R21(−λ) = sinh(η − λ) sinh(η + λ)1;
parity invariance R21(λ) = R12(λ);
temporal invariance Rt

12(λ) = R12(λ);
crossing symmetry R(λ) = J1R

t2(−λ − η)J1,

where t2 denotes the transpose in the second space and the two-by-two matrix J is proportional 
to the Pauli matrix σ 2, i.e. J = ıσ 2.

Here we study the inhomogeneous XXZ spin chain with N sites, characterized by the local 
space Vm =C

2s+1 and inhomogeneous parameter αm. The Hilbert space of the system is

H = N⊗
m=1

Vm = (C2s+1)⊗N. (2.3)

We introduce the Lax operator [60–66] as the following two-by-two matrix in the auxiliary space 
V0 =C

2,

L0m(λ) = 1

sinh(λ)

(
sinh

(
λ1m + ηS3

m

)
sinh(η)S−

m

sinh(η)S+
m sinh

(
λ1m − ηS3

m

) )
, (2.4)

the operators Sα
m, with α = +, −, 3 and m = 1, 2, . . . , N , are defined in the Appendix A. It obeys

L0m(λ)L0m(η − λ) = sinh (smη + λ) sinh ((sm + 1)η − λ)

sinh(λ) sinh(η − λ)
10 , (2.5)

where sm is the value of spin in the space Vm.
When the quantum space is also a spin 1

2 representation, the Lax operator becomes the 
R-matrix,

L0m(λ) = 1

sinh(λ)
R0m (λ − η/2) .

Taking into account the commutation relations (A.2), it is straightforward to check that the 
Lax operator satisfies the RLL-relations

R00′(λ − μ)L0m(λ − αm)L0′m(μ − αm) = L0′m(μ − αm)L0m(λ − αm)R00′(λ − μ). (2.6)

The so-called monodromy matrix

T (λ) = L0N(λ − αN) · · ·L01(λ − α1) (2.7)

is used to describe the system. For simplicity we have omitted the dependence on the quasi-
classical parameter η and the inhomogeneous parameters {αj , j = 1, . . . , N}. Notice that T (λ)
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is a two-by-two matrix acting in the auxiliary space V0 = C
2, whose entries are operators acting 

in H

T (λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
. (2.8)

From RLL-relations (2.6) it follows that the monodromy matrix satisfies the RTT-relations

R00′(λ − μ)T0(λ)T0′(μ) = T0′(μ)T0(λ)R00′(λ − μ). (2.9)

To construct integrable spin chains with non-periodic boundary condition, we will follow 
Sklyanin’s approach [6]. Accordingly, before defining the essential operators and corresponding 
algebraic structure, in the next section we will introduce the relevant boundary K-matrices.

3. Reflection equation

A way to introduce non-periodic boundary conditions which are compatible with the integra-
bility of the bulk model, was developed in [6]. Boundary conditions on the left and right sites 
of the chain are encoded in the left and right reflection matrices K− and K+. The compatibility 
condition between the bulk and the boundary of the system takes the form of the so-called reflec-
tion equation. It is written in the following form for the left reflection matrix acting on the space 
C

2 at the first site K−(λ) ∈ End(C2)

R12(λ − μ)K−
1 (λ)R21(λ + μ)K−

2 (μ) = K−
2 (μ)R12(λ + μ)K−

1 (λ)R21(λ − μ). (3.1)

Due to the properties of the R-matrix (2.1) the dual reflection equation can be presented in the 
following form

R12(μ−λ)K+
1 (λ)R21(−λ−μ−2η)K+

2 (μ) = K+
2 (μ)R12(−λ−μ−2η)K+

1 (λ)R21(μ−λ).

(3.2)

One can then verify that the mapping

K+(λ) = K−(−λ − η) (3.3)

is a bijection between solutions of the reflection equation and the dual reflection equation. After 
substitution of (3.3) into the dual reflection equation (3.2) one gets the reflection equation (3.1)
with shifted arguments.

The general, spectral parameter dependent, solutions of the reflection equation (3.1) and the 
dual reflection equation (3.2) can be written as follows [67–69]

K−(λ) =
(

κ− sinh(ξ− + λ) ψ− sinh(2λ)

φ− sinh(2λ) κ− sinh(ξ− − λ)

)
, (3.4)

K+(λ) =
(

κ+ sinh(ξ+ − λ − η) −ψ+ sinh (2(λ + η))

−φ+ sinh (2(λ + η)) κ+ sinh(ξ+ + λ + η)

)
. (3.5)

Due to the fact that the reflection matrices K∓(λ) are defined up to multiplicative constants the 
values of parameters κ∓ are not essential, as long as they are different from zero. Therefore they 
could be set to be one without any loss of generality. In particular, this will be evident throughout 
the Sections 5 and 6. However, for completeness, we will keep them in our presentation.

Although the R-matrix (2.1) has the U(1) symmetry the reflection matrices K∓(λ) (3.4) and 
(3.5) cannot be brought to the upper triangular form by the symmetry transformations like in 
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the case of the XXX Heisenberg spin chain [10,12]. Therefore, as we will see in the Section 5, 
triangularity of the reflections matrices has to be imposed as extra conditions on the parameters 
of the reflection matrices.

4. Inhomogeneous XXZ Heisenberg spin chain with boundary terms

In order to develop the formalism necessary to describe an integrable spin chain with non-
periodic boundary condition, we use the Sklyanin approach [6]. The main tool in this framework 
is the corresponding monodromy matrix

T0(λ) = T0(λ)K−
0 (λ)T̃0(λ), (4.1)

it consists of the matrix T (λ) (2.7), a reflection matrix K−(λ) (3.4) and the matrix

T̃0(λ) =
(

Ã(λ) B̃(λ)

C̃(λ) D̃(λ)

)
= L01(λ + α1 + η) · · ·L0N(λ + αN + η). (4.2)

It is important to notice that the identity (2.5) can be rewritten in the form

L0m(λ − αm)L0m(η − λ + αm) =
( sinh (λ − αm + smη) sinh (−λ + αm + (sm + 1)η)

sinh(λ − αm) sinh(−λ + αm + η)

)
10 .

(4.3)

It follows from the equation above and the RLL-relations (2.6) that the RTT-relations (2.9) can 
be recast as follows

T̃0′(μ)R00′(λ + μ)T0(λ) = T0(λ)R00′(λ + μ)T̃0′(μ), (4.4)

T̃0(λ)T̃0′(μ)R00′(μ − λ) = R00′(μ − λ)T̃0′(μ)T̃0(λ). (4.5)

Using the RTT-relations (2.9), (4.4), (4.5) and the reflection equation (3.1) it is straightforward 
to show that the exchange relations of the monodromy matrix T (λ) in V0 ⊗ V0′ are

R00′(λ − μ)T0(λ)R0′0(λ + μ)T0′(μ) = T0′(μ)R00′(λ + μ)T0(λ)R0′0(λ − μ), (4.6)

using the notation of [6]. From the above equation we can read off the commutation relations of 
the entries of the monodromy matrix

T (λ) =
(
A(λ) B(λ)

C(λ) D(λ)

)
. (4.7)

Following Sklyanin [6], as in the case of the XXX Heisenberg spin chain [10,12], we introduce 
the operator

D̂(λ) =D(λ) − sinh(η)

sinh(2λ + η)
A(λ). (4.8)

For convenience, the commutation relations relevant for the implementation of the algebraic 
Bethe ansatz for the XXZ Heisenberg chain are given in the Appendix B.

The exchange relations (4.6) admit a central element, the so-called Sklyanin determinant,

� [T (λ)] = tr00′P −
00′T0(λ − η/2)R00′(2λ)T0′(λ + η/2). (4.9)

Analogously to the XXX Heisenberg spin chain [12], the element � [T (λ)] can be expressed in 
form
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� [T (λ)] = sinh(2λ)D̂(λ−η/2)A(λ+η/2)− sinh(2λ+η)B(λ−η/2)C(λ+η/2). (4.10)

The open chain transfer matrix is given by the trace of the monodromy T (λ) over the auxiliary 
space V0 with an extra reflection matrix K+(λ) [6],

t (λ) = tr0
(
K+

0 (λ)T0(λ)
)
. (4.11)

The reflection matrix K+(λ) (3.5) is the corresponding solution of the dual reflection equa-
tion (3.2). The commutativity of the transfer matrix for different values of the spectral parameter

[t (λ), t (μ)] = 0, (4.12)

is guaranteed by the dual reflection equation (3.2) and the exchange relations (4.6) of the mon-
odromy matrix T (λ) [6].

5. Algebraic Bethe Ansatz

In this section, we study the implementation of the algebraic Bethe ansatz for the XXZ Heisen-
berg spin chain when both reflection matrices K∓(λ) are upper triangular. As opposed to the case 
of the XXX Heisenberg spin chain where the general reflection matrices could be put into the 
upper triangular form without any loss of generality [10,12], here the triangularity of the reflec-
tion matrices has to be imposed as extra conditions on the parameters of the reflection matrices 
K∓(λ) (3.4) and (3.5). Our aim is to obtain the Bethe vectors whose scaling limit corresponds to 
the ones of the XXX Heisenberg chain [12].

As our starting point in the implementation of the algebraic Bethe ansatz, we observe that in 
every Vm =C

2s+1 there exists a vector ωm ∈ Vm such that

S3
mωm = smωm and S+

mωm = 0. (5.1)

We define a vector �+ to be

�+ = ω1 ⊗ · · · ⊗ ωN ∈H. (5.2)

From the definitions (2.4), (2.7) and (5.1) it is straightforward to obtain the action of the entries 
of the monodromy matrix T (λ) (2.7) on the vector �+

A(λ)�+ = a(λ)�+, with a(λ) =
N∏

m=1

sinh(λ − αm + ηsm)

sinh(λ − αm)
, (5.3)

D(λ)�+ = d(λ)�+, with d(λ) =
N∏

m=1

sinh(λ − αm − ηsm)

sinh(λ − αm)
, (5.4)

C(λ)�+ = 0. (5.5)

Analogously, from the definitions (2.4), (4.2) and (5.1) it is straightforward to obtain the action 
of the entries of the monodromy matrix T̃ (λ) (4.2) on the vector �+

Ã(λ)�+ = ã(λ)�+, with ã(λ) =
N∏

m=1

sinh(λ + αm + η(1 + sm))

sinh(λ + αm + η)
, (5.6)

D̃(λ)�+ = d̃(λ)�+, with d̃(λ) =
N∏

m=1

sinh(λ + αm + η(1 − sm))

sinh(λ + αm + η)
, (5.7)

C̃(λ)�+ = 0. (5.8)
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Since the left reflection matrix cannot be brought to the upper triangular form by the U(1) sym-
metry transformations we have to impose an extra condition on the parameters of K−(λ). By 
setting

φ− = 0

in (3.4) the reflection matrix K−(λ) becomes upper triangular and according to definition of the 
Sklyanin monodromy matrix (4.1) we have

T (λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)(
κ− sinh(ξ− + λ) ψ− sinh(2λ)

0 κ− sinh(ξ− − λ)

)(
Ã(λ) B̃(λ)

C̃(λ) D̃(λ)

)
.

(5.9)

From the above equation, using the relations which follow from (4.4) we obtain

A(λ) = κ− sinh(ξ− + λ) A(λ)Ã(λ)

+ (
ψ− sinh(2λ)A(λ) + κ− sinh(ξ− − λ)B(λ)

)
C̃(λ) (5.10)

D(λ) = κ− sinh(ξ− + λ)

(
B̃(λ)C(λ) − sinh(η)

sinh(2λ + η)

(
D(λ)D̃(λ) − Ã(λ)A(λ)

))
+ (

ψ− sinh(2λ) C(λ) + κ− sinh(ξ− − λ) D(λ)
)
D̃(λ) (5.11)

B(λ) = κ− sinh(ξ− + λ)

(
sinh(2λ)

sinh(2λ + η)
B̃(λ)A(λ) − sinh(η)

sinh(2λ + η)
B(λ)D̃(λ)

)
+ (

ψ− sinh(2λ) A(λ) + κ− sinh(ξ− − λ) B(λ)
)
D̃(λ) (5.12)

C(λ) = κ− sinh(ξ− + λ)C(λ)Ã(λ) + (
ψ− sinh(2λ)C(λ) + κ− sinh(ξ− − λ) D(λ)

)
C̃(λ).

(5.13)

The action of the entries of the Sklyanin monodromy matrix on the vector �+ follows from the 
above relations (5.10)–(5.13) and the formulae (5.3)–(5.5) and (5.6)–(5.8)

C(λ)�+ = 0, (5.14)

A(λ)�+ = α(λ)�+, with α(λ) = κ− sinh(ξ− + λ) a(λ)̃a(λ), (5.15)

D(λ)�+ = δ(λ)�+, with (5.16)

δ(λ) = κ−
(

sinh(ξ− − λ) − sinh(ξ− + λ)
sinh(η)

sinh(2λ + η)

)
d(λ)d̃(λ)

+ κ− sinh(ξ− + λ)
sinh(η)

sinh(2λ + η)
a(λ)̃a(λ).

In what follows we will also use the fact that �+ is an eigenvector of the operator D̂(λ) (4.8)

D̂(λ)�+ = δ̂(λ)�+, with δ̂(λ) = δ(λ) − sinh(η)

sinh(2λ + η)
α(λ), (5.17)

or explicitly

δ̂(λ) = κ−
(

sinh(ξ− − λ) − sinh(ξ− + λ)
sinh(η)

sinh(2λ + η)

)
d(λ)d̃(λ). (5.18)

The transfer matrix of the inhomogeneous XXZ chain
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t0(λ) = tr0
(
K+(λ)T (λ)

)
, (5.19)

with the triangular K-matrix

K+(λ) =
(

κ+ sinh(ξ+ − λ − η) −ψ+ sinh (2(λ + η))

0 κ+ sinh(ξ+ + λ + η)

)
, (5.20)

i.e. the matrix K+(λ) = K−(−λ − η) were we have set

φ+ = 0,

can be expressed using Sklyanin’s D̂(λ) operator (4.8)

t (λ) = κ1(λ) A(λ) + κ2(λ) D̂(λ) + κ12(λ) C(λ), (5.21)

with

κ1(λ) = κ+ sinh(ξ+ − λ)
sinh(2(λ + η))

sinh(2λ + η)
, κ2(λ) = κ+ sinh(ξ+ + λ + η),

κ12(λ) = −ψ+ sinh(2(λ + η)). (5.22)

Evidently, due to (5.14)–(5.18), the vector �+ (5.2) is an eigenvector of the transfer matrix

t (λ)�+ = (
κ1(λ)α(λ) + κ2(λ)̂δ(λ)

)
�+ = �0(λ)�+. (5.23)

For simplicity we have suppressed the dependence of the eigenvalue �0(λ) on the boundary 
parameters κ+, ξ+ and ψ+ as well as the quasi-classical parameter η.

Let us consider

�̃1(μ) = B(μ)�+ − ψ+

κ+

(
sinh(2μ)

sinh(2μ + η)
cosh(ξ+ − μ) α(μ)

− cosh(ξ+ + μ + η) δ̂(μ)
)
�+. (5.24)

A straightforward calculation, using the relations (B.2), (B.3) and (B.4), shows that the off-shell 
action of the transfer matrix (5.21) on �̃1(μ) is given by

t (λ)�̃1(μ) = �1(λ,μ)�̃1(μ) + κ+ sinh(ξ+ − μ)
sinh(η) sinh(2(λ + η))

sinh(λ − μ) sinh(λ + μ + η)
×

× F1(μ)�̃1(λ), (5.25)

where the eigenvalue �1(λ, μ) is given by

�1(λ,μ) = κ1(λ)
sinh(λ + μ) sinh(λ − μ − η)

sinh(λ − μ) sinh(λ + μ + η)
α(λ)

+ κ2(λ)
sinh(λ − μ + η) sinh(λ + μ + 2η)

sinh(λ − μ) sinh(λ + μ + η)
δ̂(λ). (5.26)

Evidently �1(λ, μ) depends also on boundary parameters κ+, ξ+ and the quasi-classical param-
eter η, but these parameters are omitted in order to simplify the formulae. The unwanted term on 
the right hand side (5.25) is annihilated by the Bethe equation

F1(μ) = sinh(2μ)

sinh(2μ + η)
α(μ) − sinh(ξ+ + μ + η)

sinh(ξ+ − μ)
δ̂(μ) = 0, (5.27)

or equivalently,
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α(μ)

δ̂(μ)
= sinh(2(μ + η)) κ2(μ)

sinh(2μ) κ1(μ)
= sinh(2μ + η) sinh(ξ+ + μ + η)

sinh(2μ) sinh(ξ+ − μ)
. (5.28)

Thus we have shown that �̃1(μ) (5.32) is a Bethe vector of the transfer matrix (5.21). Moreover, 
the vector �̃1(μ) in the scaling limit yields the corresponding Bethe vector of the XXX Heisen-
berg spin chain [12] and it was this connection that led us to this particular form of the Bethe 
vector. However, it is important to note that this is not the only possible form of the Bethe vector. 
Namely, we notice the following important identity

�0(λ) − �1(λ,μ) = κ+ sinh(ξ+ − λ)
sinh(η) sinh(2(λ + η))

sinh(λ − μ) sinh(λ + μ + η)
F1(λ). (5.29)

It follows that �̃1(μ) (5.24) can be generalized by adding a term proportional to F1(μ)

�̃1(μ,C1) = �̃1(μ) + C1
ψ+

κ+ sinh(ξ+ − μ)F1(μ)�+, (5.30)

where C1 is independent of μ. A direct consequence of the above identity is the off-shell action 
of the transfer matrix on �̃1(μ, C1),

t (λ)�̃1(μ,C1) = �1(λ,μ)�̃1(μ,C1) + κ+ sinh(ξ+ − μ)
sinh(η) sinh(2(λ + η))

sinh(λ − μ) sinh(λ + μ + η)
×

× F1(μ)�̃1(λ,C1). (5.31)

Therefore �̃1(μ, C1) (5.30) can be considered as the general form of the Bethe vector of the 
transfer matrix (5.21) corresponding to the eigenvalue �1(λ, μ) (5.26).

By setting C1 = 1 in (5.30) we obtain another particular solution for the Bethe vector, that 
will turn out to be more suitable for the recurrence procedure

�1(μ) = �̃1(μ,C1 = 1) = B(μ)�+ + b1(μ)�+, (5.32)

where b1(μ) is given by

b1(μ) =
(

−ψ+

κ+

)(
sinh(2μ)

sinh(2μ + η)
e−(ξ+−μ) α(μ) − e−(ξ++μ+η) δ̂(μ)

)
. (5.33)

We seek the Bethe vector �̃2(μ1, μ2) in the form

�̃2(μ1,μ2) = B(μ1)B(μ2)�+ + b̃
(1)
2 (μ2;μ1)B(μ1)�+ + b̃

(1)
2 (μ1;μ2)B(μ2)�+

+ b̃
(2)
2 (μ1,μ2)�+. (5.34)

One possible choice of the coefficient functions ̃b(1)
2 (μ1; μ2) and ̃b(2)

2 (μ1, μ2) is given by

b̃
(1)
2 (μ1;μ2) =

(
−ψ+

κ+

)(
sinh(2μ1)

sinh(2μ1 + η)

sinh(μ1 + μ2) sinh(μ1 − μ2 − η)

sinh(μ1 − μ2) sinh(μ1 + μ2 + η)
×

× cosh(ξ+ − μ1) α(μ1)

− sinh(μ1 − μ2 + η) sinh(μ1 + μ2 + 2η)

sinh(μ1 − μ2) sinh(μ1 + μ2 + η)
cosh(ξ+ + μ1 + η) δ̂(μ1)

)
,

(5.35)

and
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b̃
(2)
2 (μ1,μ2) =

(
ψ+

κ+

)2 (
sinh(μ1 + μ2)

sinh(μ1 + μ2 + η)

sinh(2μ1)

sinh(2μ1 + η)

sinh(2μ2)

sinh(2μ2 + η)
×

× cosh(2ξ+ − μ1 − μ2 + η)α(μ1)α(μ2)

− sinh(2μ1)

sinh(2μ1 + η)

sinh(μ1 − μ2 − η)

sinh(μ1 − μ2)
cosh(2ξ+ − μ1 + μ2 + 2η)α(μ1)̂δ(μ2)

− sinh(μ2 − μ1 − η)

sinh(μ2 − μ1)

sinh(2μ2)

sinh(2μ2 + η)
cosh(2ξ+ + μ1 − μ2 + 2η) δ̂(μ1)α(μ2)

+ sinh(μ1 + μ2 + 2η)

sinh(μ1 + μ2 + η)
cosh(2ξ+ + μ1 + μ2 + 3η) δ̂(μ1)̂δ(μ2)

)
. (5.36)

Due to the fact that the operators B(μ1) and B(μ2) commute (B.1) and that b̃(2)
2 (μ1, μ2) =

b̃
(2)
2 (μ2, μ1) it follows that �̃2(μ1, μ2) is symmetric with respect to the interchange of the vari-

ables μ1 and μ2.
Starting from the definitions (5.21) and (5.34), using the relations (B.8), (B.9) and (B.10), 

from the Appendix B, to push the operators A(λ), D̂(λ) and C(λ) to the right and after rearrang-
ing some terms, we obtain the off-shell action of transfer matrix t (λ) on �̃2(μ1, μ2)

t (λ)�̃2(μ1,μ2) = �2(λ, {μi})�̃2(μ1,μ2) +
2∑

i=1

sinh(η) sinh(2(λ + η))

sinh(λ − μi) sinh(λ + μi + η)
×

× κ+ sinh(ξ+ − μi) F2(μi;μ3−i )�̃2(λ,μ3−i ), (5.37)

where the eigenvalue is given by

�2(λ, {μi}) = κ1(λ) α(λ)

2∏
i=1

sinh(λ + μi) sinh(λ − μi − η)

sinh(λ − μi) sinh(λ + μi + η)

+ κ2(λ) δ̂(λ)

2∏
i=1

sinh(λ − μi + η) sinh(λ + μi + 2η)

sinh(λ − μi) sinh(λ + μi + η)
(5.38)

and the two unwanted terms in (5.37) are canceled by the Bethe equations which follow from

F2(μi;μ3−i ) = sinh(2μi)

sinh(2μi + η)

sinh(μi + μ3−i ) sinh(μi − μ3−i − η)

sinh(μi − μ3−i ) sinh(μi + μ3−i + η)
α(μi)

− sinh(ξ+ + μi + η)

sinh(ξ+ − μi)
×

× sinh(μi − μ3−i + η) sinh(μi + μ3−i + 2η)

sinh(μi − μ3−i ) sinh(μi + μ3−i + η)
δ̂(μi) = 0, (5.39)

with i = {1, 2}. Therefore the Bethe equations are

α(μi)

δ̂(μi)
= sinh(2(μi + η)) κ2(μi)

sinh(2μi) κ1(μi)

sinh(μi − μ3−i + η) sinh(μi + μ3−i + 2η)

sinh(μi + μ3−i ) sinh(μi − μ3−i − η)
, (5.40)

where i = {1, 2}. This shows that �̃2(μ1, μ2) (5.34) is a Bethe vector of the transfer matrix (5.21)
and, again, it is the one which in the scaling limit corresponds to the Bethe vector of the XXX 
chain [12].
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Furthermore, due to the following identities

�1(λ,μ2) − �2(λ,μ1,μ2) = κ+ sinh(ξ+ − λ)
sinh(η) sinh(2(λ + η))

sinh(λ − μ1) sinh(λ + μ1 + η)
F2(λ;μ2),

(5.41)

�1(λ,μ1) − �2(λ,μ1,μ2) = κ+ sinh(ξ+ − λ)
sinh(η) sinh(2(λ + η))

sinh(λ − μ2) sinh(λ + μ2 + η)
F2(λ;μ1),

(5.42)

F2(μ2;μ1) F1(μ1) − F2(μ1;μ2) F2(μ2;λ)

sinh(λ − μ1) sinh(λ + μ1 + η)

+ F2(μ1;μ2) F1(μ2) − F2(μ2;μ1) F2(μ1;λ)

sinh(λ − μ2) sinh(λ + μ2 + η)
= 0, (5.43)

the Bethe vector �̃2(μ1, μ2) (5.34) can be generalized

�̃2(μ1,μ2,C1,C2) = �̃2(μ1,μ2) + C2
ψ+

κ+
(
sinh(ξ+ − μ1)F2(μ1;μ2)�̃1(μ2,C1)

+ sinh(ξ+ − μ2)F2(μ2;μ1)�̃1(μ1,C1)
)
,

(5.44)

where C2 is independent of μ1 and μ2 and �̃1(μi, C1) is the Bethe vector given in (5.30), so that 
the off-shell action of transfer matrix t (λ) on �̃2(μ1, μ2, C1, C2) reads

t (λ)�̃2(μ1,μ2,C1,C2) = �2(λ, {μi})�̃2(μ1,μ2,C1,C2)

+
2∑

i=1

sinh(η) sinh(2(λ + η))

sinh(λ − μi) sinh(λ + μi + η)
κ+ sinh(ξ+ − μi) ×

× F2(μi;μ3−i )�̃2(λ,μ3−i ,C1,C2). (5.45)

Once more in (5.44) we find that the general form of Bethe vectors can be expressed as a sum 
of a particular vector and a linear combination of lower order Bethe vectors. Due to identities 
(5.41)–(5.43) this linear combination of lower order Bethe vectors corresponds the same eigen-
value as the particular vector (5.45). This is indeed the case with Bethe vectors of any order, 
for details see Appendix C. To our knowledge, the existence of this freedom in the choice of 
the Bethe vector has hitherto remained unnoticed in the literature. In certain cases, it seems that 
omission to note this freedom can be traced to imposing, by some authors [13], too strong re-
quirements on the vanishing of the off-shell terms. Namely, all the terms (including vacuum ones) 
should be required to vanish only once the Bethe equations are imposed, and not necessarily to 
be identically zero.

However, in order to have the recurrence procedure for defining the higher order Bethe vectors 
it is instructive to set C1 = − tanh(η), C2 = 1 in (5.44) and to consider a particular Bethe vector

�2(μ1,μ2) = �̃2(μ1,μ2,C1 = − tanh(η),C2 = 1)

= B(μ1)B(μ2)�+ + b
(1)
2 (μ2;μ1)B(μ1)�+ + b

(1)
2 (μ1;μ2)B(μ2)�+

+ b
(2)
2 (μ1,μ2)�+,

(5.46)

where the functions b(1)
2 (μ1; μ2) and b(2)

2 (μ1, μ2) are given by
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b
(1)
2 (μ1;μ2) =

(
−ψ+

κ+

)(
sinh(μ1 + μ2) sinh(μ1 − μ2 − η)

sinh(μ1 − μ2) sinh(μ1 + μ2 + η)
×

× sinh(2μ1)

sinh(2μ1 + η)
e−(ξ+−μ1) α(μ1)

− sinh(μ1 − μ2 + η) sinh(μ1 + μ2 + 2η)

sinh(μ1 − μ2) sinh(μ1 + μ2 + η)
e−(ξ++μ1+η) δ̂(μ1)

)
, (5.47)

and

b
(2)
2 (μ1,μ2) =

(
ψ+

κ+

)2 (
sinh(μ1 + μ2)

sinh(μ1 + μ2 + η)
×

× sinh(2μ1)

sinh(2μ1 + η)

sinh(2μ2)

sinh(2μ2 + η)
e−(2ξ+−μ1−μ2+η)α(μ1)α(μ2)

− sinh(2μ1)

sinh(2μ1 + η)

sinh(μ1 − μ2 − η)

sinh(μ1 − μ2)
e−(2ξ+−μ1+μ2+2η) α(μ1)̂δ(μ2)

− sinh(μ2 − μ1 − η)

sinh(μ2 − μ1)

sinh(2μ2)

sinh(2μ2 + η)
e−(2ξ++μ1−μ2+2η) δ̂(μ1)α(μ2)

+ sinh(μ1 + μ2 + 2η)

sinh(μ1 + μ2 + η)
e−(2ξ++μ1+μ2+3η) δ̂(μ1)̂δ(μ2)

)
. (5.48)

A key observation here is that the above function b(2)
2 (μ1, μ2) can be expressed in terms of the 

coefficient functions b(1)
2 (μ1; μ2) (5.47) and b1(μi) (5.33) as follows

b
(2)
2 (μ1,μ2) = 1

1 + e2η

(
b

(1)
2 (μ1;μ2) b1(μ2) + b

(1)
2 (μ2;μ1) b1(μ1)

)
. (5.49)

This relation is essential in the recurrence procedure for obtaining general form of the Bethe 
vectors. It coincides, up to the multiplicative factor, with the recurrence relation defining the 
function b(2)

2 (μ1, μ2) in the case of the corresponding Bethe vector of the XXX Heisenberg spin 
chain, the equation (V.25) in [12].

Although, as we have seen, the Bethe vectors �1(μ) (5.32) and �2(μ1, μ2) (5.46) corre-
spond to the particular choice of parameters Ci in (5.30) and (5.44), respectively, it turns out 
that these vectors admit the recurrence procedure analogous to the one applied in the case of 
the XXX Heisenberg spin chain [12]. Before addressing the general case of the Bethe vector 
�M(μ1, μ2, . . . , μM), for an arbitrary positive integer M , we will present below the M = 3 case 
as an insightful example. The Bethe vector �3(μ1, μ2, μ3) we propose is a symmetric function 
of its arguments and it is given as the following sum of eight terms

�3(μ1,μ2,μ3) = B(μ1)B(μ2)B(μ3)�+ + b
(1)
3 (μ3;μ2,μ1)B(μ1)B(μ2)�+

+ b
(1)
3 (μ1;μ2,μ3)B(μ2)B(μ3)�+ + b

(1)
3 (μ2;μ1,μ3)B(μ1)B(μ3)�+

+ b
(2)
3 (μ1,μ2;μ3)B(μ3)�+ + b

(2)
3 (μ1,μ3;μ2)B(μ2)�+

+ b
(2)
3 (μ2,μ3;μ1)B(μ1)�+ + b

(3)
3 (μ1,μ2,μ3)�+,

(5.50)

where the coefficient functions b(1)
3 (μ1; μ2, μ3), b

(2)
3 (μ1, μ2; μ3) and b(3)

3 (μ1, μ2, μ3) are given 
by
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b
(1)
3 (μ1;μ2,μ3) =

(
−ψ+

κ+

)(
3∏

i=2

sinh(μ1 + μi) sinh(μ1 − μi − η)

sinh(μ1 − μi) sinh(μ1 + μi + η)
×

× sinh(2μ1)

sinh(2μ1 + η)
e−(ξ+−μ1) α(μ1)

−
3∏

i=2

sinh(μ1 − μi + η) sinh(μ1 + μi + 2η)

sinh(μ1 − μi) sinh(μ1 + μi + η)
e−(ξ++μ1+η) δ̂(μ1)

)
,

(5.51)

b
(2)
3 (μ1,μ2;μ3) = 1

1 + e2η

(
b

(1)
3 (μ1;μ2,μ3) b

(1)
2 (μ2;μ3)

+ b
(1)
3 (μ2;μ1,μ3) b

(1)
2 (μ1;μ3)

)
, (5.52)

b
(3)
3 (μ1,μ2,μ3) = 1

1 + 2e2η + 2e4η + e6η

(
b

(1)
3 (μ1;μ2,μ3) b

(1)
2 (μ2;μ3) b1(μ3)

+ b
(1)
3 (μ1;μ2,μ3) b

(1)
2 (μ3;μ2) b1(μ2)

+ b
(1)
3 (μ2;μ1,μ3) b

(1)
2 (μ1;μ3) b1(μ3)

+ b
(1)
3 (μ2;μ1,μ3) b

(1)
2 (μ3;μ1) b1(μ1)

+ b
(1)
3 (μ3;μ1,μ2) b

(1)
2 (μ1;μ2) b1(μ2)

+ b
(1)
3 (μ3;μ1,μ2) b

(1)
2 (μ2;μ1) b1(μ1)

)
. (5.53)

It is important to notice that the coefficient functions b(2)
3 (μ1, μ2; μ3) and b(3)

3 (μ1, μ2, μ3) are 

defined above in terms of the function b(1)
3 (μ1; μ2, μ3) and the functions b(1)

2 (μ1; μ2) and b1(μ)

already given in (5.47) and (5.33), respectively. The action of t (λ) (5.21) on �3(μ1, μ2, μ3), 
obtained using evident generalization of the formulas (B.8), (B.9) and (B.10) and subsequent 
rearranging of terms, reads

t (λ)�3(μ1,μ2,μ3) = �3(λ, {μi})�3(μ1,μ2,μ3) +
3∑

i=1

sinh(η) sinh(2(λ + η))

sinh(λ − μi) sinh(λ + μi + η)
×

× κ+ sinh(ξ+ − μi) F3(μi; {μj }j �=i ) �3(λ, {μj }j �=i ),

(5.54)

where the eigenvalue is given by

�3(λ, {μi}) = κ1(λ) α(λ)

3∏
i=1

sinh(λ + μi) sinh(λ − μi − η)

sinh(λ − μi) sinh(λ + μi + η)

+ κ2(λ) δ̂(λ)

3∏
i=1

sinh(λ − μi + η) sinh(λ + μi + 2η)

sinh(λ − μi) sinh(λ + μi + η)
(5.55)

and the three unwanted terms in (5.54) are canceled by the Bethe equations which follow from
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F3(μi; {μj }j �=i ) = sinh(2μi)

sinh(2μi + η)
α(μi)

3∏
j=1
j �=i

sinh(μi + μj ) sinh(μi − μj − η)

sinh(μi − μj ) sinh(μi + μj + η)

− sinh(ξ+ + μi + η)

sinh(ξ+ − μi)
δ̂(μi)

3∏
j=1
j �=i

sinh(μi − μj + η) sinh(μi + μj + 2η)

sinh(μi − μj ) sinh(μi + μj + η)

= 0, (5.56)

with i = {1, 2, 3}. Therefore the Bethe equations are

α(μi)

δ̂(μi)
= sinh(2(μi + η)) κ2(μi)

sinh(2μi) κ1(μi)

3∏
j=1
j �=i

sinh(μi − μj + η) sinh(μi + μj + 2η)

sinh(μi + μj ) sinh(μi − μj − η)
, (5.57)

where i = {1, 2, 3}. Thus, as expected, we have obtained the strikingly simple expression for the 
off-shell action of the transfer matrix of the XXZ Heisenberg chain with the upper triangular 
reflection matrices on the Bethe vector �3(μ1, μ2, μ3), which is by definition (5.50) symmetric 
function of its arguments {μi}3

I=1. As before, �3(μ1, μ2, μ3) is a special case of the more general 
Bethe vector �̃3(μ1, μ2, μ3, C1, C2, C3) we have found along the lines similar to the M = 1 and 
M = 2 cases, for details see the Appendix C, where we also give the generalized form of the 
Bethe vector for arbitrary M. The most significant advantage of this particular form of the Bethe 
vector is that it is defined by the recurrence procedure which is analogous to the one proposed 
in the case of the XXX Heisenberg chain [12]. Notice the right-hand-side of the equations (5.52)
and (5.53) differ only by the multiplicative factors from the analogous equations (V.32) and 
(V.34) in [12].

We readily proceed to define �M(μ1, μ2, . . . , μM) as a sum of 2M terms, for an arbitrary 
positive integer M , and as a symmetric function of its arguments by the recurrence procedure

�M(μ1,μ2, . . . ,μM) = B(μ1)B(μ2) · · ·B(μM)�+
+ b

(1)
M (μM ;μ1,μ2, . . . ,μM−1)B(μ1)B(μ2) · · ·B(μM−1)�+

+ · · · + b
(2)
M (μM−1,μM ;μ1,μ2, . . . ,μM−2)B(μ1)B(μ2) · · ·B(μM−2)�+

...

+ b
(M−1)
M (μ1,μ2, . . . ,μM−1;μM)B(μM)�+ + b

(M)
M (μ1,μ2, . . . ,μM)�+,

(5.58)

where the first coefficient function is explicitly given by

b
(1)
M (μ1;μ2,μ3, . . . ,μM)

=
(

−ψ+

κ+

)(
M∏
i=2

sinh(μ1 + μi) sinh(μ1 − μi − η)

sinh(μ1 − μi) sinh(μ1 + μi + η)

sinh(2μ1)

sinh(2μ1 + η)
×

× e−(ξ+−μ1) α(μ1) −
M∏
i=2

sinh(μ1 − μi + η) sinh(μ1 + μi + 2η)

sinh(μ1 − μi) sinh(μ1 + μi + η)
e−(ξ++μ1+η) δ̂(μ1)

)
,

(5.59)
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and all the other coefficient functions are given by the following recurrence formulae

b
(2)
M (μ1,μ2;μ3, . . . ,μM)

= q−1

[2]q !
(
b

(1)
M (μ1;μ2,μ3, . . . ,μM)b

(1)
M−1(μ2;μ3, . . . ,μM)

+ b
(1)
M (μ2;μ1,μ3, . . . ,μM)b

(1)
M−1(μ1;μ3, . . . ,μM)

)
, (5.60)

...

b
(M−1)
M (μ1,μ2, . . . ,μM−1;μM)

= q− (M−1)(M−2)
2

[M − 1]q !
∑

ρ∈SM−1

b
(1)
M (μρ(1);μρ(2), . . . ,μM)×

× b
(1)
M−1(μρ(2);μρ(3), . . . ,μM)b

(1)
M−2(μρ(3);μρ(4), . . . ,μM) · · ·b(1)

2 (μρ(M−1);μM)

(5.61)

b
(M)
M (μ1,μ2, . . . ,μM)

= q− M(M−1)
2

[M]q !
∑

σ∈SM

b
(1)
M (μσ(1);μσ(2), . . . ,μσ(M)) b

(1)
M−1(μσ(2);μσ(3), . . . ,μσ(M))×

× b
(1)
M−2(μσ(3);μσ(4), . . . ,μσ(M)) · · ·b(1)

2 (μσ(M−1);μσ(M)) b1(μσ(M)), (5.62)

where, for a positive integer N , [N ]q = qN−q−N

q−q−1 and [N ]q ! = [N ]q · [N − 1]q · · · [2]q · [1]q , with 
q = eη and SM−1 and SM are the symmetric groups of degree M − 1 and M , respectively. As 
is the case M = 3, the formulae (5.60)–(5.62) are deformation of the corresponding relations 
(V.32)–(V.35) in the case of the XXX Heisenberg chain [12].

A straightforward calculation based on evident generalization of the formulas (B.8), (B.9) and 
(B.10) and subsequent rearranging of terms, yields the off-shell action of the transfer matrix on 
the Bethe vector �M(μ1, μ2, . . . , μM)

t (λ)�M(μ1,μ2, . . . ,μM) = �M(λ, {μi})�M(μ1,μ2, . . . ,μM)

+
M∑
i=1

sinh(η) sinh(2(λ + η))

sinh(λ − μi) sinh(λ + μi + η)
×

× κ+ sinh(ξ+ − μi) FM(μi; {μj }j �=i ) �M(λ, {μj }j �=i ),

(5.63)

where the corresponding eigenvalue is given by

�M(λ, {μi}) = κ1(λ) α(λ)

M∏
i=1

sinh(λ + μi) sinh(λ − μi − η)

sinh(λ − μi) sinh(λ + μi + η)

+ κ2(λ) δ̂(λ)

M∏
i=1

sinh(λ − μi + η) sinh(λ + μi + 2η)

sinh(λ − μi) sinh(λ + μi + η)
(5.64)
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and the M unwanted terms on the right hand side of (5.63) are canceled by the Bethe equations 
which follow from

FM(μi; {μj }j �=i ) = sinh(2μi)

sinh(2μi + η)
α(μi)

M∏
j=1
j �=i

sinh(μi + μj ) sinh(μi − μj − η)

sinh(μi − μj ) sinh(μi + μj + η)

− sinh(ξ+ + μi + η)

sinh(ξ+ − μi)
δ̂(μi)

M∏
j=1
j �=i

sinh(μi − μj + η) sinh(μi + μj + 2η)

sinh(μi − μj ) sinh(μi + μj + η)

= 0, (5.65)

with i = {1, 2, . . . , M}. Therefore the Bethe equations are

α(μi)

δ̂(μi)
= sinh(2(μi + η)) κ2(μi)

sinh(2μi) κ1(μi)

M∏
j=1
j �=i

sinh(μi − μj + η) sinh(μi + μj + 2η)

sinh(μi + μj ) sinh(μi − μj − η)
, (5.66)

where i = {1, 2, . . . , M}. The Bethe vector �M(μ1, μ2, . . . , μM) we have defined in (5.58) yields 
the strikingly simple expression (5.63) for the off-shell action of the transfer matrix t (λ) (5.21). 
Thus we have fully implemented the algebraic Bethe ansatz for the XXZ Heisenberg spin chain 
with the triangular reflection matrices. In the following section, we will explored further these 
results through the so-called quasi-classical limit in order to investigate the corresponding Gaudin 
model [52].

6. Corresponding Gaudin model

As it is well known [12,52,54,55], the study of the open Gaudin model requires that the 
parameters of the reflection matrices on the left and on the right end of the chain are the same. 
Thus, we impose

lim
η→0

(
K+(λ)K−(λ)

)
= κ2 sinh(ξ − λ) sinh(ξ + λ)1. (6.1)

Notice that in general this not the case in the study of the open spin chain. However, this condition 
is essential for the Gaudin model. Therefore we will write

K−(λ) ≡ K(λ) =
(

κ sinh(ξ + λ) ψ sinh(2λ)

0 κ sinh(ξ − λ)

)
(6.2)

so that

K+(λ) = K(−λ − η) =
(

κ sinh(ξ − λ − η) −ψ sinh (2(λ + η))

0 κ sinh(ξ + λ + η)

)
. (6.3)

In [55] we have derived the generating function of the trigonometric Gaudin Hamiltonians 
with boundary terms following the approach of Sklyanin in the periodic case [28,56]. Analo-
gously to the rational case [52,12], our derivation is based on the quasi-classical expansion of the 
linear combination of the transfer matrix of the XXZ chain and the central element, the so-called 
Sklyanin determinant. Finally, the expansion reads [55]
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t (λ) − � [T (λ)]

sinh(2λ)
= κ2 sinh(ξ + λ) sinh(ξ − λ)1

+ η
κ2

2

(
cosh(2ξ) coth(2λ) − cosh(4λ)

sinh(2λ)

)
1

+ η2

2
κ2

(
sinh(ξ + λ) sinh(ξ − λ) (τ (λ) + 1) − 1

2
cosh(2λ)1

)
+O(η3),

(6.4)

where τ(λ) is the generating function of the trigonometric Gaudin Hamiltonians with boundary 
terms

τ(λ) = tr0 L2
0(λ), (6.5)

where

L0(λ) = L0(λ) − K0(λ)L0(−λ)K−1
0 (λ), (6.6)

with the Gaudin Lax matrix defined by

L0(λ) =
N∑

m=1

(
σ 3

0 ⊗ coth(λ − αm)S3
m + σ+

0 ⊗ S−
m + σ−

0 ⊗ S+
m

2 sinh(λ − αm)

)
, (6.7)

and K0(λ) the upper triangular reflection matrix given in (6.2). The trigonometric Gaudin Hamil-
tonians with the boundary terms are obtained from the residues of the generating function τ(λ)

(6.5) at poles λ = ±αm:

Res
λ=αm

τ(λ) = 4Hm and Res
λ=−αm

τ(λ) = (−4)Hm (6.8)

where

Hm =
N∑

n�=m

(
coth(αm − αn) S3

mS3
n + S+

mS−
n + S−

mS+
n

2 sinh(αm − αn)

)
+

N∑
n=1

coth(αm + αn)
S3

mS3
n + S3

nS3
m

2

+ ψ

κ

sinh(2αm)

sinh(ξ + αm)

N∑
n=1

S3
mS+

n + S+
n S3

m

2 sinh(αm + αn)
+ sinh(ξ − αm)

2 sinh(ξ + αm)

N∑
n=1

S−
mS+

n + S+
n S−

m

2 sinh(αm + αn)

− ψ

κ

sinh(2αm)

sinh(ξ − αm)

N∑
n=1

coth(αm + αn)
S+

mS3
n + S3

nS+
m

2

+ sinh(ξ + αm)

2 sinh(ξ − αm)

N∑
n=1

S+
mS−

n + S−
n S+

m

2 sinh(αm + αn)

− ψ2

κ2

sinh2(2αm)

2 sinh(ξ − αm) sinh(ξ + αm)

N∑
n=1

S+
mS+

n + S+
n S+

m

2 sinh(αm + αn)
. (6.9)

Since the central element � [T (λ)] can be expressed in form (4.10) it is evident that the vector 
�+ (5.2) is its eigenvector

� [T (λ)]�+ = sinh(2λ) α(λ + η/2) δ̂(λ − η/2)�+. (6.10)
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Moreover, it follows from (5.23) and (6.10) that �+ (5.2) is an eigenvector of the difference(
t (λ) − � [T (λ)]

sinh(2λ)

)
�+ = (

�0(λ) − α(λ + η/2) δ̂(λ − η/2)
)
�+. (6.11)

We can expand the eigenvalue on the right hand side of the equation above in powers of η, taking 
into account that φ = 0,(

κ1(λ)α(λ) + κ2(λ)̂δ(λ) − α(λ + η/2) δ̂(λ − η/2)
) = κ2 sinh(ξ + λ) sinh(ξ − λ)

+ η
κ2

2

(
cosh(2ξ) coth(2λ) − cosh(4λ)

sinh(2λ)

)
+ η2

2
κ2

(
sinh(ξ + λ) sinh(ξ − λ) (χ0(λ) + 1) − 1

2
cosh(2λ)

)
+O(η3). (6.12)

Substituting the expansion above into the right hand side of (6.11) and using (6.4) to expand the 
left hand side, it follows that the vector �+ (5.2) is an eigenvector of the generating function of 
the Gaudin Hamiltonians

τ(λ)�+ = χ0(λ)�+, (6.13)

with

χ0(λ) = 2
N∑

m,n=1

(
smsn + sinh(ξ + αm) sinh(ξ − αm)

sinh(ξ + λ) sinh(ξ − λ)
smδmn

)
×

× (coth(λ − αm) coth(λ − αn) + 2 coth(λ − αm) coth(λ + αn)

+ coth(λ + αm) coth(λ + αn)) .

(6.14)

Moreover we can obtain the spectrum of the generating function of the Gaudin Hamiltonians 
through the expansion(

�M(λ, {μj }Mj=1) − α(λ + η/2) δ̂(λ − η/2)
)

= κ2 sinh(ξ + λ) sinh(ξ − λ)

+ η
κ2

2

(
cosh(2ξ) coth(2λ) − cosh(4λ)

sinh(2λ)

)
+ η2

2
κ2

(
sinh(ξ + λ) sinh(ξ − λ)

(
χM(λ, {μj }Mj=1) + 1

)
− 1

2
cosh(2λ)

)
+O(η3),

(6.15)

where

χM(λ, {μj }Mj=1) = −2 sinh(2λ)

sinh(ξ − λ) sinh(ξ + λ)

M∑
j=1

sinh(2λ)

sinh(λ − μj ) sinh(λ + μj )

+ 4
M−1∑
j=1

M∑
k=j+1

sinh(2λ)

sinh(λ − μj ) sinh(λ + μj )

sinh(2λ)

sinh(λ − μk) sinh(λ + μk)

− 4
N∑

m=1

sm sinh(2λ)

sinh(λ − αm) sinh(λ + αm)

M∑
j=1

sinh(2λ)

sinh(λ − μj ) sinh(λ + μj )

(6.16)
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+ 2
N∑

m,n=1

(
smsn + sinh(ξ + αm) sinh(ξ − αm)

sinh(ξ + λ) sinh(ξ − λ)
smδmn

)
×

× (coth(λ − αm) coth(λ − αn) + 2 coth(λ − αm) coth(λ + αn)

+ coth(λ + αm) coth(λ + αn)) .

As our next important step toward obtaining the formulas of the algebraic Bethe ansatz for 
the corresponding Gaudin model we observe that the first term in the expansion of the function 
FM(μ1; μ2, . . . , μM) (5.65) in powers of η is

FM(μ1;μ2, . . . ,μM) = ηfM(μ1;μ2, . . . ,μM) +O(η2), (6.17)

where

fM(μ1;μ2, . . . ,μM) = κ sinh(2μ1)

(
1

sinh(ξ − μ1)
− 2 sinh(ξ + μ1)×

×
M∑

j=2

1

sinh(μ1 − μj ) sinh(μ1 + μj )

+ 2 sinh(ξ + μ1)

N∑
m=1

sm

sinh(μ1 − αm) sinh(μ1 + αm)

)
.

(6.18)

Along the lines developed in [12,52,55], we have used the formulas (5.32) and (5.33) as well 
as (5.12), (5.16) and (5.18) in order to expand the Bethe vector �1(μ) of the XXZ Heisenberg 
spin chain in powers of η and obtained the Bethe vector ϕ1(μ) of the corresponding trigonometric 
Gaudin model

�1(μ) = η ϕ1(μ) +O(η2), (6.19)

where

ϕ1(μ) = κ sinh(2μ)

(
N∑

m=1

sinh(ξ − αm) S−
m

sinh(μ − αm) sinh(μ + αm)

+ψ

κ

(
1 +

N∑
m=1

sm
e−2ξ + sinh(2αm) − cosh(2μ)

sinh(μ − αm) sinh(μ + αm)

))
�+. (6.20)

The off-shell action of the difference of the transfer matrix of the XXX chain and the central 
element, the so-called Sklyanin determinant, on the Bethe vector �1(μ) (5.32) is obtained from 
(4.10) and (5.31) as follows(

t (λ) − � [T (λ)]

sinh(2λ)

)
�1(μ) = (

�1(λ,μ) − α(λ + η/2) δ̂(λ − η/2)
)
�1(μ)

+ κ sinh(ξ − μ)
sinh(η) sinh(2(λ + η))

sinh(λ − μ) sinh(λ + μ + η)
F1(μ)�1(λ).

(6.21)

Finally, the off-shell action of the generating function the Gaudin Hamiltonians on the vector 
ϕ1(μ) can be obtained from the equation above by using the expansion (6.4) and (6.19) on the 
left hand side as well as the expansion (6.15), (6.17) and (6.19) on the right hand side
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τ(λ)ϕ1(μ) = χ1(λ,μ)ϕ1(μ) + 2

κ

sinh(ξ − μ)

sinh(ξ − λ) sinh(ξ + λ)
×

× sinh(2λ)

sinh(λ − μ) sinh(λ + μ)
f1(μ)ϕ1(λ). (6.22)

Therefore ϕ1(μ) (6.20) is the Bethe vector of the corresponding Gaudin model, i.e. the eigen-
vector of the generating function the Gaudin Hamiltonians, with the eigenvalue χ1(λ, μ) (6.16), 
once the unwanted term is canceled by imposing the corresponding Bethe equation

f1(μ) = κ sinh(2μ)

(
1

sinh(ξ − μ)
+ 2 sinh(ξ + μ)

N∑
m=1

sm

sinh(μ − αm) sinh(μ + αm)

)
= 0.

(6.23)

To obtain the Bethe vector ϕ2(μ1, μ2) of the Gaudin model and the action of the generating 
function τ(λ) of the Gaudin Hamiltonians on ϕ2(μ1, μ2) we basically follow the steps we have 
done when studying the action of τ(λ) on ϕ1(μ). The first term in the expansion of the Bethe 
vector �2(μ1, μ2) (5.46) in powers of η yields the corresponding Bethe vector of the Gaudin 
model

�2(μ1,μ2) = η2ϕ2(μ1,μ2) +O(η3), (6.24)

where

ϕ2(μ1,μ2) = κ2 sinh(2μ1) sinh(2μ2)

⎛⎝ N∑
m,n=1

sinh(ξ − αm) S−
m

sinh(μ1 − αm) sinh(μ1 + αm)
×

× sinh(ξ − αn) S−
n

sinh(μ2 − αn) sinh(μ2 + αn)
+ ψ

κ

N∑
m=1

sinh(ξ − αm) S−
m

sinh(μ2 − αm) sinh(μ2 + αm)
×

×
(

1 +
N∑

n=1

e−2ξ + sinh(2αn) − cosh(2μ1)

sinh(μ1 − αn) sinh(μ1 + αn)
(sn − δmn)

)

+ ψ

κ

N∑
m=1

sinh(ξ − αm) S−
m

sinh(μ1 − αm) sinh(μ1 + αm)

(
3 +

N∑
n=1

e−2ξ + sinh(2αn) − cosh(2μ2)

sinh(μ2 − αn) sinh(μ2 + αn)
sn

)

+ e−2ξ ψ2

κ2

N∑
m=1

−eξ−αm cosh(2μ1) + cosh(ξ + αm)

sinh(μ1 − αm) sinh(μ1 + αm)

sinh(ξ − αm)

sinh(μ2 − αm) sinh(μ2 + αm)
(2sm)

+ ψ2

κ2

(
1 +

N∑
n=1

e−2ξ + sinh(2αm) − cosh(2μ1)

sinh(μ1 − αm) sinh(μ1 + αm)
sm

)
×

×
(

3 +
N∑

n=1

e−2ξ + sinh(2αn) − cosh(2μ2)

sinh(μ2 − αn) sinh(μ2 + αn)
sn

))
�+. (6.25)

Expressing Gaudin Bethe vectors by using creation operators is in accordance with the results in 
the rational case [12]. There the creation operator was introduced (cf. formula (6.32) in [12]), but 
here it is necessary to define the family of operators
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cK(μ) = κ sinh(2μ)

(
N∑

m=1

sinh(ξ − αm) S−
m

sinh(μ − αm) sinh(μ + αm)
+ ψ

κ
((−1 + 2K)

+
N∑

m=1

e−2ξ + sinh(2αm) − cosh(2μ)

sinh(μ − αm) sinh(μ + αm)
S3

m

)

+ e−2ξ ψ2

κ2

N∑
m=1

cosh(ξ + αm) − eξ−αm cosh(2μ)

sinh(μ − αm) sinh(μ + αm)
S+

m

)
,

(6.26)

for any natural number K . Thus the Bethe vectors (6.20) and (6.25) can be expressed as

ϕ1(μ) = c1(μ)�+ and ϕ2(μ1,μ2) = c1(μ1)c2(μ2)�+. (6.27)

Although in general the operators (6.26) do not commute, it is straightforward to check that the 
Bethe vector ϕ2(μ1, μ2) is a symmetric function

ϕ2(μ1,μ2) = c1(μ1)c2(μ2)�+ = c1(μ2)c2(μ1)�+ = ϕ2(μ2,μ1). (6.28)

It is of interest to study the action of the difference of the transfer matrix t (λ) and the so-called 
Sklyanin determinant � [T (λ)] on the Bethe vector �2(μ1, μ2) using (4.10) and (5.45)(

t (λ) − � [T (λ)]

sinh(2λ)

)
�2(μ1,μ2)

=
(
�2(λ, {μi}2

i=1) − α(λ + η/2) δ̂(λ − η/2)
)

�2(μ1,μ2)

+ sinh(η) sinh(2(λ + η))

sinh(λ − μ1) sinh(λ + μ1 + η)
κ sinh(ξ − μ1) F2(μ1;μ2)�2(λ,μ2)

+ sinh(η) sinh(2(λ + η))

sinh(λ − μ2) sinh(λ + μ2 + η)
κ sinh(ξ − μ2) F2(μ2;μ1)�2(λ,μ1). (6.29)

The off-shell action of the generating function of the Gaudin Hamiltonians on the Bethe vector 
ϕ2(μ1, μ2) is obtained from the equation above using the expansions (6.4) and (6.24) on the left 
hand side and (6.15), (6.24) and (6.17) on the right hand side. Then, by comparing the terms of 
the fourth power in η on both sides of (6.29) we obtain

τ(λ)ϕ2(μ1,μ2) = χ2(λ,μ1,μ2)ϕ2(μ1,μ2) + 2

κ

sinh(2λ)

sinh(ξ − λ) sinh(ξ + λ)
×

×
(

sinh(ξ − μ1)

sinh(λ − μ1) sinh(λ + μ1)
f2(μ1;μ2)ϕ2(λ,μ2)

+ sinh(ξ − μ2)

sinh(λ − μ2) sinh(λ + μ2)
f2(μ2;μ1)ϕ2(λ,μ1)

)
.

(6.30)

The two unwanted terms on the right hand side of the equation above are annihilated by the 
following Bethe equations

f2(μ1;μ2) = κ sinh(2μ1)

(
1

sinh(ξ − μ1)
− 2 sinh(ξ + μ1)

sinh(μ1 − μ2) sinh(μ1 + μ2)

+ 2 sinh(ξ + μ1)

N∑
m=1

sm

sinh(μ1 − αm) sinh(μ1 + αm)

)
= 0, (6.31)
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f2(μ2;μ1) = κ sinh(2μ2)

(
1

sinh(ξ − μ2)
− 2 sinh(ξ + μ2)

sinh(μ2 − μ1) sinh(μ2 + μ1)

+2 sinh(ξ + μ2)

N∑
m=1

sm

sinh(μ2 − αm) sinh(μ2 + αm)

)
= 0. (6.32)

In general, we have that the first term in the expansion of the Bethe vector �M(μ1, μ2, . . . ,
μM) (5.58) in powers of η is

�M(μ1,μ2, . . . ,μM) = ηMϕM(μ1,μ2, . . . ,μM) +O(ηM+1), (6.33)

where M is a natural number and

ϕM(μ1,μ2, . . . ,μM) = c1(μ1)c2(μ2) · · · cM(μM)�+, (6.34)

and the operator cK(μK), K = 1, . . . , M , are given in (6.26).
Although the operators cK(μK) do not commute, the Bethe vector of the Gaudin model 

ϕM(μ1, μ2, . . . , μM) is a symmetric function of its arguments, since a straightforward calcu-
lation shows that the operators cK(μ) satisfy the following identity,

cK(μ)cK+1(μ
′) − cK(μ′)cK+1(μ) = 0, (6.35)

for K = 1, . . . , M − 1. The action of the generating function τ(λ) (6.5) on the Bethe vector 
ϕM(μ1, μ2, . . . , μM) can be derived as in the two previous cases when M = 1 (6.22) and M = 2
(6.30). In the present case we use the expansions (6.15), (6.17) and (6.33) to obtain

τ(λ)ϕM(μ1,μ2, . . . ,μM) = χM(λ, {μi}Mi=1)ϕM(μ1,μ2, . . . ,μM)

+ 2

κ

sinh(2λ)

sinh(ξ − λ) sinh(ξ + λ)

M∑
i=1

sinh(ξ − μi)

sinh(λ − μi) sinh(λ + μi)
×

× fM(μi; {μj }j �=i )ϕM(λ, {μj }j �=i ),

(6.36)

where χM(λ, {μi}Mi=1) is given in (6.16) and the unwanted terms on the right hand side of the 
equation above are canceled by the following Bethe equations

fM(μi; {μj }Mj �=i ) = κ sinh(2μi)

(
1

sinh(ξ − μi)
− 2 sinh(ξ + μi)×

×
M∑

j=2

1

sinh(μi − μj ) sinh(μi + μj )

+ 2 sinh(ξ + μi)

N∑
m=1

sm

sinh(μi − αm) sinh(μi + αm)

)
= 0,

(6.37)

for i = 1, 2, . . .M . As expected, due to our definition of the Bethe vector ϕM(μ1, μ2, . . . , μM)

(6.34), the quasi-classical limit has yielded the above simple formulae for the off-shell action of 
the generating function τ(λ).

An alternative approach to the implementation of the algebraic Bethe ansatz for the trigono-
metric s�(2) Gaudin model, with the triangular K-matrix (6.2), is based on the corresponding 
non-unitary classical r-matrix. This study will be reported in [55].
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7. Conclusions

We have implemented fully the off-shell algebraic Bethe ansatz for the XXZ Heisenberg spin 
chain in the case when both boundary matrices have the upper-triangular form. As opposed to 
the case of the XXX Heisenberg spin chain where the general reflection matrices could be put 
into the upper triangular form without any loss of generality [10,12], here the triangularity of the 
reflection matrices has to be imposed as extra conditions on the respective parameters. A suitable 
realization for the Sklyanin monodromy matrix is obtained as a direct consequence of the identity 
satisfied by the Lax operator. This realization led to the action of the entries of the Sklyanin mon-
odromy matrix on the vector �+ and consequently to the observation that �+ is an eigenvector 
of the transfer matrix of the chain.

The essential step of the algebraic Bethe ansatz is the definition of the corresponding Bethe 
vectors. Initially we have obtained the Bethe vectors �̃M(μ1, μ2, . . . , μM), for M = 1, 2, 3, 4, 
by requiring that their scaling limit corresponds to the Bethe vectors of the XXX Heisenberg 
chain. We gave a step by step presentation of the M = 1, 2, 3 Bethe vectors, including the for-
mulae for the action of t (λ), the corresponding eigenvalues and Bethe equations. In this way we 
have exposed the property of these vectors to make the off shell action of the transform matrix 
as simple as possible. We did not present here all the necessary formulae of the Bethe vector 
�̃4(μ1, μ2, μ3, μ4), as they are cumbersome. More importantly, they do not admit any compact 
closed form for an arbitrary natural number M. However, we have noticed the identities (C.11)
and (C.12) which enabled the general form of the Bethe vectors for a fixed M . The general form 
of Bethe vectors can be expressed as a sum of a particular one and a linear combination of lower 
order Bethe vectors that correspond to the same eigenvalue (C.13). This is indeed the case with 
Bethe vectors of any order, for details see Appendix C. A careful analysis reveals that there ex-
ists a particular form of the Bethe vector �M(μ1, μ2, . . . , μM) which, for an arbitrary natural 
number M , can be defined by the suitable recurrence procedure analogous to the one proposed 
in the case of the XXX Heisenberg chain [12]. Actually, the recurrence relations defining the 
relevant coefficient functions differ only in the multiplicative factors from the respective ones 
in the case of the XXX Heisenberg chain. As expected, the action of t (λ) on the Bethe vector 
�M(μ1, μ2, . . . , μM) is again very simple. Actually, the action of the transfer matrix is as simple 
as it could possible be since it almost coincides with the corresponding action in the case when 
the two boundary matrices are diagonal [6,40].

As in the case of the XXX Heisenberg chain [52], the quasi-classical expansion of the linear 
combination of the transfer matrix of the XXZ Heisenberg spin chain and the central element, 
the so-called Sklyanin determinant yields the generating function of the trigonometric Gaudin 
Hamiltonians with boundary terms [55]. Based on this result, and the appropriate definition of 
the corresponding Bethe vectors ϕM(μ1, μ2, . . . , μM), we showed how the quasi-classical limit 
yields the off-shell action of the generating function of the Gaudin Hamiltonians as well as the 
spectrum and the Bethe equations. As opposed to the rational case where the Gaudin Bethe 
vectors were defined by the action of the creation operator [12], here it was necessary to define 
the family of operators. As in the case of the spin chain, the off-shell action of the generating 
function τ(λ) on the Bethe vectors ϕM(μ1, μ2, . . . , μM) is strikingly simple. It is as simple as it 
can be since it practically coincide with the corresponding formula in the case when the boundary 
matrix is diagonal [40].

It would be of interest to establish a relation between Bethe vectors of the Gaudin model and 
solutions to the corresponding generalized Knizhnik–Zamolodchikov equations, along the lines 
it was done in the case when the boundary matrix is diagonal [40], as well as to study possible 
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relations between Bethe vectors of XXZ chain obtained in the Section 5 and the solutions to the 
boundary quantum Knizhnik–Zamolodchikov equations [70–72].
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Appendix A. Basic definitions

We consider a spin chain with N sites with spin s representations, i.e. a local C2s+1 space at 
each site and the operators

Sα
m = 1 ⊗ · · · ⊗ Sα︸︷︷︸

m

⊗· · · ⊗ 1, (A.1)

with α = +, −, 3 and m = 1, 2, . . . , N . The operators Sα with α = +, −, 3, act in some (spin s) 
representation space C2s+1 with the commutation relations [60,63,66]

[S3, S±] = ±S±, [S+, S−] = sinh(2ηS3)

sinh(η)
= [2S3]q, (A.2)

with q = eη, and Casimir operator

c2 = q + q−1

2
[S3]2

q + 1

2
(S+S− + S−S+) = q + q−1

2
[S3]2

q + 1

2
[2S3]q + S−S+. (A.3)

In the space C2s+1 these operators admit the following matrix representation

S3 =
2s+1∑
i=1

aiei i , S+ =
2s+1∑
i=1

biei i+1, S− =
2s+1∑
i=1

biei+1 i and c2 = [s + 1]q [s]q 1,

(A.4)

where

(eij )kl = δi kδj l, ai = s + 1 − i, bi = √[i]q [2s + 1 − i]q and [x]q = qx − q−x

q − q−1
.

(A.5)

In the particular case of spin 1
2 representation, one recovers the Pauli matrices

Sα = 1

2
σα = 1

2

(
δα3 2δα+

2δα− −δα3

)
.

Appendix B. Commutation relations

The equation (4.6) yields the exchange relations between the operators A(λ), B(λ), C(λ)

and D̂(λ). The relevant relations are

B(λ)B(μ) = B(μ)B(λ), C(λ)C(μ) = C(μ)C(λ), (B.1)



98 N. Manojlović, I. Salom / Nuclear Physics B 923 (2017) 73–106

A(λ)B(μ) = sinh(λ + μ) sinh(λ − μ − η)

sinh(λ − μ) sinh(λ + μ + η)
B(μ)A(λ)

+ sinh(η) sinh(2μ)

sinh(λ − μ) sinh(2μ + η)
B(λ)A(μ)

− sinh(η)

sinh(λ + μ + η)
B(λ)D̂(μ), (B.2)

D̂(λ)B(μ) = sinh(λ − μ + η) sinh(λ + μ + 2η)

sinh(λ − μ) sinh(λ + μ + η)
B(μ)D̂(λ)

− sinh(η) sinh(2(λ + η))

sinh(λ − μ) sinh(2λ + η)
B(λ)D̂(μ)

+ sinh(η) sinh(2μ) sinh(2(λ + η))

sinh(2λ + η) sinh(2μ + η) sinh(λ + μ + η)
B(λ)A(μ), (B.3)

[C(λ),B(μ)] = sinh(η) sinh(2λ) sinh(λ − μ + η)

sinh(λ − μ) sinh(2λ + η) sinh(λ + μ + η)
A(μ)A(λ)

− sinh2(η) sinh(2λ)

sinh(λ − μ) sinh(2λ + η) sinh(2μ + η)
A(λ)A(μ)

+ sinh(η) sinh(λ + μ)

sinh(λ − μ) sinh(λ + μ + η)
A(μ)D̂(λ)

− sinh(η) sinh(2λ)

sinh(λ − μ) sinh(2λ + η)
A(λ)D̂(μ)

− sinh2(η)

sinh(2μ + η) sinh(λ + μ + η)
D̂(λ)A(μ)

− sinh(η)

sinh(λ + μ + η)
D̂(λ)D̂(μ). (B.4)

For completeness we include the following commutation relations

[A(λ),A(μ)] = sinh(η)

sinh(λ + μ + η)
(B(μ)C(λ) −B(λ)C(μ)) (B.5)

[
A(λ), D̂(μ)

] = sinh(η) sinh(2(μ + η))

sinh(λ − μ) sinh(2μ + η)
(B(λ)C(μ) −B(μ)C(λ)) (B.6)

[
D̂(λ), D̂(μ)

] = sinh(η) sinh(2(λ + η)) sinh(2(μ + η))

sinh(2λ + η) sinh(2μ + η) sinh(λ + μ + η)
(B(λ)C(μ) −B(μ)C(λ))

(B.7)

The implementation of the algebraic Bethe ansatz presented in Section 5 is based on the above 
relations. For convenience, we also include the following three relations which follow from the 
ones above and are essential in the derivation of the off-shell action (5.37) of the transfer matrix 
of the inhomogeneous XXZ chain (5.21) on the Bethe vector �̃2(μ1, μ2) (5.34)
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A(λ)B(μ1)B(μ2)�+

=
2∏

i=1

sinh(λ + μi) sinh(λ − μi − η)

sinh(λ − μi) sinh(λ + μi + η)
α(λ)B(μ1)B(μ2)�+

+
2∑

i=1

sinh(η) sinh(2μi)

sinh(2μi + η) sinh(λ − μi)

sinh(μi + μ3−i ) sinh(μi − μ3−i − η)

sinh(μi − μ3−i ) sinh(μi + μ3−i + η)
×

× α(μi)B(λ)B(μ3−i )�+

−
2∑

i=1

sinh(η)

sinh(λ + μi + η)

sinh(μi − μ3−i + η) sinh(μi + μ3−i + 2η)

sinh(μi − μ3−i ) sinh(μi + μ3−i + η)
×

× δ̂(μi)B(λ)B(μ3−i )�+,

(B.8)

analogously,

D̂(λ)B(μ1)B(μ2)�+

=
2∏

i=1

sinh(λ − μi + η) sinh(λ + μi + 2η)

sinh(λ − μi) sinh(λ + μi + η)
δ̂(λ)B(μ1)B(μ2)�+

−
2∑

i=1

sinh(η) sinh(2(λ + η))

sinh(2λ + η) sinh(λ − μi)

sinh(μi − μ3−i + η) sinh(μi + μ3−i + 2η)

sinh(μi − μ3−i ) sinh(μ1 + μ3−i + η)
×

× δ̂(μi)B(λ)B(μ3−i )�+

+
2∑

i=1

sinh(η) sinh(2μi) sinh(2(λ + η))

sinh(2λ + η) sinh(2μi + η) sinh(λ + μi + η)
×

× sinh(μi + μ3−i ) sinh(μi − μ3−i − η)

sinh(μi − μ3−i ) sinh(μi + μ3−i + η)
α(μi)B(λ)B(μ3−i )�+,

(B.9)

and finally,

C(λ)B(μ1)B(μ2)�+ =
2∑

i=1

(
sinh(η) sinh(2μi) sinh(2λ)

sinh(2λ + η) sinh(2μi + η) sinh(λ + μi + η)
×

× sinh(λ + μ3−i ) sinh(λ − μ3−i − η)

sinh(λ − μ3−i ) sinh(λ + μ3−i + η)

sinh(μi + μ3−i ) sinh(μi − μ3−i − η)

sinh(μi − μ3−i ) sinh(μi + μ3−i + η)
α(λ)α(μi)

− sinh(η) sinh(2λ)

sinh(λ − μi) sinh(2λ + η)

sinh(λ + μ3−i ) sinh(λ − μ3−i − η)

sinh(λ − μ3−i ) sinh(λ + μ3−i + η)
×

× sinh(μi − μ3−i + η) sinh(μi + μ3−i + 2η)

sinh(μi − μ3−i ) sinh(μi + μ3−i + η)
α(λ)̂δ(μi)

+ sinh(η) sinh(2μi)

sinh(λ − μi) sinh(2μi + η)

sinh(λ − μ3−i + η) sinh(λ + μ3−i + 2η)

sinh(λ − μ3−i ) sinh(λ + μ3−i + η)
×

× sinh(μi + μ3−i ) sinh(μi − μ3−i − η)

sinh(μi − μ3−i ) sinh(μi + μ3−i + η)
α(μi )̂δ(λ)

− sinh(η)

sinh(λ + μi + η)

sinh(λ − μ3−i + η) sinh(λ + μ3−i + 2η)

sinh(λ − μ3−i ) sinh(λ + μ3−i + η)
×
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× sinh(μi − μ3−i + η) sinh(μi + μ3−i + 2η)

sinh(μi − μ3−i ) sinh(μi + μ3−i + η)
δ̂(λ)̂δ(μi)

)
B(μ3−i )�+

+
(

sinh2(η) sinh(2μ1) sinh(2μ2) sinh(μ1 + μ2)

sinh(λ − μ1) sinh(λ − μ2) sinh(2μ1 + η) sinh(2μ2 + η)
×

× sinh(λ + μ1) sinh(λ − μ2 + η) + sinh(λ − μ1) sinh(λ + μ2 + η)

sinh(λ + μ1 + η) sinh(λ + μ2 + η) sinh(μ1 + μ2 + η)
α(μ1)α(μ2)

− sinh2(η) sinh(2μ1) sinh(μ1 − μ2 − η)

sinh(λ − μ1) sinh(λ − μ2) sinh(2μ1 + η) sinh(μ1 − μ2)
×

× sinh(λ − μ1) sinh(λ − μ2) + sinh(λ + μ1) sinh(λ + μ2 + 2η)

sinh(λ + μ1 + η) sinh(λ + μ2 + η)
α(μ1)̂δ(μ2)

− sinh2(η) sinh(2μ2) sinh(μ2 − μ1 − η)

sinh(λ − μ1) sinh(λ − μ2) sinh(2μ2 + η) sinh(μ2 − μ1)
×

× sinh(λ − μ1) sinh(λ − μ2) + sinh(λ + μ1) sinh(λ + μ2 + 2η)

sinh(λ + μ1 + η) sinh(λ + μ2 + η)
α(μ2)̂δ(μ1)

− sinh2(η) sinh(μ1 + μ2 + 2η)

sinh(λ − μ1) sinh(λ − μ2) sinh(μ1 + μ2 + η)
×

× sinh(λ + μ1 + 2η) sinh(−λ + μ2 + η) + sinh(−λ + μ1) sinh(λ + μ2 + η)

sinh(λ + μ1 + η) sinh(λ + μ2 + η)
×

× δ̂(μ1)̂δ(μ2)
)
B(λ)�+. (B.10)

Appendix C. Bethe vectors

With the aim of pursuing the general case in this appendix we present the Bethe vector 
�̃3(μ1, μ2, μ3), which in the scaling limit corresponds to the corresponding Bethe vector of 
the XXX chain [12],

�̃3(μ1,μ2,μ3)

= B(μ1)B(μ2)B(μ3)�+ + b̃
(1)
3 (μ3;μ2,μ1)B(μ1)B(μ2)�+ + b̃

(1)
3 (μ1;μ2,μ3)×

×B(μ2)B(μ3)�+ + b̃
(1)
3 (μ2;μ1,μ3)B(μ1)B(μ3)�+ + b̃

(2)
3 (μ1,μ2;μ3)B(μ3)�+

+ b̃
(2)
3 (μ1,μ3;μ2)B(μ2)�+ + b̃

(2)
3 (μ2,μ3;μ1)B(μ1)�+ + b̃

(3)
3 (μ1,μ2,μ3)�+,

(C.1)

where the coefficient functions b̃(1)
3 (μ1; μ2, μ3), b̃

(2)
3 (μ1, μ2; μ3) and b̃(3)

3 (μ1, μ2, μ3) are ex-
plicitly given by

b̃
(1)
3 (μ1;μ2,μ3) =

(
−ψ+

κ+

)(
3∏

i=2

sinh(μ1 + μi) sinh(μ1 − μi − η)

sinh(μ1 − μi) sinh(μ1 + μi + η)

sinh(2μ1)

sinh(2μ1 + η)
×

× cosh(ξ+ − μ1) α(μ1) −
3∏

i=2

sinh(μ1 − μi + η) sinh(μ1 + μi + 2η)

sinh(μ1 − μi) sinh(μ1 + μi + η)
×

× cosh(ξ+ + μ1 + η) δ̂(μ1)
)
, (C.2)
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b̃
(2)
3 (μ1,μ2;μ3) =

(
ψ+

κ+

)2
(

2∏
i=1

sinh(2μi)

sinh(2μi + η)

sinh(μi + μ3) sinh(μi − μ3 − η)

sinh(μi − μ3) sinh(μi + μ3 + η)
×

× sinh(μ1 + μ2)

sinh(μ1 + μ2 + η)
cosh(2ξ+ − μ1 − μ2 + η) α(μ1)α(μ2)

− sinh(2μ1)

sinh(2μ1 + η)

sinh(μ1 + μ3) sinh(μ1 − μ3 − η)

sinh(μ1 − μ3) sinh(μ1 + μ3 + η)
×

× sinh(μ2 − μ3 + η) sinh(μ2 + μ3 + 2η)

sinh(μ2 − μ3) sinh(μ2 + μ3 + η)

sinh(μ1 − μ2 − η)

sinh(μ1 − μ2)
×

× cosh(2ξ+ − μ1 + μ2 + 2η) α(μ1)̂δ(μ2)

− sinh(2μ2)

sinh(2μ2 + η)

sinh(μ2 + μ3) sinh(μ2 − μ3 − η)

sinh(μ2 − μ3) sinh(μ2 + μ3 + η)
×

× sinh(μ1 − μ3 + η) sinh(μ1 + μ3 + 2η)

sinh(μ1 − μ3) sinh(μ1 + μ3 + η)

sinh(μ2 − μ1 − η)

sinh(μ2 − μ1)
×

× cosh(2ξ+ + μ1 − μ2 + 2η) δ̂(μ1)α(μ2)

+ sinh(μ1 + μ2 + 2η)

sinh(μ1 + μ2 + η)

2∏
i=1

sinh(μi − μ3 + η) sinh(μi + μ3 + 2η)

sinh(μi − μ3) sinh(μi + μ3 + η)
×

× cosh(2ξ+ + μ1 + μ2 + 3η) δ̂(μ1)̂δ(μ2)
)
, (C.3)

and

b̃
(3)
3 (μ1,μ2,μ3) =

(
−ψ+

κ+

)3
⎛⎝ 3∏

i=1

sinh(2μi)

sinh(2μi + η)

3∏
j>i

sinh(μi + μj )

sinh(μi + μj + η)
×

× cosh(3ξ+ − μ1 − μ2 − μ3 + 3η) × α(μ1)α(μ2)α(μ3)

− sinh(μ1 + μ2)

sinh(μ1 + μ2 + η)

2∏
i=1

sinh(2μi)

sinh(2μi + η)

sinh(μi − μ3 − η)

sinh(μi − μ3)
×

× cosh(3ξ+ − μ1 − μ2 + μ3 + 4η) α(μ1)α(μ2)̂δ(μ3)

− sinh(μ1 + μ3)

sinh(μ1 + μ3 + η)

3∏
i=1
i �=2

sinh(2μi)

sinh(2μi + η)

sinh(μi − μ2 − η)

sinh(μi − μ2)

× cosh(3ξ+ − μ1 + μ2 − μ3 + 4η) α(μ1)α(μ3)̂δ(μ2) − sinh(μ2 + μ3)

sinh(μ2 + μ3 + η)
×

×
3∏

i=2

sinh(2μi)

sinh(2μi + η)

sinh(μi − μ1 − η)

sinh(μi − μ1)
×

× cosh(3ξ+ + μ1 − μ2 − μ3 + 4η)α(μ2)α(μ3)̂δ(μ1)

+ sinh(2μ1)

sinh(2μ1 + η)

3∏
i=2

sinh(μ1 − μi − η)

sinh(μ1 − μi)

sinh(μ2 + μ3 + 2η)

sinh(μ2 + μ3 + η)
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× cosh(3ξ+ − μ1 + μ2 + μ3 + 5η)α(μ1)̂δ(μ2)̂δ(μ3)

+ sinh(2μ2)

sinh(2μ2 + η)

3∏
i=1
i �=2

sinh(μ2 − μi − η)

sinh(μ2 − μi)

sinh(μ1 + μ3 + 2η)

sinh(μ1 + μ3 + η)
×

× cosh(3ξ+ + μ1 − μ2 + μ3 + 5η) α(μ2)̂δ(μ1)̂δ(μ3)

+ sinh(2μ3)

sinh(2μ3 + η)

2∏
i=1

sinh(μ3 − μi − η)

sinh(μ3 − μi)

sinh(μ1 + μ2 + 2η)

sinh(μ1 + μ2 + η)
×

× cosh(3ξ+ + μ1 + μ2 − μ3 + 5η) α(μ3)̂δ(μ1)̂δ(μ2)

−
3∏

i=1

3∏
j>i

sinh(μi + μj + 2η)

sinh(μi + μj + η)
cosh(3ξ+ + μ1 + μ2 + μ3 + 6η) δ̂(μ1)̂δ(μ2)̂δ(μ3)

⎞⎠ .

(C.4)

The action of t (λ) (5.21) on �̃3(μ1, μ2, μ3), obtained by a straightforward calculations using 
evident generalization of the formulas (B.8), (B.9) and (B.10) and subsequent rearranging of 
terms, is give by

t (λ)�̃3(μ1,μ2,μ3) = �3(λ, {μi})�̃3(μ1,μ2,μ3) +
3∑

i=1

sinh(η) sinh(2(λ + η))

sinh(λ − μi) sinh(λ + μi + η)
×

× κ+ sinh(ξ+ − μi) F3(μi; {μj }j �=i ) �̃3(λ, {μj }j �=i ),

(C.5)

where the eigenvalue �3(λ, {μi}) is given in (5.55) and the function F3(μi; {μj }j �=i ) in (5.56).
With the aim of adding some extra terms, multiplied by some arbitrary coefficients and in this 

sense generalizing �̃3(μ1, μ2, μ3) in such a way that the action of t (λ) (C.5) is preserved, we 
observe the following six identities. The first three identities, which are straightforward general-
ization of the identities (5.41) and (5.42) relevant in the M = 2 case, are given by

�2(λ, {μj }3
j �=i ) − �3(λ, {μj }3

j=1) = κ+ sinh(ξ+ − λ)
sinh(η) sinh(2(λ + η))

sinh(λ − μi) sinh(λ + μi + η)
×

× F3(λ; {μj }3
j �=i ), (C.6)

here i = 1, 2, 3 and the other three identities, which are generalization of the identity (5.43) in 
the M = 2 case, are

F3(μj ; {μk}3
k �=j ) F2(μi; {μk}3

k �=i,j ) − F3(μi; {μk}3
k �=i ) F3(μj ;λ, {μk}3

k �=i,j )

sinh(λ − μi) sinh(λ + μi + η)
+

+ F3(μi; {μk}3
k �=i ) F2(μj ; {μk}3

k �=i,j ) − F3(μj ; {μk}3
k �=j ) F3(μi;λ, {μk}3

k �=i,j )

sinh(λ − μj ) sinh(λ + μj + η)
= 0,

(C.7)

here i < j , i = 1, 2, and j = 2, 3. Therefore the general form of the Bethe vector
�̃3(μ1, μ2, μ3, C1, C2, C3) is given by
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�̃3(μ1,μ2,μ3,C1,C2,C3) = �̃3(μ1,μ2,μ3) + C3
ψ+

κ+

×
3∑

i=1

sinh(ξ+ − μi)F3(μi; {μj }j �=i )�̃2({μj }j �=i ,C1,C2),

(C.8)

where C3 does not depend on {μi}3
i=1 and �̃2(λ, μi, C1, C2) is given in (5.44). Due to (C.5) and 

the above identities (C.6)–(C.7) it is straightforward to check that the off-shell action of transfer 
matrix t (λ) on �̃3(μ1, μ2, μ3, C1, C2, C3) is

t (λ)�̃3(μ1,μ2,μ3,C1,C2,C3)

= �3(λ, {μi})�3(μ1,μ2,μ3,C1,C2,C3) +
3∑

i=1

sinh(η) sinh(2(λ + η))

sinh(λ − μi) sinh(λ + μi + η)
×

× κ+ sinh(ξ+ − μi) F3(μi; {μj }j �=i ) �3(λ, {μj }j �=i ,C1,C2,C3).

(C.9)

By setting C1 = 1 − 2e2η − 2e4η − e6η

1 − e6η
, C2 = − tanh(η) and C3 = 1 in (C.8) we obtain the cor-

responding Bethe vector �3(μ1, μ2, μ3) (5.50), i.e.

�3(μ1,μ2,μ3) = �̃3(μ1,μ2,μ3,C1 = 1 − 2e2η − 2e4η − e6η

1 − e6η
,C2 = − tanh(η),C3 = 1).

(C.10)

Although it would be natural to continue this approach and present here the Bethe vec-
tor �̃4(μ1, μ2, μ3, μ4), which in the scaling limit corresponds to the Bethe vector of the 
XXX chain [12], it turns out that the expressions for the coefficients functions b̃(i)

4 (μ1, . . . , μi;
μi+1, . . . , μ4) are cumbersome, not admitting any compact form. For this reason we have de-
cided not present them here.

Indeed, the main obstacle in this approach is the lack of the closed form for the coefficients 
functions b̃(i)

M (μ1, . . . , μi; μi+1, . . . , μM) of the Bethe vector �̃M(μ1, . . . , μM), whose scaling 
limit corresponds to the Bethe vector of the XXX chain, for an arbitrary natural number M . All 
the necessary identities are know, the M identities of the first type

�M−1(λ, {μj }Mj �=i ) − �M(λ, {μj }Mj=1)

= κ+ sinh(ξ+ − λ)
sinh(η) sinh(2(λ + η))

sinh(λ − μi) sinh(λ + μi + η)
FM(λ; {μj }Mj �=i ), (C.11)

here i = 1, . . . , M and the M(M−1)
2 identities of the second type

FM(μj ; {μk}Mk �=j ) FM−1(μi; {μk}Mk �=i,j ) − FM(μi; {μk}Mk �=i ) FM(μj ;λ, {μk}Mk �=i,j )

sinh(λ − μi) sinh(λ + μi + η)
+

+ FM(μi; {μk}Mk �=i ) FM−1(μj ; {μk}Mk �=i,j ) − FM(μj ; {μk}Mk �=j ) FM(μi;λ, {μk}Mk �=i,j )

sinh(λ − μj ) sinh(λ + μj + η)
= 0,

(C.12)

here i < j , i = 1, 2, . . . , M − 1, and j = 2, 3, . . . , M . The most general form of the Bethe vector, 
for an arbitrary positive integer M , is given as a sum of a particular vector and a linear combina-
tion of lower order Bethe vectors that correspond to the same eigenvalue
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�̃M({μi}Mi=1, {Cj }Mj=1)

= �̃M(μ1, . . . ,μM) + CM

ψ+

κ+
M∑
i=1

sinh(ξ+ − μi)FM(μi; {μj }Mj �=i ) ×

× �̃M−1({μj }Mj �=i , {Ck}M−1
k=1 ). (C.13)

Unfortunately, this approach cannot be used in general case due to the lack of the closed 
form for the coefficients functions of the Bethe vector �̃M(μ1, . . . , μM). On the other 
hand, as it is evident form the formulae (5.60)–(5.62), the recurrence procedure we propose 
is clearly advantages providing basically the same formulae, up to the multiplicative fac-
tors, like in the case of the XXX Heisenberg spin chain [12], for the coefficients functions
b

(i)
M (μ1, . . . , μi; μi+1, . . . , μM) of the Bethe vector �M(μ1, . . . , μM), besides b

(1)
M (μ1;

μ2, . . . , μM) which is given explicitly in (5.59).
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We construct the three-body permutation symmetric O (6) hyperspherical harmonics and use them to 
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spectra in the adiabatic approximation for factorizable potentials with square-integrable hyper-angular 
parts. This includes homogeneous pairwise potentials of degree α ≥ −1. More generally, a simplification 
is achieved in numerical calculations of non-adiabatic approximations to non-factorizable potentials by 
using our harmonics.
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1. Introduction

The three-body bound-state problem has been addressed by a 
huge literature, see e.g. Refs. [1–7], in which the hyperspherical 
harmonics (H.H.) provide one of the most firmly established the-
oretical tools. All three-body calculations conducted thus far have 
been numerical, suggesting that perhaps there are no quantum-
mechanical three-body bound state problems that can be solved in 
closed form.

Very little is known about the general structure of the three-
body bound-state spectrum, such as the ordering of states, even in 
the (simplest) normal case of three identical particles interacting 
with a two-body interaction strong enough to bind two particles, 
i.e., in the non-Borromean regime. In comparison, the two-body 
bound state problem is much better understood, see Refs. [8–11], 
where theorems controlling the ordering of bound states in con-
vex two-body potentials were proven more than 30 years ago. In 
this paper we make the first significant advance in the problem of 
three-body bound state ordering after the 1990 paper by Taxil & 
Richard, Ref. [12].

The basic difficulty lay in the absence of a systematic construc-
tion of permutation-symmetric three-body wave functions. Clas-
sification of wave functions into distinct classes under permuta-
tion symmetry in the three-body system, should be a matter of 
course, and yet permutation symmetric three-body hyperspheri-
cal harmonics in three dimensions were known explicitly only in 

* Corresponding author.
E-mail address: dmitrasin@ipb.ac.rs (V. Dmitrašinović).

a few special cases, such as those with total orbital angular mo-
mentum L = 0, see Refs. [5,13]. Instead, mathematically unjustified 
bases for hyperspherical harmonics were routinely used in the lit-
erature, thus leading to significant computational difficulties. This 
is reflected already at the level of quantum numbers used for la-
belling of the harmonics, that often feature two sets, (lρ, mρ) and 
(lλ, mλ), of S O (3) quantum numbers, related to separate rotations 
of the two Jacobi vectors, λ and ρ , e.g. Refs. [3,4,6].1

The main goal of this paper is to point out the recent progress 
in the construction and application of permutation symmetric 
three-body hyperspherical harmonics [14,15]. Rather than going 
into the technical details of the construction of these harmonics, 
we here restrict ourselves to simply listing their explicit forms for 
K ≤ 4 in Ref. [14] and concentrate on their application to the quan-
tum mechanical three-body problem.

The hyperspherical harmonics we use are permutation-symmet-
ric three-body O (6) HH based on the U (1) ⊗ S O (3)rot ⊂ U (3) ⊂
O (6) chain of algebras, where U (1) is the “democracy transforma-
tion”, or “kinematic rotation” group for three particles, S O (3)rot is 
the 3D rotation group, and U (3), O (6) are the usual Lie groups. 
This particular chain was recently suggested in Ref. [18], but also 
by the previous discovery of the dynamical O (2) symmetry of the 
Y-string potential, Ref. [19]: this O (2) = U (1) symmetry has the 
permutation group S3 ⊂ O (2) as its (discrete) subgroup. The close 

1 Permutation symmetric N-body (with N ≥ 4) hyperspherical harmonics had 
only been constructed by means of a numerical recursive procedure that sym-
metrizes non-permutation-symmetric hyperspherical harmonics, see Refs. [16,17], 
which, to our knowledge, has not been applied to the three-body problem.
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relation of U (1) kinematic rotations to permutations, on one hand, 
and the fact that this is the only subgroup of the full O (6) hyper-
spherical symmetry that commutes with rotations, on the other, 
imply that the corresponding quantum number must appear in 
any mathematically justified and permutationally symmetric basis 
of hyperspherical harmonics.

In two-dimensional space, this requirement strongly suggested 
an O (4) algebraic approach, Ref. [20] to solve the three-body 
bound state problem. An independent study of “universal states” 
using O (4) permutation-symmetric three-body harmonics in two 
dimensions has appeared recently, Ref. [21]. In three dimensions 
(3D) the (maximal) hyperspherical symmetry is O (6), however, 
and thus requires a new set of permutation-symmetric three-body 
hyperspherical harmonics, that were lacking hitherto, and which 
we present here.

Then, we apply the new harmonics to the three-identical-
particles Schrödinger equation, as written in the so-called hyper-
spherical adiabatic representation, defined in Refs. [21–24] which 
simplifies the resulting equations significantly, especially in the 
case of factorizable (in the hyper-radius and hyper-angles) three-
body potentials. Factorizable potentials, see Sect. 3.3.2, include ho-
mogeneous potentials, which, in turn, include pairwise sums of 
two-body power-law potentials, such as the Coulomb one, and the 
confining “�-string”, as well as the genuinely three-body “Y-string” 
potential and Refs. [19,20].

In the adiabatic approximation to the Schrödinger equation 
with this class of potentials, the energy spectra can be evaluated in 
closed form, for sufficiently small (K ≤ 7) values of the grand an-
gular momentum K. Inhomogeneous potentials, and non-adiabatic 
approximations can only be treated numerically, yet significant 
simplifications appear there, too, in our method, due to the max-
imal/optimal sparseness of the adiabatic potential matrix in the 
permutation-symmetric basis.

In this paper, we shall show: 1) the properties of permutation-
symmetric three-body O (6) hyperspherical harmonics; 2) how the 
Schrödinger equation for three identical particles can be reduced 
to a set of ordinary differential equations with coefficients deter-
mined by O (6) symmetric matrix elements; 3) how, in homoge-
neous three-body potentials, this set of coupled equations for three 
identical particles reduces to a set of single decoupled differen-
tial equation with coupling strengths determined by O (6) algebra; 
4) that our method allows closed-form (“analytical”) results in this 
class of potentials, for sufficiently small values (i.e. for K ≤ 7) of 
the grand angular momentum K.

Our work is based on the recent advances in the construction 
of three-body wave functions with well-defined permutation sym-
metry, see Sects. 2.1, 2.3, and Ref. [14].

2. Three-body problem in hyper-spherical coordinates

The three-body wave function �(ρ, λ) can be transcribed 
from the Euclidean relative position (Jacobi) vectors ρ = 1√

2
(x1 −

x2), λ = 1√
6
(x1 + x2 − 2x3), into hyper-spherical coordinates as 

�(R, �5), where R =
√

ρ2 + λ2 is the hyper-radius, and five an-
gles �5 that parametrize a hyper-sphere in the six-dimensional 
Euclidean space. Three (�i ; i = 1, 2, 3) of these five angles (�5) 
are just the Euler angles associated with the orientation in a 
three-dimensional space of a spatial reference frame defined by 
the (plane of) three bodies; the remaining two hyper-angles de-
scribe the shape of the triangle subtended by three bodies; they 
are functions of three independent scalar three-body variables, e.g. 
ρ · λ, ρ2, and λ2. As we saw above, one linear combination of the 
two variables ρ2, and λ2, is already taken by the hyper-radius R , 
so the shape-space is two-dimensional, and topologically equiva-
lent to the surface of a three-dimensional sphere.

There are two traditional ways of parameterizing this sphere: 
1) the standard Delves choice, [3], of hyper-angles (χ, θ), that 
somewhat obscures the full S3 permutation symmetry of the 
problem; 2) the Iwai, Ref. [7], hyper-angles (α, φ): (sinα)2 =
1 −

(
2ρ×λ

R2

)2
, tan φ =

(
2ρ·λ

ρ2−λ2

)
, reveal the full S3 permutation 

symmetry of the problem: the angle α does not change under 
permutations, so that all permutation properties are encoded in 
the φ-dependence of the wave functions. We shall use the lat-
ter choice, as it leads to permutation-symmetric hyperspherical 
harmonics, as explained in Sects. 2.1, 2.3. Specific hyperspherical 
harmonics with K ≤ 4 are displayed in Ref. [14].

2.1. O (6) Symmetry of the hyper-spherical approach

The decomposition of the three-body spatial wave functions in 
terms of the O (6) “grand angular momentum” Kμν eigenfunctions, 
or hyperspherical harmonics, is based on the fact that the equal-
mass three-body kinetic energy T is O (6) invariant and can be 
written as

T = m

2
Ṙ2 + K 2

μν

2mR2
(1)

where the “grand angular” momentum tensor Kμν , (μ, ν =
1, 2, . . . , 6)

Kμν = m
(
xμẋν − xν ẋμ

)
= (

xμpν − xνpμ

)
(2)

and xμ = (λ, ρ). Kμν has 15 linearly independent components, 
that contain, among themselves three components of the “ordi-
nary” orbital angular momentum: L = lρ + lλ = m 

(
ρ × ρ̇ + λ × λ̇

)
.

Apart from the hyperangular momentum K, which labels the 
O (6) irreducible representation, all hyperspherical harmonics must 
carry additional labels specifying the transformation properties of 
the harmonic with respect to (w.r.t.) certain subgroups of the or-
thogonal group. The symmetries of most three-body potentials, 
including the three-quark confinement ones, are: parity, rotations 
and permutations (spatial exchange of particles).

Therefore, the three-body hyperspherical harmonics ought to 
have definite transformation properties w.r.t. to these three sym-
metries. Parity is the simplest one to implement, as it is directly 
related to K: P = (−1)K. The rotation symmetry implies that the 
hyperspherical harmonics must carry quantum numbers L and m
associated with the rotational subgroup S O (3)rot .

2.2. Permutation-symmetric three-body hyper-spherical harmonics

We introduce the complex coordinates:

X±
i = λi ± iρi, i = 1,2,3. (3)

Nine of 15 hermitian S O (6) generators Kμν in these new coordi-
nates become

iLi j ≡ X+
i

∂

∂ X+
j

+ X−
i

∂

∂ X−
j

− X+
j

∂

∂ X+
i

− X−
j

∂

∂ X−
i

, (4)

2Q ij ≡ X+
i

∂

∂ X+
j

− X−
i

∂

∂ X−
j

+ X+
j

∂

∂ X+
i

− X−
j

∂

∂ X−
i

. (5)

Of these, Li j is an antisymmetric tensor, with three components, 
corresponds to the physical angular momentum vector L, and the 
symmetric tensor Q ij decomposes as (5) + (1) w.r.t. rotations. The 
trace:

Q ≡ Q ii =
3∑

i=1

X+
i

∂

∂ X+
i

−
3∑

i=1

X−
i

∂

∂ X−
i

(6)
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is the only scalar under rotations, and generates so-called democ-
racy transformations, a special case of which are the cyclic permu-
tations, so its eigenvalue is a natural choice for an additional label 
of permutation-symmetric hyperspherical harmonics. The remain-
ing five components of the symmetric tensor Q ij , together with 
three antisymmetric tensors Li j generate the SU (3) Lie algebra, 
which together with the single scalar Q form an U (3) algebra, 
Ref. [18].

Therefore, labelling of the O (6) hyper-spherical harmonics with 
labels K, Q , L and m corresponds to the subgroup chain U (1) ⊗
S O (3)rot ⊂ U (3) ⊂ S O (6). Yet, these four quantum numbers are in 
general insufficient to uniquely specify an S O (6) hyper-spherical 
harmonic: it is well known that SU (3) representations in general 
have nontrivial multiplicity w.r.t. decomposition into S O (3) sub-
group representations, and such a multiplicity also appears here. 
In this context the operator:

VL Q L ≡
∑

i j

Li Q ij L j (7)

(where Li = 1
2 εi jk L jk and Q ij is given by Eq. (5)) has often been 

used in the literature, to label the multiplicity of SU(3) states. This 
operator commutes both with the angular momentum Li , and with 
the “democracy rotation” generator Q :
[
VL Q L, Li

] = 0; [
VL Q L, Q

] = 0

Therefore we demand that the hyperspherical harmonics be eigen-
states of this operator:

VL Q LYKQ ν
L,m = νYKQ ν

L,m .

Thus, ν will be the fifth label of the hyper-spherical harmonics, 
beside the (K, Q , L, m).

2.3. Permutation properties of O (6) hyper-spherical harmonics

We seek hyperspherical harmonics with well-defined values of 
parity P = (−1)K, rotation-group quantum numbers (L, m), and 
permutation symmetry, such as the M (mixed), S (symmetric), and 
A (antisymmetric) ones. In the mixed (M) symmetry representa-
tion of the S3 permutation group being two-dimensional, there are 
two different H.H. (state vectors) in each mixed permutation sym-
metry multiplet, usually denoted by Mρ and Mλ .

Two- and three-particle permutation properties of H.H.
YKQ ν

J ,m (λ, ρ) can be inferred from the transformation properties of 
the coordinates X±

i , as follows. Under the two-body permutations 
{T12, T23, T31} of pairs of particles (1,2), (2,3) and (3,1), the Jacobi 
vectors ρ, λ transform as:

T12 : λ → λ, ρ → −ρ,

T23 : λ → −1

2
λ +

√
3

2
ρ, ρ → 1

2
ρ +

√
3

2
λ, (8)

T31 : λ → −1

2
λ −

√
3

2
ρ, ρ → 1

2
ρ −

√
3

2
λ.

This induces the following transformations of complex vectors X±
i :

T12 : X±
i → X∓

i ,

T23 : X±
i → e± 2iπ

3 X∓
i , (9)

T31 : X±
i → e∓ 2iπ

3 X∓
i .

The quantum numbers K, L and m do not change under permu-
tations of two particles, whereas the values of the “democracy 
label” Q and multiplicity label ν are inverted under transpositions: 
Q → −Q , ν → −ν .

In addition to the changes of labels, transpositions of two parti-
cles generally also result in the appearance of an additional phase 
factor multiplying the hyper-spherical harmonic. For multiplicity-
free values of K, Q , L and m, the following transformation proper-
ties of H.H. hold under (two-particle) particle transpositions:

T12 : YKQ ν
L,m → (−1)K− JYK,−Q ,−ν

L,m ,

T23 : YKQ ν
L,m → (−1)K−Le

2Q iπ
3 YK,−Q ,−ν

L,m , (10)

T31 : YKQ ν
L,m → (−1)K−Le− 2Q iπ

3 YK,−Q ,−ν
L,m .

In order to determine which representation of the S3 permutation 
group any particular H.H. YKQ ν

L,m belongs to, one has to consider 
various cases, with and without multiplicity. The following linear 
combinations of the H.H.

YK|Q |ν
L,m,± ≡ 1√

2

(
YK|Q |ν

L,m ± (−1)K−LYK,−|Q |,−ν
L,m

)
(11)

are no longer eigenfunctions of Q operator but are eigenfunctions 
of the transposition T12 instead:

T12 : YK|Q |ν
L,m,± → ±YK|Q |ν

L,m,±.

They are the appropriate H.H. with well-defined permutation prop-
erties:

1. Q �≡ 0 (mod 3): the H.H. YK|Q |ν
L,m,± belongs to the mixed repre-

sentation M, where the ± sign determines which of the two 
components it is, Mρ, Mλ .

2. Q ≡ 0 (mod 3): the H.H. YK|Q |ν
L,m,+ belongs to the symmetric 

representation S and YK|Q |ν
L,m,− belongs to the antisymmetric rep-

resentation A.

The above rules define the permutation-group representation for 
any given H.H.

2.3.1. Labels of K ≤ 4 O (6) hyper-spherical harmonics
As an illustration, in Table 1 we give the values of “O (6) in-

dices” Q , L, m, ν for the lowest K ≤ 4 permutation-symmetric hy-
perspherical harmonics. The corresponding h.s. harmonics, as well 
as their hyper-angular matrix elements can be found in Ref. [14].

The K ≥ 4 h.s. harmonics and the corresponding O (6) matrix 
elements can be readily evaluated using our code written in a 
commercially available symbolic manipulation language, Ref. [14].

Note that only in the K = 4 shell there appear (at most) two 
multiplets with equal permutation properties and equal (L, m) la-
bels that may mix: a) the Y4,±2,±2

2,m � |[70, 2+]〉 and Y4,±4,±3
2,m �

|[70′, 2+]〉; and b) the Y4,∓2,±5
4,m � |[70, 4+]〉 and Y4,∓4,±10

4,m �
|[70′, 4+]〉. Note, moreover, that both of these have orbital angular 
momenta L ≥ 2, as this is required for multiplicity to occur.

3. The three-body Schrödinger equation

First, we briefly explain the adiabatic hyperspherical represen-
tation of the three-body Schrödinger equation. Then, we apply the 
permutation-symmetric h.s. harmonics to this problem, and solve 
the adiabatic approximation to Schrödinger equation with homo-
geneous potentials.

3.1. Adiabatic hyperspherical representation

Here we follow the standard derivation of the adiabatic hyper-
spherical representation, Refs. [23,24]. The three-body Schrödinger 
equation in 3D for the scaled wave function ψ = R5/2� ,
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Table 1
The labels of distinct K ≤ 4 h.s. harmonics YK,Q ,ν

L,m (three-body states, with allowed 
orbital angular momentum value L; only L = m labels are shown). The correspon-
dence between the S3 permutation group irreps. and SU(6)F S symmetry multiplets 
of the three-quark system: S ↔ 56, A ↔ 20 and M ↔ 70.

K (K, Q , L,m, ν) [SU (6), L P ] S3 irrep.

0 (0, 0, 0, 0, 0) [56,0+] S

1 (1,±1, 1, 1,∓1) [70,1−] M

2 (2,±2, 0, 0, 0) [70,0+] M
2 (2, 0, 2, 2, 0) [56,2+] S
2 (2,∓2, 2, 2,±3) [70,2+] M
2 (2, 0, 1, 1, 0) [20,1+] A

3 (3,∓3, 1, 1,±1) [20,1−] A
3 (3,∓3, 1, 1,±1) [56,1−] S
3 (3,±1, 1, 1,±3) [70,1−] M
3 (3,∓1, 2, 2,±5) [70,2−] M
3 (3,∓1, 3, 3,±2) [70,3−] M
3 (3,±3, 3, 3,∓6) [56,3−] S
3 (3,±3, 3, 3,∓6) [20,3−] A

4 (4,±4, 0, 0, 0) [70,0+] M
4 (4, 0, 0, 0, 0) [56,0+] S
4 (4,±2, 1, 1,±2) [70,1+] M
4

(
4,0,2,2,∓√

105
) [56,2+] S

4
(
4,0,2,2,∓√

105
) [20,2+] A

4 (4,±2, 2, 2,±2) [70,2+] M
4 (4,±4, 2, 2,∓3) [70′,2+] M
4 (4,∓2, 3, 3,±13) [70,3+] M
4 (4, 0, 3, 3, 0) [20,3+] A
4 (4, 0, 4, 4, 0) [56,4+] S
4 (4,∓2, 4, 4,±5) [70,4+] M
4 (4,∓4, 4, 4,±10) [70′,4+] M

[
− 1

2m

∂2

∂ R2
+ Had(R;�5)

]
ψE(R;�5) = EψE(R;�5), (12)

can be (re)formulated as an algebraic (matrix) eigenvalue problem 
for the “adiabatic Hamiltonian” Had(R; �5)

Had(R;�5) = K 2
μν(�5) − 1/4

2mR2
+ V (R,α,φ), (13)

where K 2
μν(�5) is the grand angular momentum squared, i.e., the 

hyper-angular part of the kinetic energy, V (R, α, φ) is the interpar-
ticle interaction potential, E is the total energy and �5 ≡ (γ , α, φ)

denotes the set of three Euler (γ ) and two hyper-angles (α, φ). 
The shift of K 2

μν(�5) by 1/4 in Eq. (13), as compared with Eq. (1), 
is due to the rescaling � → ψ/R5/2 of the wave function that was 
implemented in order to eliminate the first derivative in R term 
from Eq. (12).

In the adiabatic hyperspherical representation, the scaled three-
body wave function ψE (R; �5) is expanded in terms of the “chan-
nel functions” �μ(R; �5),

ψE(R;�5) =
∑
μ

FμE(R)�μ(R;�5), (14)

Here FμE(R) are the hyper-radial wave functions and the channel 
functions �μ(R; �5) form a complete set of orthonormal functions 
at each value of R being the eigenfunctions of Had,

Had(R;�5)�μ(R;�5) = Uμ(R)�μ(R;�5) (15)

The “channel index” μ,2 represents all quantum numbers neces-
sary to specify each channel and “may serve to identify new sets of 
approximate quantum numbers”, Ref. [23]. The eigenvalue problem 
Eq. (15) is (still) an infinite-dimensional one (in spite of absence of 

2 Not to be confused with the reduced mass μ, nor with the index of the grand 
angular momentum tensor Kμν , Eq. (2).

hyper-radial derivatives): Had(R; �5) is a linear Hermitian differ-
ential operator in the hyper-angles �5. In general Eq. (15) cannot 
be solved exactly, so that approximate and/or numerical solutions 
must be sought.

The eigenvalues Uμ(R) correspond to the three-body potentials 
in the channel specified by the set of quantum numbers μ. From 
the eigenvalues Uμ(R) one can define the effective three-body po-
tentials for the hyper-radial motion in those channels.

The basic idea of the adiabatic representation/expansion, is that 
the “channel functions” �μ(R; �5) vary smoothly with R except in 
localized regions of avoided crossings. The simplest approximation 
is to ignore the coupling of different channels – this is called the 
adiabatic approximation.3 The energies obtained by solving two 
slightly different adiabatic approximations form an upper- and a 
lower bound on the true eigenenergy, Refs. [22,24].

3.2. O (6) reduction

The presence of the hyper-angular momentum squared,
K 2

μν(�5) in Had(R; �5), immediately suggests the O (6) hyper-
spherical harmonics as the basis vectors in three-body systems. 
Thus we employ hyperspherical harmonics to solving the channel 
eigenvalue equation (15), and hence decompose the channel func-
tions �ν(R; �5) as

�μ(R;�5) =
∑

K,[m]
f K[m](R)YK[m](�5),

where [m] denotes all the labels of hyperspherical harmonics apart 
from K. After projecting out the YK′

[m′] component, Eq. (15) be-
comes[

K(K + 4) − 1/4

2mR2
− U K

μ(R)

]
f K[m](R) +

+
∑

K′,[m′]
V K K′

[m][m′](R) f K′
[m′](R) = 0, (16)

where

V K K′
[m][m′](R) =

〈〈
YK[m]

∣∣∣V (R,α,φ)

∣∣∣YK′
[m′]

〉〉
. (17)

The double-bracket matrix element signifies that integrations are 
carried out only over the angular coordinates �5. Eq. (16) is the 
(final) result of the O (6) reduction of the eigenvalue equation (15)
– it turns into an eigenvalue problem for an infinite-dimensional, 
hyper-radius dependent matrix. For arbitrary potentials it can only 
be solved numerically, but there are special cases, such as factoriz-
able potentials and/or dominantly hyper-radially dependent poten-
tials, that can be treated (semi)analytically, see below.

It is immediately clear, however, that the application of the 
permutation-symmetric hyperspherical harmonics simplifies this 

3 The name is apparently due to the formal similarity to the adiabatic approxi-
mation, where solving the time-dependent Schrödinger equation is separated into 
two steps: first solve the (“quasi-static”) eigenvalue problem (without the partial 
derivative in time) at each moment in time; and then insert these eigenvalue so-
lutions into the full Schrödinger equation including the partial derivative in time 
and solve it, Ref. [35]. The validity of the conventional (time-dependent) “adiabatic 
approximation” depends on just how slowly the potential changes with time: the 
slower, the better. Here, we have made a similar separation, albeit with an eigen-
value problem Eq. (15), which contains no partial derivatives in the hyper-radius R . 
Its solutions are then “fed” into the full Schrödinger equation (12) that contains 
the partial derivative(s) in hyper-radius R . The name (hyper-radial) “adiabatic ap-
proximation” is a misnomer here, because the eigenvalue problem Eq. (15) always 
contains the K 2

μν (�5)−1/4

2mR2 term, with its strong R dependence, no matter how the 
potential V (R, α, φ) depends on R . Indeed, the only non-trivial case when this ap-
proximation is exact is with the −1/R2 potential, which changes rather rapidly 
in R!
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matrix eigenproblem substantially, as the matrix then turns into a 
block-diagonal form, with block sub-matrices corresponding to la-
bels from the set [m] that are preserved by the symmetries of the 
potential, viz. rotational numbers L and m, parity P , and permuta-
tion symmetry labels A, S, M. Consequently, the channel functions 
�μ(R; �5) must be labelled by these four good quantum numbers, 
i.e., the channel index μ = (L P , m, Q ) must consist of at least these 
four good quantum numbers.4

Apart from the case of hyper-radial potentials, matrix elements 
Eq. (17) may be nonzero when K �= K′ (i.e. the level crossing �K �=
0 transitions may exist), meaning that K is not a good quantum 
number for labelling of the channels in general. Nevertheless, the 
breaking of O (6) symmetry by permutation-symmetric homoge-
neous potentials is sufficiently small, see Table 2, so as to allow a 
systematic approximation scheme based on O (6) symmetry.5 Thus, 
in the following, K may be treated as an approximate quantum 
number.

3.3. Potential matrix elements

3.3.1. Hyperspherical expansion of three-body potentials
As the spatial part of any spin-independent three-body inter-

action potential must be invariant under overall (“ordinary O (3)”) 
rotations, it is a scalar, or equivalently, it contains only the zero-
angular momentum L = m = 0 hyperspherical components. Of 
course, this holds for both the permutation-symmetric and unsym-
metrized hyperspherical harmonics.

So far, we have eschewed specifying the h.s. harmonics used in 
Sect. 3.2. Next we show the substantial advantages/simplifications 
in the form of the hyperspherical expansion of the three-body po-
tential, and in the evaluation of hyper-angular matrix elements, 
gained by using the permutation-symmetric set.

This means choosing the set [m] = [L P , Lz = m, Q , ν] that con-
sists of parity P , the (total orbital) angular momentum L, its pro-
jection on the z-axis Lz = m, the Abelian hyper-angular momentum 
quantum number Q conjugated with the Iwai angle φ, and the 
multiplicity label ν that distinguishes between hyperspherical har-
monics with remaining four quantum numbers that are identical.

The three-body potential V (R,α,φ) can be expanded in terms 
of O (6) hyper-spherical harmonics with zero angular momenta 
L = m = 0 (due to the rotational invariance of the potential),

V (R,α,φ) =
∞∑

K,Q

v3-body
K,Q (R)YKQ ν

00 (α,φ) (18)

In the present case of three identical particles (and therefore 
also of permutation symmetric potential) the sum runs only over 
double-even-order (K = 0, 4, . . .) O (6) hyper-spherical harmonics 
with zero value of the democracy quantum number G3 = Q = 0, 
as well as over K = 6, 12, 18 . . . O (6) hyper-spherical harmonics 
with democracy quantum number G3 ≡ Q ≡ 0 (mod 6), always 
with vanishing angular momentum L = m = 0. There is no summa-
tion over the multiplicity index in Eq. (18), because no multiplicity 
arises for harmonics with L < 2.

Here v3-body
KQ are defined as

v3-body
K,Q (R) =

∫
YK,Q ,ν∗

0,0 (�5) V 3-body(R,α,φ) d�5. (19)

4 There may be additional, approximate quantum numbers, however, depending 
on the specific dynamics.

5 In exceptional cases, such as the Coulombic, or the harmonic oscillator ones, 
where the dynamical symmetry of the problem is larger than O (6), K is not the 
principal quantum number; rather it is some other integer N , and K appears as the 
label of degenerate states within an N-multiplet, i.e., ν = [N, K, [m]].

Table 2
Non-vanishing expansion coefficients vKQ of the Y- and �-string and the QCD 
Coulomb potentials in terms of O (6) hyper-spherical harmonics YK,0,0

0,0 , for K = 0, 
4, 8, respectively, and of the hyper-spherical harmonics Y6,±6,0

0,0 , for K ≤ 11. 
The last row gives the percentage of the “Parseval unity” for the potential 
that is accounted for by its expansion into these five harmonics, calculated as ∑

(v3-body
K,Q )2/(

∫
(V 3-body)

2 d�5).

(K, Q ) vY
KQ v�

KQ vCoulomb
KQ

(0,0) 8.18 16.04 20.04
(4,0) −0.44 −0.44 2.95
(6,±6) 0 −0.14 1.88
(8,0) −0.09 −0.06 1.49

∑
(v3-body

K,Q )2∫
(V 3-body)2 d�5

99% 99% 94%

In the special case of a factorizable three-body potential, see 
below, the v3-body

KQ coefficients do not depend on the hyper-
radius R; these coefficients are determined by the hyper-angular 
part V (α,φ) of the potential.

The numerical values for the first four allowed (non-vanishing) 
v3-body

K,Q coefficients for K ≤ 11, in the Y- and �-string and Coulomb 
potential’s hyperspherical expansions are tabulated in Table 2, to-
gether with a check to which extent Parseval’s identity Eq. (20) is 
fulfilled by the truncation of the sum. All other coefficients must 
vanish for K < 12. Vanishing of the coefficient vY

6,±6 = 0 indicates 
(an additional) dynamical symmetry of the Y-string potential.

Note that Parseval’s theorem

∞∑
K,Q

|v3-body
K,Q |2 =

∫
|V 3-body|2 d�5 , (20)

requires square integrability of the potential at each value of the 
hyper-radius R , i.e., finiteness of the right-hand side of Eq. (20), 
regardless of the kind of h.s. harmonics that were used. The re-
quirement of square integrability also holds for any expansion of 
the potential in terms of a complete set of basis functions, whether 
O (6) harmonics, or not.

This condition (of square integrability) eliminates all sums of 
two-body power-law potentials 

∑3
i> j=1 |xi − x j |α , with powers 

α < −1, as well as other singular potentials, such as the Dirac 
δ-function one. Thus, it poses a strong restriction on the class of 
three-body potentials that can be treated in this manner, that has 
not been considered so far: in particular, potentials such as the 
Lennard-Jones, v.d. Waals and Morse ones will have to be exam-
ined individually.

3.3.2. Factorizable potentials
Factorizable potentials satisfy

V (R,α,φ) = V (R)V (α,φ),

and form a non-negligible class that contains homogeneous poten-
tials,6 such as: 1) the �-string, V� = σ�

∑3
i> j=1 |xi − x j |; 2) the 

Y-string, V Y = σY minx0

∑3
i=1 |xi − x0|; and 3) the QCD Coulomb 

V Coulomb = −αC
∑3

i> j=1
1

|xi−x j | .

Then Eq. (17) factors into a common hyper-radial part V (R) and 
the hyper-angular matrix CK K′

[m][m′]:

V K K′
[m][m′](R) = V (R)〈YK[m](�5)|V (α,φ)|YK′

[m′](�5)〉
≡ V (R) CK K′

[m][m′]. (21)

6 Of course, this class does not include many of the realistic potentials in molec-
ular and nuclear physics, such as the Lennard-Jones, Morse, v.d. Waals and Yukawa 
potentials.
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For homogeneous potentials ∼ Rα , with exponent α = −2, the 
eigenvalue equation (16) becomes effectively independent of the 
hyper-radius R , which leads to conformal symmetry, Refs. [25,26], 
together with a substantial simplification of the problem.

3.3.3. Selection rules
Plugging the potential decomposition (18) into Eq. (17), or 

Eq. (21) requires the knowledge of O (6) hyper-angular matrix ele-
ments of the form

CK′′ K′
[m′′][m′] =

∞∑
K,Q

v3-body
K,Q 〈YK′′

[m′′](�5)|YKQ ν
00 (α,φ)|YK′

[m′](�5)〉

The O (6) hyper-angular matrix elements

〈YK′′
[m′′](�5)|YKQ ν

00 (α,φ)|YK′
[m′](�5)〉

can be evaluated using the permutation-symmetric hyperspherical 
harmonics obtained in Sect. 2.2, see also Ref. [14].

Generally, the O (6) matrix elements obey the following selec-
tion rules that reduce the number of non-zero values: they are 
subject to the “triangular” conditions K′ + K′′ ≥ K ≥ |K′ − K′′| plus 
the condition that K′ + K′′ + K = 0, 2, 4, . . . , and the angular mo-
menta satisfy the selection rules: L′ = L′′ , m′ = m′′ . Moreover, Q is 
an Abelian (i.e. additive) quantum number that satisfies the sim-
ple selection rule: Q ′′ = Q ′ + Q . All of this reduces the sum in 
CK′′ K′

[m′′][m′] to a finite one, that depends on a finite number of coeffi-

cients v3-body
K,Q ; for small values of K, this number is also small, see 

Sect. 4.1.
The hyper-angular matrix element

〈YK′′
[m′′](�5)|YKQ ν

00 (α,φ)|YK′
[m′](�5)〉

is (merely) a product of two O (6) group Clebsch–Gordan coeffi-
cients that can be calculated using Ref. [14], and the physics is con-
tained in the three-body potential expansion coefficients v3-body

K,Q .

3.3.4. Advantages of the permutation-symmetric basis
Of course, Eq. (16) must also hold with any other complete set 

of three-body hyperspherical harmonics, including the permuta-
tion non-symmetric ones, such as those based on the Delves choice 
of hyper-angles, see Ref. [34]. Note, however, that the Delves-type 
h.s. harmonics do not have a well-defined set of labels (“quantum 
numbers”): besides the three standard/obvious quantum numbers 
K, L, m there is an ambiguity as to what one ought to use for the 
rest, see Sects. 2.3.2 and 2.3.3 in Ref. [34] and Sect. 5. in Ref. [18].

The permutation-symmetric basis is the optimal one in so far 
as it maximally observes the symmetries of the permutation-
symmetric three-body problem and leads to a minimal number 
of h.s. components in the decomposition of the potential and of 
non-vanishing off-diagonal matrix elements. Using the Table 2 as 
an example, we note the following: there are overall (K + 3)!(K +
2)/(12K!) = 2366 hyperspherical harmonics in the K ≤ 11 shells, 
and this number is independent of the choice of h.s. basis. How-
ever, it is a unique feature of the permutation-symmetric basis 
that the decomposition of any permutation symmetric potential 
has no more than four distinct nonvanishing coefficients out of 
2366 possible ones! This “sparseness” is even more marked when 
one considers (of the order of) 106 off-diagonal K ≤ 11 matrix el-
ements, all of which depend only on these four coefficients, see 
Sect. 4.1.

The sparseness of this matrix suggests that our three-body 
problem might be diagonalizable, at least in some circumstances 
– see Sect. 4. The manifest permutation symmetry of our hyper-
spherical harmonics, together with the complete set of commut-
ing operators, simplifies all subsequent calculations. This simpli-
fication becomes increasingly pronounced as the value of K in-
creases, see Ref. [15] where we applied these HH to the problem 

Table 3
The values of non-vanishing off-diagonal matrix elements of the hyper-angular 
part of the three-body potential π√

π 〈[SU (6) f , L P
f ]| 2�eY6,±6,0

0,0 |[SU (6)i , L P
i ]〉ang, 

for various K = 4 states (for all allowed orbital waves L).

K [SU (6) f , L P
f ] [SU (6)i , L P

i ] π
√

π 〈2�eY6,±6,0
0,0 〉ang

4 [70,2+] [70′,2+] 6
7

√
6
5

4 [70,4+] [70′,4+] 8
21

Table 4
The values of the off-diagonal matrix elements of the hyper-angular part of the 
three-body potential π√

π 〈[SU (6) f , L P
f ]| Y4,0,0

00 |[SU (6)i , L P
i ]〉ang, for various K = 0,

2, 4 states (for all allowed orbital waves L).

(K f , [SU (6) f , L P
f ]) (Ki , [SU (6)i , L P

i ]) π
√

π 〈Y4,0,0
00 〉ang

(0, [56,0+]) (4, [56,0+]) 1

(2, [70,2+]) (4, [70,2+]) 4
5

√
6
7

(2, [56,0+]) (4, [56,0+]) 4
5

√
2
7

Table 5
The values of non-vanishing off-diagonal matrix elements of the hyper-angular 
part of the three-body potential π√

π 〈[SU (6) f , L P
f ]| 2�eY6,±6,0

0,0 |[SU (6)i , L P
i ]〉ang, 

for various K = 4 states (for all allowed orbital waves L).

(K f , [SU (6) f , L P
f ]) (Ki , [SU (6)i , L P

i ]) π
√

π 〈2�eY6,±6,0
0,0 〉ang

(2, [70,2+]) (4, [70′,2+]) 2
√

3
35

of three-quark bound states. In that display of utility of our ap-
proach, we explicitly calculated the orderings of K ≤ 4 states and 
showed that, thanks to the symmetry properties of our harmonics, 
these levels’ energies can be accurately parameterized by only four 
potential-dependent constants. Furthermore, as a consequence of 
the mentioned matrix sparseness, the expressions for the energies 
in Ref. [15] are given in an analytic form.

4. Results

In general, the eigenvalue problem Eq. (16) has to be solved 
numerically, but its solution is significantly simplified by the 
use of permutation-symmetric h.s. harmonics basis, as the hyper-
angular matrix elements are subject to the selection rules shown 
in Sect. 3.3.3.

The couplings of lower-K′ states to the higher-K′′ ones are pro-
portional to the higher-K valued coefficients v3-body

K,Q , due to the 
K′ + K′′ ≥ K ≥ |K′ − K′′| selection rule, which coefficients, in turn, 
are smaller than the lower-K ones, see Table 2. This reduction be-
comes increasingly pronounced as the values of K′, K′′ increase, 
see Ref. [15]. That fact leads, in the case of homogeneous poten-
tials, to a clear ordering of off-diagonal matrix elements and allows 
controllable approximations to the solution, that may even be con-
vergent in some special cases, e.g. with conformal invariance.

4.1. Off-diagonal matrix elements

The non-vanishing single-shell (�K = 0) off-diagonal matrix el-
ements, for K = 0, 1, 2, 3, 4 states, are shown in Table 3.

The non-vanishing two-shell off-diagonal (nonadiabatic) matrix 
elements, for various K = 0, 2, 4 states, are shown in Tables 4, 5, 
and for K = 1, 3 states, in Table 6.

4.2. Diagonalization

The sparseness of the hyper-angular coupling coefficients ma-
trix CK K′

[m][m′] in the permutation-symmetric basis displayed in 
Sect. 4.1 suggests that we attempt an analytic diagonalization.
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Table 6
The values of the off-diagonal matrix elements of the hyper-angular part of the 
three-body potential π√

π 〈[SU (6) f , L P
f ]| Y4,0,0

00 |[SU (6)i , L P
i ]〉ang, for various K = 1, 

3, 5 states (for all allowed orbital waves L).

(K f , [SU (6) f , L P
f ]) (Ki , [SU (6)i , L P

i ]) π
√

π 〈Y4,0,0
00 〉ang

(1, [70,1−]) (5, [70′,1−])
√

2
3

(1, [70,1−]) (3, [70,1−]) 1√
3

4.2.1. Adiabatic mixing (�K = 0)
Inspection of the Table 2 reveals that all of the potentials con-

sidered there have coefficients v3-body
00 that are one order of mag-

nitude larger than the rest v3-body
K>0,Q . This fact justifies taking only 

the term proportional to v3-body
00 in the expansion Eqs. (16), (18)

as the zeroth order approximation. To this zeroth order, all the so-
lutions with the same principal number K are degenerate, with 
Uμ(R) = UK(R) = K(K+4)−1/4

2mR2 + v3-body
00 (R). The first order correc-

tions lift this degeneracy, i.e., that would amount to including 
all off-diagonal elements within the same K-shell (i.e. those with 
K = K′) into Eq. (17).

In a such case, the eigenvalue problem Eq. (16) splits into sep-
arate equations for each value of K. For a given K the term in the 
first line in Eq. (16) is proportional to a unit matrix, so it may be 
removed from the diagonalization. Therefore, the potential matrix 
V K K′

[m][m′](R) is the only one that needs to be diagonalized; it can be 
brought into the diagonal form

V K K′
[m][m′](R) = δK,K′δ[m],[m′]V K[m](R),

due to its Hermiticity, yielding the eigenvalues of the equation 
Eq. (16) in the form

U K[m](R) = K(K + 4) − 1/4

2mR2
+ V K[m](R). (22)

The matters simplify further in the case of factorizable poten-
tials, i.e., when V K[m](R) = V (R)CK[m] . In such a case, the coefficients 
f K[m](R) form (mutually orthogonal) eigenvectors that effectively do 
not depend on the hyper-radius R , as we can choose the normal-
ization so that f K[m](R) = f K[m](0). This is so because the matrix 
CK K′

[m][m′] that is being diagonalized does not depend on R .
This implies that the non-adiabatic coupling terms, Eq. (3.10) in 

Ref. [23], or Eqs. (16), (17) in Ref. [21], vanish: P K,K′
[m],[m′](R) = 0 and 

Q K,K′
[m],[m′](R) = 0. In this sense, the single K-shell mixing approxi-

mation corresponds to the adiabatic one for factorizable potentials. 
That, in turn, leads to the explicit solution V K

eff [m](R) = U K[m](R), 
to the hyper-radial effective potential.

4.2.2. Non-adiabatic mixing (�K �= 0)
Introducing higher-order corrections to Eq. (17) corresponds to 

taking into account the inter-shell (K �= K′) mixings. It is then no 
longer possible (in general) to choose f K[m](R) as being indepen-
dent of hyper-radius R . Note that in the K, K′ ≤ 4 shells there is at 
most two-state mixing, see Tables 4, 5, 6. In such simple cases one 
can solve for the mixing angle �(R) in closed form.

For (smooth, monotonic) homogeneous potentials V (R) ∼ Rα , 
the two-state mixing angle �(R) changes monotonically from 
�(0) = 0 to its asymptotic value �as. , as R → ∞.7 The “hyper-
radial functions” f K[m](R) ∼ cos�(R) lead to non-vanishing non-

7 For (in-homogeneous, smooth) non-monotonic potentials with a hard inner-
core, α < −2 and/or weak asymptotic tail falling off faster than 1/R2, the mixing 
angle �(R) behaves differently, and its two limits, R → ∞, and R → 0, may be “re-
versed”. For V (R) � 1/R2, α = −2, the mixing angle � does not depend on R , as 
the complete R dependence can be factored out of the eigenvalue equation (16). 

adiabatic coupling coefficients, Eq. (3.10) in Ref. [23], or Eqs. (16), 
(17) in Ref. [21], P K,K′

[m],[m′](R) �= 0 and Q K,K′
[m],[m′](R) �= 0 because 

d�K[m]
dR ∼

(
df K[m](R)

dR

)
�= 0. This leads to a non-vanishing non-adiabatic 

correction Q K,K
[m],[m](R) �= 0 to the hyper-radial effective potential.

In general, the problem has to be solved numerically, but 
solving Eq. (16) is significantly simplified in the permutation-
symmetric h.s. harmonics basis, as the hyper-angular matrix 
elements are subject to the (now familiar) selection rules in 
Sect. 3.3.3. Couplings to higher-K, K′ shells are proportional to 
higher values of expansion coefficients v3-body

K,Q , which, in turn, are 
smaller than the lower ones; this allows a controlled/convergent 
approximation.

4.3. Homogeneous permutation-symmetric potentials in adiabatic 
approximation

The adiabatic approximation is obtained by setting the non-
adiabatic coefficients equal to zero: P K,K′

[m],[m′](R) = 0. One can argue 
that the adiabatic approximation is a reasonable one for confin-
ing (α > 0) three-body potentials, at least for low values of K ≤ 4. 
In such cases hyper-radial equations decouple, leading to solutions 
that depend on the (diagonalized values of) quantum numbers [m]
and thus lead to (slightly) different eigen-energies within the same 
K shell.

The ordering of states in each shell depends only on four coef-
ficients (v00, v40, v6±6, v80), for K ≤ 5, and the largest number of 
states that mix is three, so the eigenvalue equations are at most 
cubic algebraic ones, with well-known closed form solutions.

Homogeneous confining three-body potentials, such as the 
�-string and the Y-string, have coefficients v3-body

00 that are one 
order of magnitude larger than the rest v3-body

K>0,Q , see Table I in 
Ref. [15]. Consequently, the K expansion ought to converge quickly. 
In Ref. [15] we used the above-described methods to calculate the 
eigen-energies of various SU(6)/S3 multiplets in the K ≤ 4 shells 
of the Y-, �-string potential spectra, with the following results.

The K = 2 shell depends only on two coefficients (v00, v40), 
so the level splittings depend only on one free parameter (the 
ratio v40/v00) and the O (6) matrix elements/Clebsch–Gordan coef-
ficients, thus confirming the “universal splitting” result of Refs. [28,
29].

In the K = 3 shell, however, there are three coefficients 
(v00, v40, v6±6), leading to two free parameters, the independent 
ratios v40/v00 and v6±6/v00, which means that the energy split-
tings depend on the potential, i.e., that they are not “universal”.

A clear example of this difference appears between the eigen-
energies in the Y-string and the �-string potential, as a conse-
quence of |vY

6±6| � |v�
6±6|. That is also the first direct consequence 

of the dynamical O (2) symmetry of the “Y-string” potential. Nu-
merical values of eigen-energies can be obtained from the results 
in Ref. [15] by using Eqs. (22), (24)–(26) in Sect. 3.3 and Eqs. 
(C1)–(C8) in App. C; as well as the numerical values shown in Ta-
bles 4, 5, 6 in Sect. 4.2 and Table 11 in App. C of Ref. [30]. The 
K = 4 shell is too complicated to be discussed here; for these re-
sults see Ref. [15] – the general conclusions agree with those from 
K = 3 shell.

The ordering of bound states has its most immediate appli-
cation in the physics of three confined quarks, where the ques-
tion was originally raised, Refs. [12,27–29], but, as time passed 
it has become more of a question in mathematical physics, see 
Refs. [8,9,11]. The above discussion ought to have made it clear 

That is a consequence of the scale invariance of V (R) � 1/R2 potentials in non-
relativistic dynamics, see Refs. [25,26].
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that three-body analogons of two-body state-ordering theorems, 
Refs. [8,9,11], do not hold for realistic three-body systems at K > 2.

5. Summary and conclusions

In summary, we have constructed the three-body permutation-
symmetric hyperspherical harmonics and then used them in a per-
mutation symmetric version of the hyperspherical adiabatic rep-
resentation to reduce the non-relativistic three-body problem to a 
set of coupled ordinary differential equation for the hyper-radial 
wave functions with effective potentials that are derived as func-
tions of the three-body potential’s hyperspherical harmonics ex-
pansion coefficients.

In the adiabatic approximation this set of equations decouples 
to one ordinary differential equation, that can be solved in the 
same manner as the one-body radial Schrödinger equation.

This transcription of the three-body problem into hyperspher-
ical variables is possible only for three-body potentials whose 
hyper-angular dependence is square integrable, however. One such 
subset are the factorizable potentials, and more specifically homo-
geneous potentials, such as the pairwise sums of single-power-law 
terms, with the power larger than −1.

Then, we applied these methods to three homogeneous po-
tentials that satisfy the square integrability condition. The order-
ing of states (“pattern”) in the spectrum depends on the O (6)

symmetry-breaking, which in turn is determined by the hyper-
spherical expansion coefficients of the three-body potential. These 
coefficients depend on the dynamical “remnant” symmetries of the 
potential. Thus, for example the so-called Y-string potential has 
an O (2) dynamical symmetry, Ref. [19], that is absent in poten-
tials that are pairwise sums of single-power-law terms (for powers 
different than the second one). We used this O (2) dynamical sym-
metry, of which the permutation group S3 ⊂ O (2) is a subgroup, 
to guide our construction of the permutation symmetric harmon-
ics. In three dimensions (3D) the “hyper-spherical symmetry” is 
O (6), and the residual dynamical symmetry of the potential is 
S3 ⊗ S O (3)rot ⊂ O (2) ⊗ S O (3)rot ⊂ O (6), where S O (3)rot is the 
rotational symmetry associated with the (total orbital) angular mo-
mentum L.

Our O (6) permutation-symmetric three-body hyperspherical 
harmonics appear to be the first of their kind in the literature. 
Symmetrized three-body hyper-spherical harmonics have been 
pursued before, albeit without emphasis on the the “kinematic 
rotation” O (2) symmetry label. To our knowledge, aside from the 
special case L = 0 results of Simonov, Ref. [5] and L = 1 of Barnea 
and Mandelzweig, Ref. [13], several other attempts, Refs. [6,31–33], 
some based on so-called “tree pruning” techniques, exist in the lit-
erature, beside the recursively symmetrized N-body hyperspherical 
harmonics of Barnea and Novoselsky, Refs. [16,17]. The latter are 
based on the O (3) ⊗ SN ⊂ O (3N − 3) chain of algebras, which 
does not explicitly include the “kinematic rotation”/“democracy” 
O (2) symmetry.

The method of permutation-symmetric hyperspherical harmon-
ics is not specific to any particular non-relativistic quantum three-

body problem, i.e., it should find application in realistic 3D three-
body problems in atomic, molecular and Efimov physics, three-
quark problem in hadronic physics, as well as in positronium ion 
P−

s (= e−e+e−) physics.
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[15] Igor Salom, V. Dmitrašinović, J. Phys. Conf. Ser. 670 (1) (2016) 012044.
[16] N. Barnea, A. Novoselsky, Ann. Phys. 256 (1997) 192.
[17] N. Barnea, A. Novoselsky, Phys. Rev. A 57 (1998) 48.
[18] V.A. Nikonov, J. Nyiri, Int. J. Mod. Phys. A 29 (20) (2014) 1430039.
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[30] V. Dmitrašinović, T. Sato, M. Šuvakov, Eur. Phys. J. C 62 (2009) 383.
[31] F. del Aguila, J. Math. Phys. 21 (1980) 2327.
[32] V. Aquilanti, S. Cavalli, G. Grossi, J. Chem. Phys. 85 (1986) 1362.
[33] D. Wang, A. Kuppermann, Int. J. Quant. Chem. 106 (2006) 152–166.
[34] R. Krivec, Few-Body Syst. 25 (1998) 199.
[35] L.I. Schiff, Quantum Mechanics, 3rd ed., McGraw–Hill Kogakusha, Tokyo, 1968.

http://refhub.elsevier.com/S0375-9601(16)30072-X/bib47726F6E77616C6C3A31393337s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib426172746C6574743A31393337s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib44454C5645533A313935387A7As1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib44454C5645533A313935387A7As2
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib536D6974683A313935397A7As1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib536D6974683A313935397A7As2
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib536D6974683A313935397A7As3
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib536D6974683A313935397A7As4
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib53696D6F6E6F763A313936356569s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib46616272653A31393830s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib497761693139383761s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib47726F7373653A31393739786Ds1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib4261756D676172746E65723A313938346378s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib4D617274696E3A313938396D6Ds1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib47726F7373653A313939377875s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib47726F7373653A313939377875s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib526963686172643A313938397261s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib4261726E65613A313939307A7As1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib53616C6F6D3A32303135s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib53616C6F6D3A32303135s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib53616C6F6D3A32303135s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib53616C6F6D3A32303135s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib5072616775653A32303135s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib4261726E656131393937s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib4261726E656131393938s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib4E696B6F6E6F763A32303134s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib446D6974726173696E6F7669633A323030396D61s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib446D6974726173696E6F7669633A32303134s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib4427496E63616F3A32303134s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib537461726163653A31393739s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib4C696E3A31393935s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib457372793A31393936s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib48616B6F6279616E3A323030396163s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib48616B6F6279616E3A323030396163s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib48616B6F6279616E3A323031306961s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib48616B6F6279616E3A323031306961s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib426F776C65723A313938317868s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib426F776C65723A313938317868s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib426F776C65723A313938317868s2
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib47726F6D65733A313937366372s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib47726F6D65733A313937366372s2
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib49736775723A313937387764s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib446D6974726173696E6F7669633A323030396479s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib64656C416775696C613A31393830s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib417175696C616E74693A31393836s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib4B75707065726D616E6E32303035s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib4B7269766563s1
http://refhub.elsevier.com/S0375-9601(16)30072-X/bib5363686966663A31393638s1




































2nd Reading

November 22, 2013 16:39 WSPC/S0129-055X 148-RMP J070-1343006

Reviews in Mathematical Physics
Vol. 25, No. 10 (2013) 1343006 (16 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0129055X1343006X

SL(n, R) IN PARTICLE PHYSICS AND GRAVITY —
DECONTRACTION FORMULA AND UNITARY

IRREDUCIBLE REPRESENTATIONS

IGOR SALOM∗ and DJORDJE ŠIJAČKI†
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SL(n, R) and Diff(n, R) groups play a prominent role in various particle physics and
gravity theories, notably in chromogravity (that models the IR region of QCD), gauge
affine generalizations of general relativity, and pD-branes. Applications of these groups
require a knowledge of their features and especially rely on the unitary irreducible repre-
sentation details. Lie algebra, topology and unitary representation issues of the covering
groups of the SL(n, R) and Diff(n, R) groups with respect to their maximal compact
SO(n) subgroups are considered. Topological properties determining spinorial represen-
tations of these groups are reviewed. An especial attention is paid to the fact that,
contrary to other classical Lie algebras, the SL(n, R), n ≥ 3 covering groups are groups
of infinite matrices, as are all their spinorial representations. A notion of Lie algebra
decontraction, also known as the Gell-Mann formula, that plays a role of an inverse
to the Inonu–Wigner contraction, is recalled. Contrary to orthogonal type of algebras,
the decontraction formula has a limited validity. The validity domain of this formula
for sl(n, R) algebras contracted with respect to their so(n) subalgebras is outlined. A
recent generalization of the decontraction formula, that applies to all SL(n, R) cover-
ing group representations, as well as an explicit closed expression of all non-compact
sl(n, R) operators matrix elements for all representations is presented. A construction of
the unitary sl(n, R) representations is discussed within a framework than combines the
Harish-Chandra results and a method of fulfilling the unitarity requirements in Hilbert
spaces with non-trivial scalar product kernel.

Keywords: Gell-Mann decontraction formula; Lie algebra contraction; SL(n) represen-
tations.
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1. Introduction

The Poincaré spacetime and internal SU (n) symmetries, both global and local,
played a crucial role in describing fundamental forces in nature, physical
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conservation laws, and the basic matter fields. These symmetries are the core essence
of the Standard Model and Einstein’s General Relativity Theory, the two pillars
of contemporary fundamental physics. In this work we consider the SL(n, R) sym-
metries in the content of particle physics and gravity theory. First, we recollect
several prominent examples and extract the knowledge on the relevant required
SL(n, R) representations. Afterwards, we pose a general framework for construct-
ing the SL(n, R) unitary irreducible representations, and outline the basic facts
about recent generalization of the Gell-Mann’s decontraction formula that yields
all matrix elements of the sl(n, R) algebra elements for all representations.

Already in 1965, Gell-Mann, Dothan and Ne’eman proposed the SL(3, R)
symmetry to describe the Regge trajectories of hadron recurrences in a spectrum
generating algebra approach [1]. The model was subsequently generalized to the
relativistic SL(4, R) one, describing both parent and daughter trajectories [2]. A
construction of the unitary irreducible SL(3, R) representations was a first step on
the way to fulfill this proposal. Moreover, the spinorial representations, faithful
representations of the SL(3, R) covering group, were essential in order to describe
baryonic recurrences. After some confusion among researchers at the time, denying
even an existence of the covering group on the basis of a wrong interpretation of
certain Cartan’s statement, it was soon clear that there are specific features of the
SL(3, R) symmetry (subsequently, all SL(n, R), n ≥ 3, symmetries) and its represen-
tations [3]. The covering SL(n, R), n ≥ 3, groups are necessarily defined in infinite
dimensional spaces (groups of infinite matrices), thus there are no finite spino-
rial representations, and their representations considered with respect to maximal
compact Spin(n), i.e. SO(n) subgroups have as a rule non-trivial multiplicity. An
explicit construction of all SL(3, R) unitary irreducible representations confirmed
these facts [4].

A potential relevance of the SL(n, R), n = 3, 4 symmetries in describing con-
finement of quarks was noted even at the early stage of the so-called “bag-models”
featuring a volume-preserving part of the action that yields confinement. These
symmetries revive on the fundamental dynamic QCD level. The adoption of QCD
and its incorporation in the Standard Model were the outcome of the success of
asymptotic freedom (AF) in fitting the scaling results of deep inelastic electron-
nucleon scattering, coupled with the fact that color-SU (3) provides an explanation
for some (otherwise paradoxical) key features of the Non-Relativistic Quark Model
(NRQM): “wrong” spin-statistics of the baryon (56 in SU (6)) ground state, zero-
triality of the entire SU (3) (Eightfold-Way) physical spectrum. AF provides a suc-
cessful perturbative treatment for the “ultraviolet” (UV) region, e.g., high-energy
electro-weak hadronic interactions, corresponding to the current-quarks aspects of
NRQM. There is also a prosperous understanding of hadronic strong interactions
in the “hard” and “semi-hard” regimes. Nothing of the sort has emerged in the
“infrared” (IR) frequency antipode region. After several decades, we still lack a
complete proof of color-confinement.
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2. Chromogravity

A chromogravity approach to the IR QCD sector [5] is based on a conjecture: (a)
that gluon exchange forces (with the gluons in color-neutral combinations) make
up an important component of inter-hadron interactions in the “softest” region and
in confinement; (b) that the physical role of this component is to produce a longer-
range force, with many of the characteristics of gravity, starting with the basic
mathematical foundation, namely, invariance under (pseudo) diffeomorphisms; (c)
that the simplest such n-gluon exchange, that of the two-gluon system

Gµν(x) = (κ)−2gabB
a
µ(x)Bb

ν(x) (1)

fulfills the role of an effective (pseudo) metric — “chromometric”, with respect to
these (pseudo) diffeomorphisms — “chromo diffeomorphisms”, in the same manner
that the physical metric (through its Christoffel connection) “gauges” the true
diffeomorphisms. Here κ has the dimensions of mass, µ, ν, . . . are Lorentz 4-vector
indices, a, b, . . . are SU (3) adjoint representation (octet) indices, gab is the Cartan
metric for the SU (3) octet, and Ba

µ is a gluon field.
The gluon color-SU (3) gauge field transforms under an infinitesimal local SU (3)

variation according to

δεB
a
µ = ∂µεa + Bb

µ{λb}a
c εc = ∂µεa + ifa

bcB
bεc (2)

(we use the adjoint representation {λb}a
c = −ifa

bc = ifa
bc). To deal with the non-

perturbative IR region, we expand the gauge field operator around a constant global
vacuum solution Na

µ ,

∂µNa
ν − ∂νNa

µ = ifa
bcN

b
µN c

ν , (3)

Ba
µ = Na

µ + Aa
µ. (4)

Such a vacuum solution might be of the instanton type, for instance, that at large
distances is required to approach a constant value.

The leading part of the color-SU (3) infinitesimal gauge variation of the pseudo-
metric field Gµν in the infrared region reads [5]

δξGµν = ∂µξν + ∂νξµ = ∂µ(ξσGσν ) + ∂ν(ξσGµσ), (5)

where, ξµ = ηabε
aN b

µ, and where one can reidentify δξ as a variation under a formal
diffeomorphism of the R4 manifold. This Gµν variation simulates the infinitesimal
variation of a “world tensor” Gµν under Einstein’s covariance group, xσ → xσ +ξσ.
ξσ thus has to be defined as a contravariant vector, and Gµν is invertible, thanks
to the constant part Na

µ . Note that as the µ, ν indices are “true” Lorentz indices,
acted upon by the physical Lorentz group, the manifold has to be Riemannian (only
Riemannian manifolds, with or without torsion, have tangents with orthogonal or
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pseudo-orthogonal symmetry). Thus

DσGµν = 0, (6)

the commutator of two such variations,

[δξ1 , δξ2 ]Gµν = δξ3Gµν , (7)

where

ξ3µ := (∂νξ1µ)ξν
2 + (∂µξ1ν)ξν

2 − (∂νξ2µ)ξν
1 − (∂µξ2ν)ξν

1 (8)

indeed closes on the covariance group’s commutation relations.
In the general case, the QCD “gluon-made” operators which mutually connect

various hadron states are characterized by color-singlet quanta. The corresponding
color-singlet n-gluon field operator has the following form

G
(n)
µ1µ2···µn = d

(n)
a1a2···anBa1

µ1
Ba2

µ2
· · ·Ban

µn
(9)

where

d(2)
a1a2

= ga1a2 ,

d(3)
a1a2a3

= da1a2a3 ,

d
(n)
a1a2···an = da1a2b1g

b1c1dc1b2a3 · · · gbn−4cn−4dcn−4bn−3an−2g
bn−3cn−3dcn−3an−1an ,

n > 3,

(10)

Ba
µ is the dressed gluon field, ga1a2 is the SU (3) Cartan metric, and da1a2a3 is the

SU (3) totally symmetric 8×8×8 → 1 tensor. The set of all G
(n)
µ1µ2···µn operators, n =

1, 2, . . . , forms a basis of a vector space of colorless purely gluonic configurations.
Again, in the infrared region approximation the infinitesimal color-SU (3) variation
can be rewritten in terms of effective pseudo-diffeomorphisms,

δεG
(n)
µ1µ2···µn = ∂{µ1ξ

(n−1)
µ2µ3···µn} ≡ δξG

(n)
µ1µ2···µn , (11)

where {µ1µ2 · · ·µn} denotes symmetrization of indices, and

ξ
(n−1)
µ1µ2···µn−1 ≡ d

(n)
a1a2···anNa1

µ1
Na2

µ2
· · ·Nan−1

µn−1
εan . (12)

A subsequent application of two SU (3)-induced variations closes algebraically

[δε1 , δε2 ]G
(n)
µ1µ2···µn = δε3G

(n)
µ1µ2···µn i.e. [δξ1 , δξ2 ]G

(n)
µ1µ2···µn = δξ3G

(n)
µ1µ2···µn

(13)

thus yielding an infinitesimal nonlinear realization of the Diff(4, R) Chromodiffeo-
morphisms group in the space of fields {G(n)

µ1µ2···µn |n = 2, 3, . . .}.

2.1. Matter particles and fields

The simplest way to describe hadronic matter fields is by making use of nonlinear
realizations of the Diff(4, R) chromodiffeomorphisms group over its maximal linear
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subgroup, i.e. over the GA(4, R) ⊃ SA(4, R) [8]. Here, GA(4, R), SA(4, R) are the
semidirect product groups of the translation group T4 and the GL(4, R), SL(4, R)
groups, respectively.

In the following, we consider the relevant groups in an n-dimensional space
time, i.e. the Diff(n, R), Tn, SL(n, R), SO(n) groups, thus setting up a mathemat-
ical framework applicable to gravity and extended objects considerations in higher
dimensions as well, and we focus on the SL(n, R) group, since this group determines
the non-Abelian features of the GL(n, R) group as well.

The matter particles and the matter fields in quantum theory are described by
the affine group, SA(n, R) = Tn ∧ SL(n, R), representations in Hilbert spaces of
states and fields, respectively.

The commutation relations of the sa(n, R) algebra of the SA(n, R) group read

[Pa, Pb] = 0,

[Qab, Pc] = igacPb, (14)

[Qab, Qcd] = igbcQad − igadQcb,

the structure constants gmn being either δab = (+1, +1, . . . , +1), a, b, c, d =
1, 2, . . . , n for the SO(n) subgroup or ηab = (+1,−1, . . . ,−1), a, b, c, d = 0, 1, . . . , n−
1 for the n-dimensional Lorentz subgroup SO(1, n− 1) of the SL(n, R) group. The
maximal compact SO(n) subgroup of the SL(n, R) group is generated by the metric
preserving antisymmetric operators Jab = Q[ab], while the remaining non-compact
traceless symmetric operators Tab = Q(ab), the shear operators, generate the (non-
trivial) n-volume preserving transformations. The SL(n, R) commutation relations
are given as follows

[Mab, Mcd] = −iηacMbd + iηadMbc + iηbcMad − iηbdMac,

[Mab, Tcd] = −iηacTbd − iηadTbc + iηbcTad + iηbdTac, (15)

[Tab, Tcd] = +iηacMbd + iηadMbc + iηbcMad + iηbdMac.

The quantum mechanical symmetry group is given as the U(1) minimal exten-
sions of the corresponding classical symmetry group. In practice, one finds it by
taking the universal covering group of the classical group (topology changes), and
by solving the algebra commutation relations for possible central charges (alge-
bra deformation). There are no non-trivial central charges of the sa(n, R) and
sl(n, R) algebras, and the remaining important question for quantum applications
is the one of the affine symmetry covering group. The translational part of the
SA(n, R) group is contractible to a point and thus irrelevant for the covering ques-
tion. The SL(n, R) subgroup is, according to the Iwasawa decomposition, given
by SL(n, R) = SO(n, R) × A × N , where A is a subgroup of Abelian transforma-
tions (e.g., diagonal matrices) and N is a nilpotent subgroup (e.g., upper triangular
matrices). Both A and N subgroups are contractible to point. Therefore, the cover-
ing features are determined by the topological properties of the maximal compact
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subgroup of the group in question. In our case, that is the SO(n, R) group, i.e.
more precisely its central subgroup. The universal covering group of the SO(n),
D ≥ 3 group is its double covering group isomorphic to Spin(n). In other words
SO(n) � Spin(n)/Z2.

The universal covering group of a given group is a group with the same Lie
algebra and with a simply-connected group manifold. A finite dimensional cover-
ing, SL(n, R), exists provided one can embed SL(n, R) into a group of finite complex
matrices that contain Spin(n) as subgroup. A scan of the Cartan classical algebras
points to the SL(n, C) groups as a natural candidate for the SL(n, R) groups cov-
ering. However, there is no match of the defining dimensionalities of the SL(n, R)
and Spin(n) groups for n ≥ 3,

dim(SL(n, C)) = n < 2[ n−1
2 ] = dim(Spin(n)), (16)

except for n = 8. In the n = 8 case, one finds that the orthogonal subgroup of
the SL(8, R) and SL(8, C) groups is SO(8, R) and not Spin(8). Thus, there are
no finite dimensional covering groups of the SL(n, R) groups for any n ≥ 3. An
explicit construction of all spinorial, unitary and non-unitary multiplicity-free [6],
and unitary non-multiplicity-free [4], SL(3, R) representations shows that they are
all defined in infinite dimensional spaces.

The universal (double) covering groups of the SL(n, R) and SA(n, R), n ≥ 3
groups are groups of infinite complex matrices. All their spinorial representations
are infinite dimensional and when reduced with respect to Spin(n) subgroups con-
tain representations of unbounded spin values.

2.2. Representations on states

The SA(n, R) Hilbert space representations are, owing to the semidirect product
group structure, induced as in the Poincaré case from the corresponding little group
(stability subgroup) representations. The correct quantum mechanical interpreta-
tion requires the little group representations to be unitary. The unitary irreducible
SA(n, R) Hilbert space representations are obtained as follows: (i) determine the
vectors characterized by the maximal set of labels of the Abelian translational sub-
group generators, (ii) determine the corresponding little groups as subgroups of
the SL(n, R) groups that leave these vectors invariant, and (iii) induce the unitary
irreducible SA(n, R) representations from Tn and little groups representations. In
contradistinction to the Poincaré case, the little groups that describe affine particles
are more complex in structure due to the fact that a orthogonal type of group is
enlarged here to the linear one.

The little group of the SA(n, R) Hilbert-space particle states is of the form
T∼

n−1∧SL(n−1, R), where the Abelian invariant subgroup T∼
n−1 of the little group is

generated by Q1j , j = 2, 3, . . . , n. Owing to the fact that the little group itself
is given as a semidirect product, there is number of possibilities. The simplest one
is when the T∼

n−1 subgroup is represented trivially, D(T∼
n−1) → 1, i.e. D(Q1j) → 0,
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the remaining part of the little group is SL(n−1, R), and the corresponding “affine
particle” is described by the unitary irreducible SL(n−1, R) representations. These
representations are infinite dimensional, even in the tensorial case, due to non-
compactness of the SL(n, R) group.

2.3. Representations on fields

The representations of the SA(n, R) group generalize the known Poincaré group
representations on fields and are given as follows,

(D(a, Λ̄)Φi)(x) = (D(Λ̄))j
i Φj(Λ−1(x − a)) (a, Λ̄) ∈ Tn ∧ SL(1, n − 1), (17)

where i, j enumerate a basis of the representation space of the field components.
There are two physical requirements that have to be satisfied in the affine case in
order to provide the due particle-field connection: (i) representations of the affine-
particle little group SL(n − 1, R) have to be unitary and thus (due to the lit-
tle group’s non-compactness) infinite dimensional, and (ii) representations of the
Lorentz subgroup Spin(1, n−1) have to be finite dimensional and thus non-unitary
as required by their Poincaré subgroup interpretation. This is achieved by making
use of the so called “deunitarizing” automorphism of the SL(n, R) group [7]:

A : SL(n, R) → SL(n, R), (18)

JA
ij = Jij , KA

j = iNj, NA
j = iKj, (19)

TA
ij = Tij , TA

00 = T00, i, j = 1, 2, . . . , D − 1, (20)

so that (Jij , iKi) generate the new compact Spin(n)A and (Jij , iNi) generate
Spin(1, D − 1)A. Here, the SL(n − 1, R), the stability subgroup of SA(n, R), is
represented unitarily, while the Lorentz subgroup is represented by finite dimen-
sional non-unitary representations. An efficient way of constructing explicitly the
SL(n, R) infinite dimensional representations is based on the so called “decontrac-
tion” formula, which is an inverse of the Wigner–Inönü contraction, and will be
treated below.

3. Affine Gravity and Spinorial Wave Equations

The metric affine [9], and gauge affine [10, 11] theories of gravity are generalizations
of the Poincaré gauge theory where the Lorentz group Spin(1, n − 1) is replaced
by the SL(n, R) group. The customary way to develop such a theory in a particle
physics framework is to start by the Dirac equation and then gauging the relevant
global symmetry. In our case that means to start by a Dirac-like equation for an
infinite-component spinorial affine field Ψ(x),

(iXa∂a − M)Ψ(x) = 0, (21)

Ψ(x) ∼ D(spin)(SL(n, R)). (22)
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The Xa, a = 0, 1, . . . , n− 1 vector operator, acting in the space of the Ψ field com-
ponents, is an appropriate generalization of the Dirac γ matrices to the affine case.
The SL(n, R) affine covariance requires that the following commutation relations
are satisfied

[Mab, Xc] = iηbcXa − iηacXb, (23)

[Tab, Xc] = iηbcXa + iηacXb. (24)

The first relation ensures Lorentz covariance, and is generally a easy one to fulfill.
The second relation, required by the full affine covariance, turns out to be rather
difficult to accomplish.

We focus here on the SL(n, R) representations constrains required by the
group algebraic consistency of this Dirac-like equation. In order to obtain all
(physically relevant) unitary irreducible SL(n, R) representations, and in partic-
ular the spinorial ones fitting the Dirac-like equation construction, one works in
Hilbert spaces of square integrable functions over the maximal compact subgroup,
L2(Spin(n)). The Hilbert space basis vectors in Dirac’s notation are {|{J}

{k}{m}〉},
where {J} and {m} are the representation labels of Spin(n) and its subgroups
Spin(n− 1), Spin(n− 2), . . . , Spin(n), respectively; while {k} are labels of Spin(n−
1), Spin(n − 2), . . . , Spin(n) groups acting to the left which are used to describe
eventual multiplicity of the Spin(n) representations within a given SL(n, R) repre-
sentation. We can split an SL(n, R) representation in terms of its Spin(n) subrep-
resentations, in a symbolic notation, as follows:

D(SL(n, R)) ∼
∑

{J},{k}
D{J}(Spin(n), {k}). (25)

Representations of the shear operators Tab are such that their matrix elements
apriory have non-trivial {k} dependence, i.e. they are proportional, as presented

below, to the C{J′′} {J′}
{k′′} {k} {k′} Spin(n) Clebsch–Gordan coefficients. There are two

distinct cases: (i) the Spin(n) multiplicity free representations when all {k} labels
are zero, and (ii) representations with non-trivial multiplicity. In the first case,
the zero-value {k} labels imply that the {J} labels are integer, and thus all these
D(SL(n, R)) representations are tensorial. In the second case, when there are no
constraints on the {k} labels, one can have both tensorial and spinorial D(SL(n, R))
representations.

To sum up, from the considered physical examples we conclude that applications
of the SL(n, R) symmetry requires knowledge of the spinorial and tensorial unitary
(infinite dimensional) representations with non-trivial Spin(n), Spin(1, n − 1) sub-
group multiplicity. In the following, we present an effective method of constructing
all SL(n, R) representations, and set up a framework that allowes one to fulfill the
unitarity and irreducibility issues as well.
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4. Gell-Mann Decontraction Formula

To solve the problem of finding SL(n, R) representations in the basis of its
(pseudo)orthogonal subgroup we will employ the so called Gell-Mann (decontrac-
tion) formula [12–16]. The aim of this formula is to provide an inverse to the well-
known Inönü–Wigner contraction procedure [17]. More concretely, let a symmetric
Lie algebra A = M + T :

[M,M] ⊂ M, [M, T ] ⊂ T , [T , T ] ⊂ M, (26)

and its Inönü–Wigner contraction A′ = M + U :

[M,M] ⊂ M, [M,U ] ⊂ U, [U ,U ] = {0}, (27)

be given. Following a mathematically less rigorous definition (more strict definition
can be found in [12]), the Gell-Mann formula states that, in certain cases, elements
Tµ ∈ T can be constructed as the following simple function of the contracted algebra
operators Uµ ∈ U and Mν ∈ M:

Tµ = i
α√

UνUν
[C2(M), Uµ] + iσUµ. (28)

Here, C2(M) and UνUν denote the (positive definite) second order Casimir opera-
tors of the M and A′ algebras, respectively, while α is a normalization constant and
σ is an arbitrary parameter. The formula was, to our knowledge, first introduced
by Dothan and Ne’eman [16], and was advocated by Hermann [13].

The importance of this formula in our case is immediate, since it is not difficult to
obtain representations of the contracted algebra rn(n+1)

2 −1

⊎
so(n) (here rn(n+1)

2 −1

denotes n(n+1)
2 − 1 dimensional Abelian algebra and

⊎
stands for semidirect sum).

To represent the contracted algebra we will work in the representation space
of square integrable functions L2(Spin(n)) over the maximal compact subgroup
Spin(n), i.e. the SO(n) universal covering group, with a standard invariant Haar
measure. This representation space is large enough to provide for all inequivalent
irreducible representations of the contracted group, and, by a theorem of Harish-
Chandra [18–21], is also rich enough to contain representatives from all equivalence
classes of the SL(n, R) group, i.e. sl(n, R) algebra, representations.

The generators of the contracted group are generically represented, in this space,
as follows. The so(n) subalgebra operators Mab, a, b = 1, 2, . . . , n, act in the stan-
dard way:

Mab|φ〉 = −i
d

dt
exp(itMab)|t=0|φ〉, (29)

where action of a Spin(n) element g′ on an arbitrary vector |φ〉 ∈ L2(Spin(n)) is
given via action from the left on basis vectors |g〉 of this space:

g′|φ〉 = g′
∫

φ(g)|g〉dg =
∫

φ(g)|g′g〉dg, g′, g ∈ Spin(n). (30)
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The contracted non-compact Abelian operators Uµ (27) and (28), act in the same
basis as multiplicative Wigner-like D-functions (the SO(n) group matrix elements
expressed as functions of the group parameters):

Uµ → |u|Dwµ (g−1) ≡ |u|
〈

w

∣∣∣∣∣
(
D (g)

)−1
∣∣∣∣∣ µ

〉
, (31)

|u| being a constant norm, g being an SO(n) element, and denoting (in a par-
allel to the Young tableaux) the symmetric second order tensor representation of
SO(n). The norm |u| parametrizes representation of U , but will turn out to be
irrelevant in our case, as it cancels with the denominator in (28). The

∣∣∣
µ

〉
vector

from representation space is denoted by the index of the operator Uµ, whereas

the vector
∣∣∣

w

〉
can be an arbitrary vector belonging to (the choice of w deter-

mines, in Wigner terminology, the little group of the representation in question).
Taking an inverse of g in (31) insures the correct transformation properties.

A natural discrete orthonormal basis in the L2(Spin(n)) space is given by prop-
erly normalized Wigner D-functions:{∣∣∣∣Jkm

〉
≡

∫ √
dim(J)DJ

km(g−1)dg|g〉
}

,

〈
J J ′

km k′m′

〉
= δJJ′δkk′δmm′ , (32)

where dg is an (normalized) invariant Haar measure. Here, J stands for a set of
Spin(n) irreducible representation labels, while the k and m labels numerate the
representation basis vectors.

An action of the so(n) operators in this basis is well known, and it can be written
in terms of the Clebsch–Gordan coefficients of the Spin(n) group as follows,〈

J ′

k′m′

∣∣∣∣Mab

∣∣∣∣Jkm

〉
= δJJ′

√
C2(J) CJ J′

m(ab)m′
. (33)

The matrix elements of the Uµ operators in this basis are readily found to read:〈
J ′

k′m′

∣∣∣∣U (w)
µ

∣∣∣∣Jkm

〉
= |u|

〈
J ′

k′m′

∣∣∣∣D−1
wµ

∣∣∣∣Jkm

〉

= |u|

√
dim(J)
dim(J ′)

CJ J′

k w k′ C
J J′

m µ m′ . (34)

A closed form of the matrix elements of the whole contracted algebra
rn(n+1)

2 −1

⊎
so(n) representations is thus explicitly given in this space by (33) and

(34). To obtain representations of sl(n, R), apart from (33), we also need to know
how to represent non-compact shear generators Tµ in this space. That is given by
the Gell-Mann formula (28):

T (w,σ)
µ = iα[C2(so(n)), Dwµ ] + iσDwµ . (35)
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Though it seems that our goal is accomplished, it unfortunately turns out that
formula (35) does not hold in the entire space L2(Spin(n)) and for arbitrary choice
of vector w (in the sense that commutator of two so constructed shear generators
will not yield the correct result).

In [22], we have carried out a detailed analysis of the scope of validity of Gell-
Mann formula in the sl(n, R) case. The conclusion was that the only sl(n, R) rep-
resentations obtainable in this way are given in Hilbert spaces over the symmetric
spaces Spin(n)/Spin(m) × Spin(n − m), m = 1, 2, . . . , n − 1. The narrowing of the
space from L2(Spin(n)) to L2(Spin(n)/Spin(m)×Spin(n−m)) in the terms of basis
(32) means reduction to a subspace spanned by vectors

∣∣J
0m

〉
, where zero denotes the

vector component invariant with respect to Spin(m) × Spin(n − m). Furthermore,
vector w in (35) must be chosen to be the one invariant with respect to the action
of the group Spin(m) × Spin(n − m).

With these constraints, expression (35) becomes a proper representation of shear
generators. This formula then leads to explicit expression for matrix elements of
shear generators in L2(Spin(n)/Spin(m) × Spin(n − m)):〈

J ′

m′

∣∣∣∣T (σ)
µ

∣∣∣∣ J

m

〉

= i

√
m(n − m)

4n

√
dim(J)
dim(J ′)

(C2(J ′) − C2(J) + σ)CJ J′

0 0 0
CJ J′

m µ m′ . (36)

The zeroes in the indices of Clebsch–Gordan coefficients again denote vectors that
are invariant with respect to Spin(m)×Spin(n−m) transformations (in that spirit∣∣∣

w

〉
=

∣∣∣
0

〉
). We also used shorthand notation

∣∣J
0m

〉
≡

∣∣J
m

〉
.

The expression (41), together with the action of the Spin(n) generators (33),
provides an explicit form of the SL(n, R) generators representation, valid for arbi-
trary value of parameter σ. However, such representations are multiplicity free with
respect to the maximal compact Spin(n) subgroup, and all of them are tensorial:
multiplicity is lost with fixing of the left index of basis vectors (32) and only ten-
sor representations of Spin(n) possess components invariant with respect to any
Spin(m) × Spin(n − m), m ≥ 1 subgroup.a

To obtain more general class of sl(n, R) representations (and, in particular, those
with multiplicity) the Gell-Mann formula had to be generalized.

5. Generalization of the Gell-Mann Formula

One of the key steps to obtain generalized Gel-Mann formula is introduction of, so
called, left action generators K:

Kµ ≡ gνλDµνMλ, (37)

aIn principle, some classes of spinorial multiplicity free representations can be obtained by appro-
priate analytic continuation of the Clebsch–Gordan coefficient in terms of the Spin(n) labels.
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where gνλ is the Cartan metric tensor of SO(n). The Kµ operators have the fol-
lowing matrix elements in the basis (32):

〈Kab〉 =
〈

J ′

k′m′

∣∣∣∣Kab

∣∣∣∣Jkm

〉
= δJJ′

√
C2(J) CJ J′

k(ab)k′
. (38)

In other words, they behave exactly as the rotation generators Mµ (33), with a dif-
ference that they act on the lower left-hand side indices. The operators Kµ and Mµ

mutually commute, but the corresponding Casimir operators match (in particular∑
K2

µ =
∑

M2
µ).

In terms of these new operators we can write down the following expression:

T σ2...σn

ab = i

n∑
c>d

{Kcd, D(cd)(ab)} + i

n∑
c=2

σcD(cc)(ab). (39)

In [23, 24], we have shown that this is indeed the sought for generalization of
the Gell-Mann formula, as this expression satisfies sl(n, R) commutation relations
in the entire space L2(Spin(n)). In this expression σc is a set of n − 1 arbitrary
parameters that essentially (up to some discrete parameters) label sl(n, R) irre-
ducible representations. General validity of the new formula is reflected in the fact
that there are now n − 1 free parameters, i.e. representation labels, matching the
sl(n, R) algebra rank, compared to just one parameter of the original Gell–Mann
formula.

An alternative form of (39) that looks more like the original formula (28) is:

T σ2...σn

ab = i

n∑
c=2

1
2
[C2(so(c)K), U (cc)

ab ] + σcU
(cc)
ab , (40)

where C2(so(c)K) is the second order Casimir of the so(c) left action subalgebra,
i.e. C2(so(c)K) = 1

2

∑c
a,b=1(Kab)2. It is almost as simple as the original Gell-Mann

formula, with a crucial advantage of being valid in the whole representation space
over L2(Spin(n)). Thus, due to Harish-Chandra theorems, the generalized Gell-
Mann formula expression for the non-compact “shear” generators Tab holds for
all cases of sl(n, R) irreducible representations, irrespective of their so(n) subal-
gebra multiplicity (multiplicity free of the original Gell-Mann formula, and non-
trivial multiplicity) and whether they are tensorial or spinorial. The price paid is
that the generalized Gell-Mann formula is no longer solely a Lie algebra operator
expression, but an expression in terms of representation dependant operators Kab

and U
(cd)
ab .

We also note that the very term in (40) when c = n is, essentially, the original
Gell-Mann formula (since C2(so(n)K) = C2(so(n)M )), whereas the rest of the terms
can be seen as necessary corrections securing the formula validity in the entire
representation space. The additional terms vanish for some representations yielding
the original formula.
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The form (40) also allows us to find matrix elements of Tab operators. After
some calculation the following expression is obtained:〈

{J ′}
{k′}{m′}

∣∣∣∣ T{w}

∣∣∣∣{J}{k}{m}

〉
=

i

2

√
dim({J})
dim({J ′})C{J} {J′}

{m}{w}{m′}

×
n∑

c=2

√
c − 1

c
(C2(so(c){k′}) − C2(so(c){k}) + σ̃c)

×C{J}( )n−c+1{J′}
{k} (0)c−2 {k′} . (41)

(For the notation used for indices of Clebsh–Gordan coefficients please cf. [24, 25].)
The relation of the labeling of (41) and the one of (39), i.e. (40), is achieved

provided σc = σ̃c +
∑c−1

d=2 σ̃d/d. The Clebsch–Gordan coefficient with indices
{m}, {w}, {m′} in (41) can be evaluated in an arbitrary basis (which is stressed by
denoting the appropriate index by w instead by ab). The other Clebsch–Gordan
coefficient can be evaluated in any basis labeled according to the Spin(n) ⊃
Spin(n − 1) ⊃ · · · ⊃ Spin(2) subgroup chain (e.g., Gel’fand–Tsetlin basis) and
can be, nowadays, rather easily evaluated, at least numerically.

6. Unitarity

A convenient way to parametrize any non-compact semisimple Lie group is given
by means of the Iwasawa decomposition according to which the group G can be
written as a product G = NAK , where N is a nilpotent subgroup of G, and
its elements are upper triangular matrices with ones on the diagonal, A is an
Abelian subgroup of G, and for SL(n, R) we take its elements to be of the form
a = diag(eλ, eµ, eν , . . . , e−(λ+µ+ν+···)), and finally K is the maximal compact sub-
group SO(n). An element g ∈ G can thus be written as a product g = nak, where
n ∈ N, a ∈ A, k ∈ K. The Iwasawa decomposition is unique and the product
of some element k ∈ K and an arbitrary element g ∈ G is in general an arbi-
trary element of G which can be uniquely written as kg = na(k, g)k · g, where
n ∈ N, a(k, g) ∈ A and k · g ∈ K. Owing to the Iwasawa decomposition every
element g ∈ SL(n, R) can be uniquely written as g = nehk. The Abelian subgroup
of SL(n, R) has n−1 generators A1, A2, . . . , and if λ1, λ2, . . . are the corresponding
group parameters, respectively, one has h = λ1A1 + λ2A2 + · · · . Let α be a linear,
in general complex, function such that α(h) = λ1α(A1)+λ2α(A2)+ · · · , and let us
denote α(A1), α(A2), . . . by σ1, σ2, . . . , respectively. Existence of the mapping α is
guaranteed by the 1-dimensionality of the irreducible representations of the Abelian
subgroup A. The mapping α can be extended in a natural way to a mapping from
the group NA into the complex numbers since N is an invariant subgroup in NA.

The set of cosets SL(n, R)/NA is in one-to-one correspondence with the group
K = SO(n) and can be parametrized by the elements of K. In the coset space
SL(n, R)/NA one has as well a measure, which we choose to be the invariant measure
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dk on K. Let H = L2(K) be the separable Hilbert space of functions on K which
are square integrable with respect to the invariant measure on K, i.e. H = {f(k) |
k ∈ K}, such that

∫
dkf∗(k)f(k) < ∞, and let

∫
dk = 1.

Every non-trivial unitary representation of a non-compact group is necessarily
infinite dimensional and this partly accounts for the complexity which occurs when
one deals with unitary representations. The class of real semisimple Lie groups is
especially complex. Harish-Chandra [18–21] defines a representation U(g) of G =
SL(n, R) on H in the following way: U(g) is a homomorphic continuous mapping
from G into the set of linear transformations on H given by

(U(g)f)(k) = e(h(k,g))f(k · g), (42)

where g ∈ G, f ∈ H, k ∈ K, eh ∈ A and where (U(g)f)(k) denotes the value
of U(g)f at the point k. Harish-Chandra now defines the concept of infinitesimal
equivalence of two representations in the following way: Two representations are
infinitesimally equivalent if there exists a similarity transformation of one represen-
tation into the other, with a non-singular, not necessarily unitary operator. In the
case of equivalence there exist a unitary operator by means of which the transfor-
mation between the two representations is carried out. If both of two infinitesimally
equivalent representations are unitary, then they are equivalent. Suppose now that
U(g) is a representation of a group G on a Hilbert space H . Suppose further that
H1 and H2 are the two closed invariant subspaces of H , such that H2 ⊂ H1 ⊂ H ,
and H1 �= H2. Then U(g) induces a representation U ′(g) on the quotient H1/H2

in a natural way. The representation U ′(g) is said to be deducible from the rep-
resentation U(g). Harish-Chandra has proved that every unirrep is infinitesimally
equivalent to some irreducible representation deducible from some representation
U(g) of the above form. Thus it is always possible to construct a bilinear form
(f̃ , g̃) in some quotient space H1/H2, where f̃ , g̃ ∈ H1/H2. One can extend the
domain of this bilinear form to all H1 uniquely by defining (, ) to vanish on H2.
Unitarity now means that (U(g)f, U(g)f) = (f, f), f ∈ H1, g ∈ G, and the addi-
tional conditions that the bilinear form is a scalar product are hermiticity and
positive definiteness (f, g) = (g, f)∗ and (f, f) ≥ 0 ∀ f, g ∈ H1. It is convenient to
extend the domain of the scalar product to the whole space H . Being interested
in obtaining all unirreps of SL(n, R), we will start with the most general scalar
product: (f, g) =

∫ ∫
dk1dk2f

∗(k1)κ(k1, k2)g(k2), f, g ∈ H , where κ(k1, k2) is a
kernel, the integration is over K, and dk is an invariant measure. The problem of
finding all unitary representations of SL(n, R) becomes now the problem of finding
all scalar products, i.e. kernels for which the representation U(g) is unitary. We
start with the most general scalar product of the Hilbert space. We find, by making
use of the fact that dk is an invariant measure and of the additivity properties of
Spin(n) Wigner’s functions following expressions for the scalar product in terms of
the matrix elements of the kernel and the expansion coefficients

(f, g) =
∑

{J}{k}{k′}(m)

f
{J}∗
{k′}{m}g

{J}
{k}{m}κ

{J}
{k′}{k}. (43)

1343006-14



2nd Reading

November 22, 2013 16:39 WSPC/S0129-055X 148-RMP J070-1343006

SL(n, R) in Particle Physics and Gravity

The hermiticity of the scalar product yields

κ
{J}∗
{k′}{k} = κ

{J}
{k}{k′}. (44)

Therefore κ is a hermitian matrix and can be diagonalized. Thus without any loss
of generality we write κ in the form κ({J}; {k}). The positive definiteness of the
scalar product yields

κ({J}; {k}) ≥ 0. (45)

Finally we find that the hermiticity condition of an arbitrary group generator Q,
i.e. the unitarity of the representation, (f, Qg) = (g, Qf)∗ reads

κ({J ′}; {k′})〈{J′}
{k′}{m′}| Q |{J}

{k}{m}〉 = κ({J}; {k})〈{J}
{k}{m}| Q |{J′}

{k′}{m′}〉
∗. (46)

We now substitute in this equations the explicit expressions for the non-compact
generators as given by making use of the generalized Gell-Mann formula, and allow
the representation labels values to be arbitrary complex numbers, e.g., σi = σiR +
iσiI , i = 1, 2, . . . , n, and what is left is to solve above equations and determine all
possible solutions for the representation labels σi and the corresponding kernels
of the scalar products, thus determining all SL(n, R) unitary representations. The
irreducibility of the representations is most effectively achieved by using the little
group technique.

Let us present explicitly the simplest case when the scalar product kernel is
given by the Dirac δ function. The kernel matrix elements are now trivial, i.e.
κ({J}; {k}) = 1, for all {J}, {k}), and the unitarity equations yield σi = iσiI , where
σiI is an arbitrary real number for all i = 2, 3, . . . , n. The corresponding SL(n, R)
unitary representations constitute the principal series of representations, for which,
due to the generalized Gell-Mann formula, we obtained all matrix elements of the
non-compact SL(n, R) generators.
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[2] Dj. Šijački, SL(3, R) unitary irreducible representations in an algebraic approach to
hadronic physics, Ph.D. thesis, Duke University (1974).

[3] Y. Ne’eman, Spinor-type fields with linear, affine and transformations, Ann. Inst.
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The so-called Gell-Mann formula, a prescription designed to provide an inverse to the
Inönü–Wigner Lie algebra contraction, has a great versatility and potential value. This
formula has no general validity as an operator expression. The question of applicability
of Gell-Mann’s formula to various algebras and their representations was only partially
treated. The validity constraints of the Gell-Mann formula for the case of sl(n, R) and
su(n) algebras are clarified, and the complete list of representations spaces for which this
formula applies is given. Explicit expressions of the sl(n, R) generators matrix elements
are obtained for all these cases in a closed form by making use of the Gell-Mann formula.

Keywords: Gell-Mann decontraction formula; Lie algebra contraction; SL(n) represen-
tations; SU(n) representations.
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1. Introduction

The Gell-Mann formula [1–5] is a prescription aimed to serve as an “inverse” to the
Inönü–Wigner contraction [6]. Let a symmetric Lie algebra A = M + T :

[M,M] ⊂ M, [M, T ] ⊂ T , [T , T ] ⊂ M, (1)

and its Inönü–Wigner contraction A′ = M + U :

[M,M] ⊂ M, [M,U ] ⊂ U , [U ,U ] = {0}, (2)

be given. Following a definition that is mathematically less strict but closer to the
original formulation, the Gell-Mann formula states that elements Tµ ∈ T can be
constructed as the following simple function of the contracted algebra operators
Uµ ∈ U and Mν ∈ M:

Tµ = i
α√

UνUν
[C2(M), Uµ] + iσUµ. (3)
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Here, C2(M) and UνUν denote the (positive definite) second-order Casimir
operators of the M and A′ algebras, respectively, while α is a normalization con-
stant and σ is an arbitrary parameter. (For a mathematically more strict definition,
cf. [1].) The formula was, to our knowledge, first introduced by Dothan and Ne’eman
[5], and was advocated by Hermann.

This formula is of a great potential value due to its simplicity and the fact
that many aspects of the representation theory are much simpler for the contracted
groups/algebras (e.g. construction of representations [7], decompositions of a direct
product of representations [2], etc.). However, this formula is valid, on the algebraic
level, only in the case of contractions from A = so(m+1, n) and/or A = so(m, n+
1) to A′ = iso(m, n), with M = so(m, n) [8, 9]. Moreover, apart from this, the
formula is also partially applicable in a broad class of other contractions provided
one restricts to some classes of the algebra representations. The validity of Gell-
Mann’s formula in a weak sense, when an algebra representation requirement is
imposed as well, was investigated long ago by Hermann [2, 3]. A partial set of
classes of the algebra representations for which the Gell-Mann formula holds is listed
[3]. No attempt to make this list exhaustive is made, deliberately concentrating
“on what seems to be the simplest situation”. This analysis excluded, from the
very beginning, the cases of representations where the little group (in Wigner’s
terminology) is nontrivially represented, not claiming a complete answer even then.

The Gell-Mann formula is especially valuable as a tool in the problem of finding
all unitary irreducible representations of the sl(n, R) algebras in spaces over the
SO(n) and/or Spin(n) groups generated by their so(n) subalgebras (applying the
formula to contraction of sl(n, R) with respect to subalgebra so(n)). Finding rep-
resentations in the basis of the maximal compact subgroup SO(n) of the SL(n, R)
group is mathematically superior, and it suites well various physical applications in
particular in nuclear and particle physics, gravity [10], physics of p-branes [11] etc.
As an example consider a gauge theory based on the Affine spacetime symmetry
SA(n, R) = Tn ∧ SL(n, R); bar denoting the covering group. The gauge covariant
derivative, Dα, α = 0, 1, . . . , n − 1, as acting on an Affine matter field Ψ(x), is
given by,

DαΨA(x) =
(
∂α − iΓab

α (x) (Qab)
B
A

)
ΨB(x), Qab ∈ sl(n, R),

where Γab
α (x) are the sl(n, R) connections, and A, B enumerate the matter field

components. The matter-gravity vertices require the knowledge of the sl(n, R) oper-
ators matrix elements (Qab)

B
A in the Hilbert space of the matter field components

{ΨA(x)}. Operators Qab naturally split into antisymmetric generators of the com-
pact SO(n) subgroup Mab = Q[ab] and the symmetric, so-called, sheer generators
Tab = Q{ab}. While the matrix elements of the former are well-known, it is generally
difficult task to find, for a given sl(n, R) representation, the matrix elements of the
latter. In particular, for a generic spinorial SL(n, R) matter field, an explicit form
of the matrix elements of the sl(n, R) generators, with respect to the Lorentz-like
Spin(1, n−1) subgroup, for infinite-dimensional representation corresponding to the
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Ψ field is required. The Gell-Mann formula, in principle, offers a powerful method to
describe various representation details (including the matrix elements) in a simple
closed analytic form.

Therefore, two obvious questions arise in this context: (i) What is the scope of
applicability of the Gell-Mann formula in the sl(n, R) case (i.e. what is the subset
of irreducible representations that can be obtained using the formula)? and (ii) Can
the formula be somehow generalized, as to account for all sl(n, R) irreducible rep-
resentations?

Recently [12], we have successfully answered the second question by obtaining
a generalized formula of a form similar to that of (3):

T σ2,...,σn

ab = i

n∑
m=2

1
2
[C2(so(m)K), U (mm)

ab ] + σmU
(mm)
ab , (4)

where C2(so(m)K) is the second-order Casimir of the so(m) left action subalgebra,
U

(mm)
ab are specifically chosen representations of the Abelian part of the contracted

algebra and σ2, σ3, . . . , σn are the sl(n, R) representation labels (for more details
cf. [12], and a previous analysis [13] of the n = 5 case). This generalized Gell-Mann
formula expression for the noncompact “shear” generators Tab holds for all cases of
sl(n, R) irreducible representations.

However, the above solution of the second problem in no way diminishes impor-
tance of the first one — i.e. when is the original formula applicable. Apart from
mathematical curiosity, this question is of great value since, despite the simple
form of the generalization, the original formula still has a number of advantages
in applications. First, the summation that appears in the generalized formula cer-
tainly renders any practical calculation more complex. More importantly, the gen-
eralized Gell-Mann formula is no longer solely a Lie algebra operator expression,
but an expression in terms of representation dependant operators U

(lm)
ab and the

so called “left action rotation generators” Kab appearing through C2(so(m)K) =
1
2

∑m
a,b=1(Kab)2. Therefore, it is still of a great value to know precisely when the

original formula can be applied.
The aim of this paper is to clarify the matters of the original Gell-Mann for-

mula applicability for the class of sl(n, R) algebras contracted with respect to their
so(n) maximal compact subalgebras. Note, that owing to a direct connection of the
sl(n, R) and su(n) algebras, the conclusions readily convey to the latter case.

In the following, we stick to the notation and mathematical framework of the
paper [12]. We briefly restate the minimal due set of these preliminaries in the
appendix.

2. Validity of the Gell-Mann Formula

The Gell-Mann formula validity problem is due to the fact that the third com-
mutation relation of (1) is not a priori satisfied as an operator relation when the
algebra elements are given by expressions (3). In the sl(n, R) case, the T subspace
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is spanned by 1
2n(n + 1) − 1 shear generators Tµ. These operators transform as

a second-order symmetric tensor with respect to Spin(n) subgroup, and, in the
Cartesian basis, satisfy:

[Tab, Tcd] = i(δacMdb + δadMcb + δbcMda + δbdMca). (5)

Generally, we use indices from the beginning of the Latin alphabet for Cartesian
basis and the Greek indices whenever we want to stress that expression is basis-
independent.

To investigate circumstances in which this relation holds, we evaluate the com-
mutator of two shear generators in the framework given in the appendix. In that
framework, the Gell-Mann formula (3) reads:

Tµ = iα[C2(so(n)K), Dwµ ] + iσDwµ , (6)

where C2(so(n)K) = 1
2

∑n
a,b=1(Kab)2. By making use of this formula, a few alge-

braic relations and some properties of the Wigner D-functions, after some algebra
we obtain:

[Tµ, Tν ] = −2α2
[
K{i, [Kj}, Dwν ]

]
[Kj , Dwµ ]Ki − (µ ↔ ν)

= −α2
∑

J

∑
λ,λ′

(C J
µ ν λ − C J

ν µ λ)

×
(
2
(
C2(J) − 2C2( )

) 〈〈
J
λ′

∣∣1 ⊗ Ki

∣∣∣ w

〉∣∣∣ w

〉
+

〈〈
J
λ′

∣∣[1 ⊗ Ki, C
2(K(I+II ))]

∣∣
w

〉 ∣∣
w

〉)
DJ

λ′λKi, (7)

where a summation over repeated Latin indices i and j that label the K generators
in any real basis (such that C2(K) = KiKi is assumed). The C2(K(I+II )) operator
here denotes the second-order Casimir operator acting in the tensor product of two

representations, i.e. C2(K(I+II )) =
∑

i(Ki ⊗ 1 + 1 ⊗ Ki)2.
The summation index J in (7) runs over all irreducible representations of the

Spin(n) group that appear in the tensor product ⊗ , and λ, λ′ count the vec-
tors of these representations. Since all irreducible representations terms, apart those
for which the Clebsch–Gordan coefficient C J

µ ν λ is antisymmetric with respect
to µ ↔ ν vanish, we are left with only two values that J takes: one corresponding
to the antisymmetric second-order tensor and the other one corresponding to the
representation that we denote as . The fact that in the case of sl(n, R) algebras,
there is another representation term, in addition to , in the antisymmetric prod-
uct of two representations (i.e. representations that correspond to Abelian U

operators), is in the root of the Gell-Mann formula validity problem. Note that in
the case of the so(m+1, n) → iso(m, n), i.e. so(m, n+1) → iso(m, n) contractions,
where the Gell-Mann formula works on the algebraic level, the contracted U oper-
ators transform as and the antisymmetric product of two such representations
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certainly belongs to the representation (i.e. to the representation that corresponds
to M = so(m, n) subalgebra operators).

The so(n) Casimir operator values satisfy C2( ) = 2C2( ) = 4n, implying

that one of the two terms vanishes in (7) when J = , leaving us with:

1
2α2

[Tµ, Tν] = 4(n + 2)
∑
λ,λ′

C µ ν λ

〈〈
λ′

∣∣1 ⊗ Ki

∣∣
w

〉 ∣∣∣∣ w

〉
Dλ′λKi

−
∑
λ,λ′

C µ ν λ

〈〈
λ′

∣∣[1 ⊗ Ki, C
2(K(I+II ))]

∣∣
w

〉 ∣∣∣∣ w

〉
Dλ′λKi

−
∑
λ,λ′

C µ ν λ

〈〈
λ′

∣∣[1 ⊗ Ki, C
2(K(I+II ))]

∣∣
w

〉 ∣∣∣∣ w

〉
Dλ′λKi,

(8)

where we used that C2( ) = 2n − 4.
As the coefficient α can be adjusted freely, all that is needed for the Gell-Mann

formula to be valid is that (8) is proportional to the appropriate linear combination
of the Spin(n) generators, as determined by the Wigner–Eckart theorem, i.e.:

[Tµ, Tν ] ∼
∑

λ

C µ ν λMλ =
∑
λ,i

C µ ν λDiλKi. (9)

We now analyze these requirements, skipping some straightforward technical
details. The third term on the right-hand side in (8), containing D functions of the
representation , is to vanish. Since it is not possible to choose vectors w so that
this term vanishes identically as an operator, the remaining possibility is to restrain
the space (A.3) to some subspace V = {|v〉} ⊂ L2(Spin(n)). More precisely, for this
term to vanish, there must exist a subalgebra L ⊂ so(n)K , spanned by some {Kα},
such that Kα ∈ L ⇒ Kα |v〉 = 0. Requiring additionally that this subspace V ought
to close under an action of the shear generators, and that the first two terms of (8)
ought to yield (9), we arrive at the following two necessary conditions:

(1) The algebra L, must be a symmetric subalgebra of so(n), i.e.

[L,N] ⊂ N, [N,N] ⊂ L; N = L⊥, (10)

(2) The vector
∣∣

w
〉

ought to be invariant under the L subgroup action (subgroup

of Spin(n) corresponding to L), i.e.

Kα ∈ L ⇒ Kα

∣∣∣∣ w

〉
= 0. (11)

The second necessary condition is satisfied by requiring that the space V is
given by Spin(n)/L. In Wigner’s terminology, this means that L is the little group
of the contracted algebra representation, and that necessarily it is to be represented
trivially. Besides, the little group is to be an invariant subgroup of the Spin(n)
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group. This coincides with one class of the solutions found by Hermann [3]. However,
we demonstrated here that there are no other solutions in the sl(n, R) algebra case,
in particular, there are no solutions with little group represented nontrivially.

As for the first necessary condition, an inspection of the tables of symmetric
spaces, yields two possibilities: L = Spin(m) × Spin(n − m), where Spin(1) ≡ 1,
and, for n = 2k, L = U(k) (U is the unitary group). However, this second possibility
certainly does not imply another solution, since it turns out that there is no vector
satisfying the second above property.

Thus, the only remaining possibility is as follows,

L = Spin(m) × Spin(n − m), m = 1, 2, . . . , n − 1, Spin(1) ≡ 1. (12)

It is rather straightforward, however somewhat lengthy, to show that proportional-

ity of (8) and (9) really holds in this case. The vector
∣∣

w
〉

exists, and it is the one

corresponding to traceless diagonal n×n matrix diag( 1
m , . . . , 1

m ,− 1
n−m , . . . ,− 1

n−m ).

3. Special Case: SL(2, R)

The analysis accomplished above cannot be applied directly to the n = 2 case,
thus the sl(2, R) case must be treated separately. The maximal compact subgroup
SO(2), that is, its double cover Spin(2), has only one generator M , and therefore
it has only one-dimensional irreducible representations. In this case, there are two
Abelian generators U± of the contracted group:

[M, U±] = ±U±, [U+, U−] = 0. (13)

Based on these relations, it is easy to verify that the T± operators obtained by the
Gell-Mann construction as:

T± = i[M2, U±] + iσU± (14)

automatically satisfy the sl(2, R) commutation relation:

[T+, T−] = −2M. (15)

Therefore, we demonstrate that the Gell-Mann formula applies to the sl(2, R) case
as well.

4. Matrix Elements

The approach presented in this paper allows us additionally to write down explic-
itly the matrix elements of the sl(n, R) generators in the cases when the Gell-Mann
formula is valid. The possible cases are determined by the numbers n and m. The
corresponding representation space (not irreducible in general) is the one over the
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coset space Spin(n)/Spin(m)× Spin(n−m). The proportionality factor α is deter-
mined to be:

α =
1
2

√
m(n − m)

n
, (16)

and, in a matrix notation for representation:∣∣∣∣ w

〉
=

√
m(n − m)

n
diag

(
1
m

, . . . ,
1
m

,− 1
n − m

, . . . ,− 1
n− m

)
. (17)

The Gell-Mann formula (3), (6), and the matrix representation of the contracted
Abelian generators U (A.5) yield:〈

J ′

m′

∣∣∣∣Tµ

∣∣∣∣ J

m

〉

= i

√
m(n − m)

4n

√
dim(J)
dim(J ′)

(
C2(J ′) − C2(J) + σ

)
CJ J′

0 0 0 C J J′

m µ m′ . (18)

The zeroes in the indices of Clebsch–Gordan coefficients here denote vectors that
are invariant with respect to Spin(m)×Spin(n−m) transformations (in that spirit∣∣

w
〉

=
∣∣

0
〉
). In the formula (18), the space reduction from L2(Spin(n)) to

L2(Spin(n)/Spin(m) × Spin(n − m)) implies a reduction of the basis (A.3), i.e.∣∣J
0m

〉
→

∣∣ J
m

〉
(only the vectors invariant with respect to left Spin(m)×Spin(n−m)

action remain).
The expression (18), together with the action of the Spin(n) generators (A.4)

provides an explicit form of the SL(n, R) generators representation, that is labeled
by a free parameter σ. Such representations are multiplicity-free with respect to
the maximal compact Spin(n) subgroup, and all of them are a priori tensorial. One
can obtain from these representations, for certain σ parameter values, the sl(n, R)
spinorial representations as well as by explicitly evaluating the Clebsch–Gordan
coefficient and performing an appropriate analytic continuation in terms of the
Spin(n) labels.

5. Conclusion

In this paper, we clarified the issue of the Gell-Mann formula validity for the
sl(n, R) → rn(n+1)

2 −1

⊎
so(n) algebra contraction. We have shown that the only

sl(n, R) representations obtainable in this way are given in Hilbert spaces over the
symmetric spaces Spin(n)/Spin(m) × Spin(n − m), m = 1, 2, . . . , n − 1. Moreover,
by making use of the Gell-Mann formula in these spaces, we have obtained a closed
form expressions of all irreducible representations matrix elements of the noncom-
pact operators generating SL(n, R)/SO(n) cosets. The matrix elements of both
compact and noncompact operators of the sl(n, R) algebra are given by (A.4) and
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(18), respectively. In particular, it turns out that, due to Gell-Mann’s formula valid-
ity conditions, no representations with so(n) subalgebra representations multiplicity
can be obtained in this way. Moreover, the matrix expressions of the noncompact
operators as given by (18) do not account a priori for the sl(n, R) spinorial represen-
tations. An explicit construction of spinorial representations requires an additional
analytic continuation of the matrix elements explicit expressions to half-integer val-
ues of the representation labels. Due to mutual connection of the sl(n, R) and su(n)
algebras, the results of this paper apply to the corresponding su(n) case as well.
The SU(n)/SO(n) generators differ from the corresponding sl(n, R) operators by
the imaginary unit multiplicative factor, while the spinorial representations issue
in the su(n) case is pointless due to the fact that the SU(n) is a simply connected
(there exists no double cover) group.

In many physics applications (e.g. those in [18]) one is interested in the unitary
irreducible representations. The unitarity question goes beyond the scope of the
present work, and it relates to the Hilbert space properties, i.e. the vector space
scalar product. An efficient method to study unitarity is to start with a Hilbert space
L2(Spin(n), κ) of square integrable functions with a scalar product given in terms
of an arbitrary kernel κ, and to impose the unitarity constraints both on the scalar
products itself and on the noncompact operators matrix elements in that scalar
product (cf. [19]). The simplest series of the sl(n, R) unitary irreducible represen-
tations, the Principal series, of the representations constructed above are obtained
when σ = iσI , σI ∈ R\{0}, i.e. when σ takes an arbitrary nonzero pure imaginary
value.

To conclude, we obtained recently a representation dependent generalization of
the Gell-Mann formula for all sl(n, R) algebras [12] to cover the cases of represen-
tations with nontrivial multiplicity. The sl(n, R) noncompact operators representa-
tions obtained in that work together with the results of this work cover all sl(n, R)
representation cases.

Appendix A

In this paper, rather than following the approach of Hermann [3], we follow our
approach of [12]. That is, we work in the representation space of square integrable
functions L2(Spin(n)), over the maximal compact subgroup Spin(n), i.e. the SO(n)
universal covering group, with a standard invariant Haar measure. This representa-
tion space is large enough to provide for all inequivalent irreducible representations
of the contracted group, and, by a theorem of Harish-Chandra [14–17], is also rich
enough to contain representatives from all equivalence classes of the SL(n, R) group,
i.e. sl(n, R) algebra, representations.

The generators of the contracted group are generically represented, in this space,
as follows. The so(n) subalgebra operators act, in a standard way:

Mab|φ〉 = −i
d

dt
exp(itMab)

∣∣∣
t=0

|φ〉,
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where action of a Spin(n) element g′ on an arbitrary vector |φ〉 ∈ L2(Spin(n)) is
given via action from the left on basis vectors |g〉 of this space:

g′|φ〉 = g′
∫

φ(g)|g〉dg =
∫

φ(g)|g′g〉dg, g′, g ∈ Spin(n). (A.1)

The contracted noncompact Abelian operators Uµ (2, 3), act in the same basis as
multiplicative Wigner-like D-functions (the SO(n) group matrix elements expressed
as functions of the group parameters):

Uµ → |u|Dwµ (g−1) ≡ |u|
〈

w

∣∣∣∣ (D (g)
)−1

∣∣∣∣ µ

〉
, (A.2)

|u| being a constant norm, g being an SO(n) element, and denoting (in a parallel
to the Young tableaux) the symmetric second-order tensor representation of SO(n).
The norm |u| parametrizes representation of U , but will turn out to be irrelevant

in our case, as it cancels with the denominator in (3). The
∣∣

µ
〉

vector from repre-

sentation space is denoted by the index of the operator Uµ, whereas the vector∣∣
w

〉
can be an arbitrary vector belonging to (the choice of w determines, in

Wigner terminology, the little group of the representation in question). Taking an
inverse of g in (A.2) insures the correct transformation properties.

A natural discrete orthonormal basis in the L2(Spin(n)) space is given by prop-
erly normalized Wigner D-functions:{∣∣∣∣Jkm

〉
≡

∫ √
dim(J)DJ

km(g−1)dg |g〉
}

,

〈
J J ′

km k′m′

〉
= δJJ′δkk′δmm′ , (A.3)

where dg is an (normalized) invariant Haar measure. Here, J stands for a set of
Spin(n) irreducible representation labels, while the k and m labels numerate the
representation basis vectors.

An action of the so(n) operators in this basis is well-known, and it can be written
in terms of the Clebsch–Gordan coefficients of the Spin(n) group as follows,〈

J ′

k′m′

∣∣∣∣Mab

∣∣∣∣Jkm

〉
= δJJ′

√
C2(J) CJ J′

m(ab)m′ . (A.4)

The matrix elements of the Uµ operators in this basis are readily found to read:〈
J ′

k′m′

∣∣∣∣ U (w)
µ

∣∣∣∣Jkm

〉

= |u|
〈

J ′

k′m′

∣∣∣∣ D−1
wµ

∣∣∣∣Jkm

〉
= |u|

√
dim(J)
dim(J ′)

C J J′

k w k′ C
J J′

m µ m′ . (A.5)

A closed form of the matrix elements of the whole contracted algebra rn(n+1)
2 −1⊎

so(n) (a semidirect sum of a n(n+1)
2 − 1-dimensional Abelian algebra and so(n))

representations is thus explicitly given in this space by (A.4) and (A.5).
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Moreover, we introduce the so-called, left action generators K as:

Kµ ≡ gνλDµνMλ, (A.6)

where gνλ is the Cartan metric tensor of SO(n). The Kµ operators behave exactly
as the rotation generators Mµ, it is only that they act on the lower left-hand side
indices of the basis (A.3):

〈Kab〉 =
〈

J ′
k′m′

∣∣∣ Kab

∣∣∣J
km

〉
= δJJ′

√
C2(J) C J J′

k(ab)k′ . (A.7)

The operators Kµ and Mµ mutually commute. However, the corresponding
Casimir operators match and, in particular, we will use

∑
K2

µ =
∑

M2
µ in the

expression for the Gell-Mann formula (3).

Acknowledgments

This work was supported in part by MPNTR, Projects OI-171031 and OI-171004.

References

[1] M. Hazewinkel (ed.), Encyclopaedia of Mathematics, Supplement I (Springer, 1997),
p. 269.

[2] R. Hermann, Lie Groups for Physicists (W. A. Benjamin Inc., New York, 1965).
[3] R. Hermann, Commun. Math. Phys. 2 (1966) 155.
[4] G. Berendt, Acta Phys. Austriaca 25 (1967) 207.
[5] Y. Dothan and Y. Ne’eman, Band spectra generated by non-compact algebra, in

Symmetry Groups in Nuclear and Particle Physics, ed. F. J. Dyson (W. A. Benjamin,
New York, 1966).
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Positive Energy Unitary Irreducible Representations

of the Superalgebra osp(1∣8,R)

Vladimir Dobreva and Igor Salomb

Abstract. We continue the study of positive energy (lowest weight) unitary
irreducible representations of the superalgebras osp(1∣2n,R). We present the
full list of these UIRs. We give a proof of the case osp(1∣8,R),

1. Introduction

Recently, superconformal field theories in various dimensions are attracting
more interest, in particular, due to their duality to AdS supergravities. This makes
the classification of the UIRs of these superalgebras very important. Until recently
only those for D ⩽ 6 were studied since in these cases the relevant superconformal
algebras satisfy [1] the Haag–Lopuszanski–Sohnius theorem [2]. Thus, such classi-
fication was known only for the D = 4 superconformal algebras su(2,2/N) [3] (for
N = 1), [4, 5, 6, 7] (for arbitrary N). More recently, the classification for D = 3
(for even N), D = 5, and D = 6 (for N = 1,2) was given in [8] (some results are
conjectural), and then the D = 6 case (for arbitrary N) was finalized in [9].

On the other hand the applications in string theory require the knowledge of
the UIRs of the conformal superalgebras for D > 6. Most prominent role play the
superalgebras osp(1∣2n). Initially, the superalgebra osp(1∣32) was put forward for
D = 10 [10]. Later it was realized that osp(1∣2n) would fit any dimension, though
they are minimal only for D = 3,9,10,11 (for n = 2,16,16,32, resp.) [11]. In all
cases we need to find first the UIRs of osp(1∣2n,R) which study was started in
[12] and [13]. Later, in [14] we finalized the UIR classification of [12] as Dobrev-
Zhang-Salom (DZS) Theorem. In [14] we proved the DZS Theorem for osp(1∣6).
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In the present paper, we prove the DZS Theorem for osp(1∣8). For the lack of
space we refer for extensive literature on the subject in [12, 14].

2. Preliminaries on representations

Our basic references for Lie superalgebras are [15, 16], although in this expo-
sition we follow [12].

The even subalgebra of G = osp(1∣2n,R) is the algebra sp(2n,R) with maximal
compact subalgebra K = u(n) ≅ su(n) ⊕ u(1).

We label the relevant representations of G by the signature

(2.1) χ = [d ; a1 , . . . , an−1 ]
where d is the conformal weight, and a1, . . . , an−1 are non-negative integers which
are Dynkin labels of the finite-dimensional UIRs of the subalgebra su(n) (the simple
part of K).

In [12] were classified (with some omissions to be spelled out below) the positive
energy (lowest weight) UIRs of G following the methods used for the D = 4,6
conformal superalgebras, cf. [4, 5, 6, 7, 9], resp. The main tool was an adaptation
of the Shapovalov form [17] on the Verma modules V χ over the complexification
GC = osp(1∣2n) of G.

We recall some facts about GC = osp(1∣2n) (denoted B(0, n) in [15]) as used in
[12]. The root systems are given in terms of δ1 . . . , δn, (δi, δj) = δij , i, j = 1, . . . , n.
The even and odd roots systems are [15]

∆0̄ = {±δi ± δj , 1 ⩽ i < j ⩽ n; ±2δi, 1 ⩽ i ⩽ n}, ∆1̄ = {±δi, 1 ⩽ i ⩽ n}
(we remind that the signs ± are not correlated). We shall use the following dis-
tinguished simple root system [15] Π = {δ1 − δ2, . . . , δn−1 − δn, δn}, or, introducing
standard notation for the simple roots,

Π = {α1, . . . , αn}, αj = δj − δj+1, j = 1, . . . , n − 1, αn = δn.

The root αn = δn is odd, the other simple roots are even. The Dynkin diagram is

○
1
−− ⋅ ⋅ ⋅ −− ○

n−1
Ô⇒ ●

n

The black dot is used to signify that the simple odd root is not nilpotent. In
fact, the superalgebras B(0, n) = osp(1∣2n) have no nilpotent generators unlike all
other types of basic classical Lie superalgebras [15].

The corresponding to Π positive root system is

(2.2) ∆+0̄ = {δi ± δj , 1 ⩽ i < j ⩽ n; 2δi, 1 ⩽ i ⩽ n}, ∆+1̄ = {δi, 1 ⩽ i ⩽ n}
We record how the elementary functionals are expressed through the simple roots:

δk = αk + ⋅ ⋅ ⋅ + αn.

From the point of view of representation theory, more relevant is the restricted
root system, such that

∆̄+ = ∆̄+0̄ ∪∆
+
1̄ , ∆̄+0̄ ≡ {α ∈∆+0̄ ∣ 12α ∉∆+1̄} = {δi ± δj , 1 ⩽ i < j ⩽ n}
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The superalgebra G = osp(1∣2n,R) is a split real form of osp(1∣2n) and has
the same root system.

The above simple root system is also the simple root system of the complex
simple Lie algebra Bn (dropping the distinction between even and odd roots) with
Dynkin diagram

○
1
−− ⋅ ⋅ ⋅ −− ○

n−1
Ô⇒ ○

n

Naturally, for the Bn positive root system we drop the roots 2δi

∆+Bn
= {δi ± δj , 1 ⩽ i < j ⩽ n; δi, 1 ⩽ i ⩽ n} ≅ ∆̄+

This shall be used essentially below.
Besides (2.1), we shall use the Dynkin-related labelling:

(Λ, α∨k) = −ak, 1 ⩽ k ⩽ n,

where α∨k ≡ 2αk/(αk, αk), and the minus signs are related to the fact that we work
with lowest weight Verma modules (instead of the highest weight modules used in
[16]) and to Verma module reducibility w.r.t. the roots αk (this is explained in
detail in [6, 12]).

Obviously, an must be related to the conformal weight d which is a matter of
normalization so as to correspond to some known cases. Thus, our choice is

an = −2d − a1 − ⋅ ⋅ ⋅ − an−1.

The actual Dynkin labelling is given by mk = (ρ − Λ, α∨k) where ρ ∈ H∗ is
given by the difference of the half-sums ρ0̄, ρ1̄ of the even, odd, resp., positive roots
(cf. (2.2)

ρ ≐ ρ0̄ − ρ1̄ = (n − 1
2
)δ1 + (n − 3

2
)δ2 + ⋅ ⋅ ⋅ + 3

2
δn−1 +

1
2
δn,

ρ0̄ = nδ1 + (n − 1)δ2 + ⋅ ⋅ ⋅ + 2δn−1 + δn,
ρ1̄ =

1
2
(δ1 + ⋅ ⋅ ⋅ + δn).

Naturally, the value of ρ on the simple roots is 1: (ρ, α∨i ) = 1, i = 1, . . . , n.
Unlike ak ∈ Z+ for k < n, the value of an is arbitrary. In the cases when an is

also a non-negative integer, and then mk ∈ N (for all k) the corresponding irreps
are the finite-dimensional irreps of G (and of Bn).

Having in hand the values of Λ on the basis, we can recover them for any
element of H∗. We shall need only (Λ, β∨) for all positive roots β as given in [12]

(Λ, (δi − δj)∨) = (Λ, δi − δj) = −ai − ⋅ ⋅ ⋅ − aj−1
(Λ, (δi + δj)∨) = (Λ, δi + δj) = 2d + a1 + ⋅ ⋅ ⋅ + ai−1 − aj − ⋅ ⋅ ⋅ − an−1

(Λ, δ∨i ) = (Λ,2δi) = 2d + a1 + ⋅ ⋅ ⋅ + ai−1 − ai − ⋅ ⋅ ⋅ − an−1(2.3)

(Λ, (2δi)∨) = (Λ, δi) = d + 1
2
(a1 + ⋅ ⋅ ⋅ + ai−1 − ai − ⋅ ⋅ ⋅ − an−1)

To introduce Verma modules we use the standard triangular decomposition

GC = G+ ⊕H⊕ cG−

where G+, G−, resp., are the subalgebras corresponding to the positive, negative,
roots, resp., and H denotes the Cartan subalgebra.
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We consider lowest weight Verma modules, so that V Λ ≅ U(G+) ⊗ v0 where
U(G+) is the universal enveloping algebra of G+, and v0 is a lowest weight vector
v0 such that

Zv0 = 0, Z ∈ G−; Hv0 = Λ(H)v0, H ∈ H.

Further, for simplicity we omit the sign ⊗, i.e., we write pv0 ∈ V
Λ with p ∈ U(G+).

Adapting the criterion of [16] (which generalizes the BGG-criterion [18] to
the super case) to lowest weight modules, one finds that a Verma module V Λ is
reducible w.r.t. the positive root β iff the following holds [12]

(2.4) (ρ −Λ, β∨) =mβ , β ∈ ∆+, mβ ∈ N.

If a condition from (2.4) is fulfilled, then V Λ contains a submodule which is a

Verma module V Λ′ with shifted weight given by the pair m,β: Λ′ = Λ +mβ. The

embedding of V Λ′ in V Λ is provided by mapping the lowest weight vector v′0 of V Λ′

to the singular vector vm,β
s in V Λ which is completely determined by the conditions

Xvm,β
s = 0, X ∈ G−,

Hvm,β
s = Λ′(H)v0, H ∈ H, Λ′ = Λ +mβ.

Explicitly, vm,β
s is given by a polynomial in the positive root generators [19, 6]

vm,β
s = Pm,βv0, Pm,β ∈ U(G+).

Thus, the submodule Iβ of V Λ which is isomorphic to V Λ′ is given by U(G+)Pm,βv0.

Note that the Casimirs of GC take the same values on V Λ and V Λ′ .
Certainly, (2.4) may be fulfilled for several positive roots (even for all of them).

Let ∆Λ denote the set of all positive roots for which (2.4) is fulfilled, and let us

denote ĨΛ ≡ ⋃β∈∆Λ
Iβ . Clearly, ĨΛ is a proper submodule of V Λ. Let us also denote

FΛ ≡ V Λ/ĨΛ.
Further we shall use also the following notion. The singular vector v1 is called

descendant of the singular vector v2 ∉ Cv1 if there exists a homogeneous polynomial
P12 in U(G+) so that v1 = P12v2. Clearly, in this case we have: I1 ⊂ I2 where Ik is
the submodule generated by vk.

The Verma module V Λ contains a unique proper maximal submodule IΛ (⊇ ĨΛ)
[16, 18]. Among the lowest weight modules with lowest weight Λ there is a unique
irreducible one, denoted by LΛ, i.e., LΛ = V Λ/IΛ. (If V Λ is irreducible, then
LΛ = V

Λ.)
It may happen that the maximal submodule IΛ coincides with the submodule

ĨΛ generated by all singular vectors. This is, e.g., the case for all Verma modules
if rankG ⩽ 2, or when (2.4) is fulfilled for all simple roots (and, as a consequence,

for all positive roots). Here we are interested in the cases when ĨΛ is a proper
submodule of IΛ. We need the following notion.

Definition 2.1. [18, 20, 21] Let V Λ be a reducible Verma module. A vector

vssv ∈ V
Λ is called a subsingular vector if vsu ∉ Ĩ

Λ and Xvsu ∈ Ĩ
Λ, for all X ∈ G−
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Going from the above more general definitions to G we recall that in [12] it

was established that from (2.4) follows that the Verma module V Λ(χ) is reducible
if one of the following relations holds (following the order of (2.3

N ∋m−ij = j − i + ai + ⋅ ⋅ ⋅ + aj−1(2.5a)

N ∋m+ij = 2n − i − j + 1 + aj + ⋅ ⋅ ⋅ + an−1 − a1 − ⋅ ⋅ ⋅ − ai−1 − 2d(2.5b)

N ∋mi = 2n − 2i + 1 + ai + ⋅ ⋅ ⋅ + an−1 − a1 + ⋅ ⋅ ⋅ − ai−1 − 2d(2.5c)

N ∋mii = n − i +
1
2
(1 + ai + ⋅ ⋅ ⋅ + an−1 − a1 + ⋅ ⋅ ⋅ − ai−1) − d .(2.5d)

Further we shall use the fact from [12] that we may eliminate the reducibilities and
embeddings related to the roots 2δi. Indeed, since mi = 2mii, whenever (2.5d) is
fulfilled also (2.5c) is fulfilled.

For further use we introduce notation for the root vector X+j ∈ G
+, j = 1, . . . , n,

corresponding to the simple root αj . Naturally, X
−
j ∈ G

− corresponds to −αj .
Further, we notice that all reducibility conditions in (2.5a) are fulfilled. In

particular, for the simple roots from those condition, (2.5a) is fulfilled with β → αi =
δi−δi+1, i = 1, . . . , n−1 andm−i ≡m

−
i,i+1 = 1+ai. The corresponding submodules Iαi =

U(G+)vis, where Λi = Λ +m
−
i αi and vis = (X+i )1+aiv0. These submodules generate

an invariant submodule which we denote by IΛc ⊂ ĨΛ. Since these submodules are
nontrivial for all our signatures in the question of unitarity instead of V Λ, we shall
consider also the factor-modules FΛ

c = V Λ/IΛc ⊃ FΛ. We shall denote the lowest
weight vector of FΛ

c by ∣Λc⟩ and the singular vectors above become null conditions
in FΛ

c , i.e., (X+i )1+ai ∣Λc⟩ = 0, i = 1, . . . , n − 1.
If the Verma module V Λ is not reducible w.r.t. the other roots, i.e., (2.5b,c,d)

are not fulfilled, then FΛ
c = F

Λ is irreducible and is isomorphic to the irrep LΛ with
this weight.

In fact, for the factor-modules reducibility is controlled by the value of d, or in
more detail:

The maximal d coming from the different possibilities in (2.5b) are obtained
for m+ij = 1 and they are dij ≡ n + 1

2
(aj + ⋅ ⋅ ⋅ + an−1 − a1 − ⋅ ⋅ ⋅ − ai−1 − i − j), the

corresponding root being δi + δj .
The maximal d coming from the different possibilities in (2.5c,d), resp., are

obtained for mi = 1, mii = 1, resp., and they are:

di ≡ n − i +
1
2
(ai + ⋅ ⋅ ⋅ + an−1 − a1 − ⋅ ⋅ ⋅ − ai−1), dii = di −

1
2
,

the corresponding roots being δi, 2δj, resp.
There are some orderings between these maximal reduction points [12]:

d1 > d2 > ⋅ ⋅ ⋅ > dn,(2.6)

di,i+1 > di,i+2 > ⋅ ⋅ ⋅ > din,

d1,j > d2,j > ⋅ ⋅ ⋅ > dj−1,j ,

di > djk > dℓ, i ⩽ j < k ⩽ ℓ.

Obviously the first reduction point is

d1 = n − 1 +
1
2
(a1 + ⋅ ⋅ ⋅ + an−1).
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3. Unitarity

The first results on the unitarity were given in [12], and then improved in [14].
Thus, the statement below should be called Dobrev–Zhang–Salom Theorem.

Theorem DSZ 1. All positive energy unitary irreducible representations of the

superalgebras osp(1∣2n,R) characterized by the signature χ in (2.1) are obtained

for real d and are given as follows:

d ⩾ n − 1 + 1
2
(a1 + ⋅ ⋅ ⋅ + an−1) = d1, a1 ≠ 0,

d ⩾ n − 3
2
+

1
2
(a2 + ⋅ ⋅ ⋅ + an−1) = d12, a1 = 0, a2 ≠ 0,

d = n − 2 + 1
2
(a2 + ⋅ ⋅ ⋅ + an−1) = d2 > d13, a1 = 0, a2 ≠ 0,

d ⩾ n − 2 + 1
2
(a3 + ⋅ ⋅ ⋅ + an−1) = d2 = d13, a1 = a2 = 0, a3 ≠ 0,

d = n − 5
2
+

1
2
(a3 + ⋅ ⋅ ⋅ + an−1) = d23 > d14, a1 = a2 = 0, a3 ≠ 0,

d = n − 3 + 1
2
(a3 + ⋅ ⋅ ⋅ + an−1) = d3 = d24 > d15, a1 = a2 = 0, a3 ≠ 0,

⋮

d ⩾ n − 1 − κ + 1
2
(a2κ+1 + ⋅ ⋅ ⋅ + an−1), a1 = ⋅ ⋅ ⋅ = a2κ = 0, a2κ+1 ≠ 0,

κ = 1
2
,1, . . . , 1

2
(n − 1),

d = n − 3
2
− κ + 1

2
(a2κ+1 + ⋅ ⋅ ⋅ + an−1), a1 = ⋅ ⋅ ⋅ = a2κ = 0, a2κ+1 ≠ 0,

⋮

d = n − 1 − 2κ + 1
2
(a2κ+1 + ⋅ ⋅ ⋅ + an−1), a1 = ⋅ ⋅ ⋅ = a2κ = 0, a2κ+1 ≠ 0,

⋮

d ⩾ 1
2
(n − 1), a1 = ⋅ ⋅ ⋅ = an−1 = 0

d = 1
2
(n − 2), a1 = ⋅ ⋅ ⋅ = an−1 = 0

⋮

d = 1
2
, a1 = ⋅ ⋅ ⋅ = an−1 = 0

d = 0, a1 = ⋅ ⋅ ⋅ = an−1 = 0

where the last case is the trivial one-dimensional irrep.

The theorem was partially proved [12], while in [14] was given a sketch of a
proof, and the case n = 3 was proved. We are going to give a proof for osp(1∣8).

4. The case of osp(1∣8)
For n = 4 formula (2.6) simplifies to

d1 > d12 > d2 > d23 > d3 > d34 > d4
Ç > d13 >ÄÇ > d24 >Ä

Ç > d14 >Ä

In the case of osp(1∣8) Theorem DSZ reads:

Theorem 4.1. All positive energy unitary irreducible representations of the

superalgebras osp(1∣8,R) characterized by the signature χ in (2.1) are obtained for

real d and are given as follows

d ⩾ 3 + 1
2
(a1 + a2 + a3) = d1, a1 ≠ 0,
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d ⩾ 5
2
+

1
2
(a2 + a3) = d12, a1 = 0, a2 ≠ 0,

d = 2 + 1
2
(a2 + a3) = d2 > d13, a1 = 0, a2 ≠ 0,

d ⩾ 2 + 1
2
a3 = d2 = d13, a1 = a2 = 0, a3 ≠ 0

d = 3
2
+

1
2
a3 = d23 > d14, a1 = a2 = 0, a3 ≠ 0

d = 1 + 1
2
a3 = d3 > d24, a1 = a2 = 0, a3 ≠ 0

d ⩾ 3
2
= d23 = d14, a1 = a2 = a3 = 0

d = 1 = d3 = d24, a1 = a2 = a3 = 0

d = 1
2
= d34, a1 = a2 = a3 = 0,

d = 0 = d4, a1 = a2 = a3 = 0

where the last case is the trivial one-dimensional irrep.

Proof. For d > d1 there are no singular vectors and we have unitarity. At
d = d1 there is a singular vector of weight δ1 = α1 + α2 + α3 + α4 [22, 12]:

v1δ1 =
1

∑
k1=0

1

∑
k2=0

1

∑
k3=0

bk1,k2,k3
(X+1 )1−k1(X+2 )1−k2(X+3 )1−k3(4.1)

×X+4 (X+3 )k3(X+2 )k2(X+1 )k1v0 ≡ P
1,δ1v0,

bk1,k2,k3
= (−1)k1+k2+k3(a1 + k1) 2 + a1 + a2

1 + a1 + a2 − k2

3 + a1 + a2 + a3
3 + a1 + a2 + a3 − k3

where Hs = Ĥ1 + Ĥ2 + ⋅ ⋅ ⋅ + Ĥs, and a basis in terms of simple root vectors only
is used. This singular vector is nontrivial for a1 ≠ 0 and must be eliminated to
obtain an UIR. Below d < d1 this vector is not singular but has negative norm
and thus there is no unitarity for a1 ≠ 0. On the other hand for a1 = 0 and any d

the vector (4.1) is descendant of the compact root singular vector X+1 v0 which is
already factored out for a1 = 0.

Thus, below we discuss only the cases with a1 = 0 in which case we have
unitarity for d > d12 =

5
2
+

1
2
(a2 + a3). Then at the next reducibility point d = d12,

we have a singular vector corresponding to the root δ1 + δ2 = α1 + 2α2 + 2α3 + 2α4

which is given by

v1δ1+δ2 =
1

2 + 2a2 + a3
×

(4.2)

(− 1
2
(Y4Y3X

+
3 (X+2 )2X+1 ) − 1

4
(Y 2

4 (X+3 )2(X+2 )2X+1 ) + (Y 2
4 X

+
3X

+
23X

+
2X

+
1 )a2

− 2(Y4Y2X
+
23X

+
1 )a2(a2 + 1) − (Y 2

4 X
+
23X

+
23X

+
1 )a2(a2 + 1)

− (Y4Y3X
+
23X

+
2X

+
1 )(a3 + 2)− 2(Y3Y2X

+
2X

+
1 )(a2 + a3 + 1)(a2 + a3 + 2)

− (Y 2
3 (X+2 )2X+1 )(a2 + a3 + 1)(a2 + a3 + 2)

− 4(Y 2
2 X

+
1 )a2(a2 + 1)(a2 + a3 + 1)(a2 + a3 + 2)

+ (Y23X
+
2X

+
1 )(2a2+1)(a2+a3+1)(a2+a3+2)+(Y4Y2X

+
3X

+
2X

+
1 )(2a2+a3+2)



8 DOBREV AND SALOM

+
1
4
(Y34X

+
3 (X+2 )2X+1 )2a2 + 2a3 + 3)+ (Y24X

+
23X

+
1 )a2(a2 + 1)(2a2 + 2a3 + 3)

+
1
2
(Y34X

+
23X

+
2X

+
1 )(a3 − 2a2(a2 + a3 + 1) + 2)

−
1
2
(Y24X

+
3X

+
2X

+
1 )(a3 + 2a2(a2 + a3 + 2) + 2)

+ (a2 + 1)(a2 + a3 + 2)
× (2(Y4Y3X

+
13X

+
2 ) − (Y34X

+
13X

+
2 ) − 2(Y4Y3X

+
23X

+
12) + (Y34X

+
23X

+
12)

+ 2(Y4Y2X
+
3X

+
12) − (Y24X

+
3X

+
12) − 2(Y4Y1X

+
3X

+
2 ) + (Y14X

+
3X

+
2 ))

+ a2(a2+1)(a2+a3+2)(− 4(Y4Y2X
+
13)+2(Y24X

+
13)+4(Y4Y1X

+
23)−2(Y14X

+
23))

+ (a2 + 1)(a2 + a3 + 1)(a2 + a3 + 2)×
(− 4(Y3Y2X

+
12) + 2(Y23X

+
12) + 4(Y3Y1X

+
2 ) − 2(Y13X

+
2 ) − 8(Y2Y1)a2 + 4a2Y12))v0

where the root vector X+jk corresponds to the compact root δj − δk+1 = αj + αj+1 +

⋅ ⋅ ⋅+αk, Yk corresponds to the odd (noncompact) root δk = αk+αk+1+⋅ ⋅ ⋅+αn, (thus
Y4 ≡X

+
4 ), Yjk corresponds to the even noncompact root δj + δk. In (4.2) it is more

convenient to use a PBW type of basis with the compact roots X+... to the right of
the noncompact roots Y.... The norm of (4.2) is

64a2(a2 + 1)2(a2 + 2)(a2 + a3 + 1)(a2 + a3 + 2)2(a2 + a3 + 3)
× (−2d+ a2 + a3 + 4)(−2d + a2 + a3 + 5)/(2a2 + a3 + 2)2.

For d = d12, a1 = 0, a2 ≠ 0 the singular vector (4.2) is nontrivial and gives rise to a
invariant subspace which must be factored out for unitarity. For d < 5

2
+

1
2
(a2 +a3),

the vector (4.2) is not singular, but has negative norm and there is no unitarity
for a2 ≠ 0, except at the isolated unitary point d = 2 + 1

2
(a2 + a3) = d2 > d13 where

the vector (4.2) has zero norm and can not spoil the unitarity. For that value of d
there is a singular vector v1δ2 of weight δ2 = α2 + α3 + α4 [22, 12]:

v1δ2 =
1

∑
k1=0

1

∑
k2=0

bk1,k2
(X+2 )1−k1(X+3 )1−k2(4.3)

×X+4 (X+3 )k2(X+2 )k1v0 ≡ P
1,δ2v0,

bk1,k2
= (−1)k1+k2

a2 + k1

1 + a2 + a3 − k2

which has to be factored out for unitarity for a2 ≠ 0, while for a2 = 0 it is descendant
of the compact vector X+2 v0.

Overall no further unitarity is possible for a2 ≠ 0, thus below we consider only
the cases a1 = a2 = 0. Then the singular vectors above are descendants of compact
root singular vectors X+1 v0 and X+2 v0, thus, there is no obstacle for unitarity for
d > 2 + 1

2
a3 = d2 = d13 (for a1 = a2 = 0). The next reducibility point is d = d13 = d2.

The singular vector for d = d13 and m = 1 has weight δ1 + δ3 = α1 + α2 + 2α3 + 2α4:

v1δ1+δ3 =

( − 4a1(Y4Y3X
+
3X

+
12) − 2a1(Y 2

4 (X+3 )2X+12) − 2(a1 + a2 + 1)(Y 2
4 X

+
3X

+
23X

+
1 )

+ 4a1(a1+ a2+1)(Y 2
4 X

+
3X

+
13)+ 4(a3+ 1)(Y4Y3X

+
23X

+
1 )− 8a1(a3+ 1)(Y4Y3X

+
13)
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− 4(a1 + a2 + a3 + 2)(Y4Y2X
+
3X

+
1 ) + 8a1(a1 + a2 + a3 + 2)(Y4Y1X

+
3 )

+ 8a3(a1 + a2 + a3 + 2)(Y3Y2X
+
1 ) + 4a3(a1 + a2 + a3 + 2)(Y 2

3 X
+
2X

+
1 )

− 8a1a3(a1+ a2+ a3+ 2)(Y 2
3 X

+
12) + 2(a1(a3− 1) + a2(a3− 1) − 2)(Y34X

+
23X

+
1 )

− 4a1(a1(a3 − 1) + a2(a3 − 1) − 2)(Y34X
+
13)

+ 2(a1 + a2 + 2)(a1 + a2 + a3 + 2)(Y24X
+
3X

+
1 )

− 4a1(a1 + a2 + 2)(a1 + a2 + a3 + 2)(Y14X
+
3 )

− 4(a1 + a2 + 2)a3(a1 + a2 + a3 + 2)(Y23X
+
1 )

− (a1+ a2+ 2a3+ 2)(Y34X
+
3X

+
2X

+
1 ) + 2a1(a1+ a2+ 2a3+ 2)(Y34X

+
3X

+
12)

+ 8a1(a1+ a2+ 2)a3(a1+ a2+ a3+ 2)Y13 − 16a1a3(a1+ a2+ a3+ 2)(Y3Y1)
+2(Y4Y3X

+
3X

+
2X

+
1 ) + Y 2

4 (X+3 )2X+2X+1 )v0.
For a1 = a2 = 0 it is descendant of the compact root singular vector X+1 v0. However,
there is a subsingular vector

vss2,13 =

(2a3(Y23Y1) − 2a3(Y13Y2) + 2a3(Y3(Y12)) − 4a3(Y3Y2Y1) + 2(Y4Y3Y2X
+
13)

− Y34Y2X
+
13+ Y24Y3X

+
13− Y4Y23X

+
13− 2(Y4Y3Y1X

+
23)+ Y34Y1X

+
23− Y14Y3X

+
23

+ Y4Y13X
+
23 + 2(Y4Y2Y1X

+
3 ) − Y24Y1X

+
3 + Y14Y2X

+
3 − Y4(Y12)X+3 )v0

(4.4)

with the norm −16a3(a3 + 3)(−2d+ a3 + 2)(−2d+ a3 + 3)(−2d+ a3 + 4). This vector
must be factorized in order to obtain UR at d = d2 = d13. But below this value
the vector (4.4) has negative norm if a3 ≠ 0 and there is no unitarity, except at the
isolated unitary point d = 3

2
+

1
2
a3 = d23 > d14. At that value of d there is a singular

vector of weight δ2 + δ3 = α2 + 2α3:

v1δ2+δ3 =(2(a3 + 1)(Y4Y3X
+
23) − 2(a3 + 1)(Y4Y2X

+
3 ) + 2a3(a3 + 1)(Y 2

3 X
+
2 )

− (a3 + 1)(Y34X
+
23) + (a3 + 1)(Y24X

+
3 ) − 1

2
(2a3 + 1)(Y34X

+
3X

+
2 )

−2a3(a3+1)Y23+ 4a3(a3+1)(Y3Y2)+Y4Y3X
+
3X

+
2 +

1
2
(Y 2

4 (X+3 )2X+2 ))v0(4.5)

with the norm 16a3(a3+1)2(a3+2)(−2d+a3+2)(−2d+a3+3). For a3 ≠ 0 the singular
vector (4.5) should be factored for unitarity, while for a3 = 0 it is descendant of the
compact singular vectors.

In the same range for a3 ≠ 0 at d = d3 = 1 +
1
2
a3 there is a singular vector of

weight δ3 = α3 + α4:

(4.6) v1δ3 =
1

∑
k=0

(−1)k(a3 + k)(X+3 )1−kX+4 (X+3 )kv0 ≡ P1,δ3v0

which must be factored out for unitarity.
On the other hand, for a1 = a2 = a3 = 0 all (sub)singular vectors above are

descendants of the compact singular vectors X+k v0, k = 1,2,3, and there is no
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obstacle for unitarity for d > 3
2
= d23 = d14. For a3 = 0 and d = 3

2
there is also a

singular vector of weight δ1 + δ4:

v1δ1+δ4 = (− 4(Y4Y2X
+
1 ) − 2(Y 2

4 X
+
23X

+
1 ) + 2(Y4Y3X

+
2X

+
1 )

+ Y 2
4 X

+
3X

+
2X

+
1 − 3(Y34X

+
2X

+
1 ) + 6(Y24X

+
1 ))v0

but it is also descendant of compact singular vectors. Finally, for d = 3
2
there is a

subsingular vector of weight δ1 + δ2 + δ3 + δ4:

(4.7) vssδ1+δ2+δ3+δ4 =
4

∑
i,j,k,ℓ=1

ǫijkℓYiYjYkYℓ v0

where ǫijkℓ is the totally antisymmetric symbol so that ǫ1234 = 1. The norm of the
vector (4.7) is 2304(−1 + d)d(−3 + 2d)(−1 + 2d). Thus, for 3

2
> d > 1 there is no

unitarity since then the vector (4.7) has negative norm. In all cases there will be
no unitarity for d ⩽ 1, except possibly when a1 = a2 = a3 = 0 to which we restrict
below. At d = d3 = d24 = 1 there are the singular vector (4.6) and the singular vector
of weight δ2 + δ4 = α2 + α3 + 2α4:

(4.8) v1δ2+δ4 = ( − (a3 + 2)(Y34X
+
2 ) + 2(Y4Y3X

+
2 ) + Y 2

4 X
+
3X

+
2 )v0

both of which are descendants of compact singular vectors. At d = d3 = d24 = 1,
there is also a subsingular vector

vssδ2+δ3+δ4 = (Y2Y3Y4 − Y4Y3Y2) = 1
3

4

∑
i,j,k=2

ǫijkYiYjYk v0

of the norm 144d(d − 1)(2d − 1). It is not an obstacle for unitarity for d = 1, but
for d < 1. Thus, there is no unitarity for d < 1 except at the isolated unitary
point d = 1

2
= d34. At that point all (sub)singular vectors above are descendants of

compact singular vectors. Yet there is the singular vector

v1δ3+δ4 = ( 12Y 2
4 X

+
3 − 2Y3Y4 + Y34)v0

with the norm 8d(2d−1). It is not an obstacle for unitarity for d = 1
2
, but for d < 1

2
.

Thus, there is no unitarity for d < 1
2
except at the isolated point d = d4 = 0 = a1 =

a2 = a3 where we have the trivial one-dimensional UIR since all possible states are
descendants of factored out singular vectors. �
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1 1. INTRODUCTION

Orthosymplectic type of space�time symmetry was
first analyzed by C. Fronsdal [1], as early as in 1985,
and since then interest for this symmetry reappeared,
sometimes independently, in many contexts: M�the�
ory [2], BPS particles [3], higher spin fields [4] and
others [5].

When considering a (super)group in the context of
a space�time symmetry, one of the first and most nat�
ural steps to undertake is to find unitary irreducible
representations (UIR’s) of the group, as these give us
basic information on the particle content of the free
theory. And in the case of orthosymplectic supersym�
metry, physically most important class of UIR’s are, so
called, positive energy UIR’s. The problem of finding
these representations have been solved only for n =1
and n = 2. We followed the approach of [6] and com�
pleted the task for n = 4 by using computer algorithms
to analyze Verma module structure. In this way we
managed to make a complete list of positive energy
osp(1|8) UIR’s, together with explicit forms of the cor�
responding Verma module singular and subsingular
vectors. In this short report we present the main fea�
tures of the results, leaving the details to be published
separately. In particular, we point out that there is a
concrete number of discrete UIR families (precisely
nine, or ten if the trivial representation is counted as a
separate class), that physically should be related to ele�
mentary particles of osp(1|8) models. In addition, we
also point out a method to explicitly construct discrete
representations, allowing one to easily perform con�
crete calculations in these spaces and, in that way, give
physical interpretation to the states within. The
method, directly generalizable to arbitrary n, is based

1 The article is published in the original.

on a Clifford algebra variation of the Green’s ansatz
and is mathematically related to Howe duality.

2. POSITIVE ENERGY UIR’s OF osp(1|8)

Structural relations of osp(1|2n) superalgebra can
be compactly written in the form of trilinear relations

of odd algebra operators aα and 

(1)

(2)

where operators {aα,  {aα, aβ} and  span
the even part of the superalgebra and Greek indices
take values 1, 2, …n (relations obtained from these by
use of Jacobi identity are also implied). If we addition�
ally require that the dagger symbol † above denotes
hermitian conjugation in the algebra representation
Hilbert space (of positive definite metrics), then we
have effectively constrained ourselves to the, so called,

positive energy UIR’s of osp(1|2n).
2
 Namely, in such a

space, “conformal energy” operator E ≡

1/2  must be a positive operator. Opera�

tors aα reduce the eigenvalue � of E, so the Hilbert
space must contain a subspace that these operators
annihilate. This subspace is called vacuum subspace:
V0 = {|v〉, aα|v〉 = 0}. From the algebra relations fol�

lows: |v〉 ∈ V0 ⇒ {aα, |v〉 ∈ V0, with α, β arbitrary.

2 Omitting a short proof, we note that in such a Hilbert space all
superalgebra relations actually follow from one single relation—
the first or the second of (1).

aα

†
:

aα aβ

†,{ } aγ,[ ] 2δβγaα,–=

aα

† aβ,{ } aγ

† ,[ ] 2δβγaα

†
,=

aα aβ,{ } aγ,[ ], aα

† aβ

†,{ } aγ

† ,[ ] 0,=

aβ

† }, aα

† aβ

†,{ }

aα aα

†,{ }
α∑

aβ

† }
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Therefore vacuum subspace carries a representation of

U(1) × SU(N) group generated by operators {aα, 
(with U(1) part generated by E). The positive energy
UIR’s of osp(1|2n) are entirely labelled by UIR μ of
SU(N) (that can be given by a Young diagram) and a
positive real number �0 (energy of the vacuum sub�
space) that labels U(1) representation. However, for a
given representation μ only certain values of �0 are
allowed, and this connection is highly important and
nontrivial.

In this paper we are interested in the n = 4 case.
SU(4) representation μ will be explicitly parameter�
ized by three non negative integers s1, s2, s3 in a way
that μ is determined by a Young diagram with s1 + s2 +
s3 boxes in the first row, s1 + s2 boxes in the second and
s1 boxes in the third row. In addition to these three
numbers, we will use real parameter d given by d =
1/4(�0 – s1 + s3) to label osp(1|8) representations.

Classification of all positive energy UIR’s was done
by computer analysis of the Verma module structure,
carried out in the following general manner (that we
just briefly describe). First, Kac determinant of a suf�
ficiently high level was considered as a function of
parameter d (for each given class of SU(4) representa�
tion μ). In this way it was possible to locate the highest
value of d for which the determinant vanishes and the
Verma module becomes reducible. The singular or
subsingular vector responsible for the singularity of the
Kac matrix was then calculated, effectively by solving
an (optimized) system of linear equations. Next we
would find the norm of this vector and look for possi�
ble additional discrete reduction points at (lower) val�
ues of d for which the norm also vanishes. If new
reduction points with new (sub)singular vectors were
found it was also necessary to check that, upon
removal of the corresponding submodules, no vectors
with zero or negative norm remained. For this, it was
enough to check that previously found (sub)singular
vectors (i.e. those occurring for higher d values)
belonged to the factored�out submodules. Optimized
Wolfram Mathematica code was written to perform all
these calculations. We now summarize the main
results.

Parameter d can take the following values, depend�
ing on the labels s1, s2, s3:

1. s1 = s2 = s3 = 0: d > 3/2 and singular points d = 0,
1/2, 1, 3/2;

2. s1 = s2 = 0, s3 > 0: d > s3/2 + 2 and singular points
d = s3/2 + 1, s3/2 + 3/2, s3/2 + 2;

3. s1 = 0, s2 > 0: d > (s2 + s3)/2 + 5/2 and singular
points d = (s2 + s3)/2 + 2, (s2 + s3)/2 + 5/2;

4. s1 > 0: d > (s1 + s2 + s3)/2 + 3 and a singular point
d = (s1 + s2 + s3)/2 + 3.

Case 1 corresponds to “unique vacuum” represen�
tations, i.e. when the vacuum subspace V0 is one
dimensional and carries trivial representation of the
SU(4) group. Since spatial rotations are a subgroup of

aβ

† }

this SU(4) group, in representations 1 the lowest con�
formal energy state is invariant to rotations. In this
sense, representations 1 correspond to “fundamen�
tally scalar” particles or, more precisely, multiplets
(states of other spin values also belong to the multiplet
of the full supersymmetry). Of particular physical
interest are representations at singular points, and
there are exactly three of such scalar representations.
Namely, at singular points additional equations of
motion appear directly related to the corresponding sin�
gular or subsingular vectors. In the case of the simplest
nontrivial representation d = 1/2, s1 = s2 = s3 = 0, singular
vector yields the massless condition p2 = 0 (this is the well
known and studied UIR containing tower of massless
particles with increasing helicities). However, relating
(sub)singular vectors to physical constraints (i.e. equa�
tions of motion) is in general complicated, and this
problem is effectively solved by the explicit construc�
tion of representations that is discussed in the follow�
ing section.

Case 2 corresponds to representations where V sub�
space transforms w.r.t. SU(4) subgroup as a Young dia�
gram with s3 boxes in a single row. The simplest repre�
sentative of the kind is a single box representation—
lowest energy state in these representations behaves as
a Lorentz 1/2 spinor. There are again three singular
points in the case 2, corresponding to three physically
interesting classes of representations, including three
“fundamentally” spinor multiplets.

Cases 3 and 4 correspond to more complex classes
of representations. However, it turns out that states
from these classes can be naturally seen as composite
states built from states belonging to representations of
classes 2 or of classes 1.

Overall, there turns out to be 10 singular points cor�
responding to 9 different classes of nontrivial multip�
lets (d = 0 point corresponds to the trivial representa�
tion).

3. CONSTRUCTION OF REPRESENTATIONS

It turns out that all representations with (half)inte�
ger d values (including all representations at (sub)sin�
gular points) can be obtained by representing the odd
superalgebra operators a and a† as the following sums:

(3)

In these expressions, p is integer, ea are elements of a
real Clifford algebra:

(4)

and operators  together with adjoint  satisfy

ordinary bosonic algebra relations:  = δβαδab,

aα bα

a ea
, aα

†

a 1=

p

∑ bα

a†ea
.

a 1=

p

∑= =

ea eb,{ } 2δab
, a b,( ) 1 2 …p,, ,= =

bα

a bα

a†

bα

a bβ

b†,[ ]
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 = 0. The (reducible) representation space is
spanned by the vectors:

� = {�(b†){0〉 � ω}, (5)

where �(b†) are monomials in mutually commutative

operators  |0〉 is a bosonic vacuum and w ∈ �CL,
where �CL is the representation space of real Clifford
algebra (4).

Representation ansatz in the form (3) possesses
certain intrinsic symmetries. Operators:

(6)

commute with entire osp(1|8) superalgebra. Operators
Gab themselves satisfy commutation relations of so(p)
algebra (the full symmetry is actually slightly larger,
given by the orthogonal group). This symmetry we will
call the gauge symmetry.

The gauge symmetry actually removes all degener�
acy in decomposition of (5) to osp(1|8) UIR’s, i.e. the
multiplicity of osp(1|8) UIR’s is fully taken into
account by labeling transformation properties of the
vector w.r.t. the gauge symmetry group. Furthermore,
there is one�to�one correspondence between UIR’s of
osp(1|8) and of the gauge group that appear in the
decomposition, meaning that transformation proper�
ties under the gauge group action automatically fix the
osp(1|8) representation.

The vector  that is the lowest weight

vector of osp(1|8) positive energy UIR {d, s1, s2, s3} and
the highest weight vector of the gauge group UIR (in a
standardly defined root system) takes the following
explicit form (up to multiplicative constant):

(7)

with d = s0 +  where  =

 and (e2k – 1 + ie2k)ωh.w. = 0, k = 0, 1,

… [p/2]. The form above assumes that p is large enough

that all  can be defined, i.e. p ≥ 8: s0 must be 0
when p < 8, s1 must be 0 when p < 6, s2 must be 0 when
p < 4 and all s0, s1, s2, s3 must be 0 when p =1 (p = 0 is
trivial UIR of osp(1|8)).

In this way all positive energy UIR�s of osp(1|8)
classified in the previous section with integer or halfin�
teger values of d can be constructed using ansatz (3)
with p ≤ 9. Physically, corresponding states have natu�
ral interpretation as particles composed from p of the
simplest osp(1|8) massless particles (belonging to d =
1/2, s1 = s2 = s3 = 0 UIR).
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University of Belgrade (Serbia))

Title : Dynamical Symmetry of quantum and classical motion of three quarks

tethered to the Torricelli point.

Abstract : Abstract: The motivation for a search for a three-body dynamical symmetry

comes from the quantum dynamics of three quarks confined by the so- called Y- and

Delta strings. After a brief review of the Y- and Delta strings, their spectra and the

degeneracies within, we introduce a set of three-body kinematic variables that are permu-

tation symmetric and expose the underlying dynamical O(2) symmetry of the Y-string.

This symmetry exists also as an approximate symmetry of other permutation symmetric

6



three-body systems, such as the Newtonian gravity one. We illustrate the role of the

symmetric variables by displaying the classical Newtonian periodic three-body orbits of

Euler, Lagrange and Moore in these terms. Subsequently: a) we show that the above

string systems also have the same classical solutions; b) we found new classical periodic

orbits of three quarks in the Y-string potential; and c) we found several new periodic

orbits of three bodies in the Newtonian gravity.

• Professor Masashi Hamanaka (Nagoya University)

Title : Noncommutative ADHM constructions and duality.

Abstract : Abstract: Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction is a power-

ful construction method of instantons which are finite-action solutions of anti-self-dual

Yang-Mills (ASDYM) equations in four-dimensional Euclidean space. This is based on a

beautiful duality between moduli space of the instantons and moduli space of the ADHM

data. In this talk, we discuss the ADHM construction of U(N) instantons in noncom-

mutative (NC) space and prove the duality. This is based on collaboration with Toshio

Nakatsu (Setsunan University).

• Professor Shuhei Kamioka (Kyoto University)

Title : Different approaches to the Aztec diamond theorem.

Abstract : Abstract: The Aztec diamond theorem by Elkies, Kuperberg and Larsen

and Propp (1992) concerns a nice product formula for a combinatorial problem of domino

tilings. The theorem is so beauty that many different proofs have been given in different

approaches. In this talk three of those different proofs are reviewed which are based on:

(i) “urban renewal” trick by Kuperberg; (ii) determinant calculation by Kamioka; and

(iii) vertex operator method by Bouttier, Chapuy and Corteel.
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• Professor Takeo Kojima (Yamagata University)

Title : Vertex operator approach to semi-infinite lattice model: recent progress.

Abstract : Vertex operator approach is a powerful method to study exactly solvable mod-

els directly in the thermodynamic limit. In this talk we review recent progresses of vertex

operator approach to semi-infinite lattice models.

(1) The first progress is a generalization of the boundary condition. We study the XXZ

spin chain with a triangular boundary. Bosonizations of the boundary vacuum states are

realized. Integral representations of correlation functions and form factors are proposed

using bosonizations. As an application, q−series formulae of the boundary expectation

values < σ±
1 > are derived. Exploiting the spin reversal property, relations between n-fold

integrals of elliptic theta functions are conjectured.

(2) The second progress is a generalization of the symmetry. We study the elliptic

Uq,p(ŝlN) lattice model with diagonal boundary condition, which gives an elliptic de-

formation of the higher-rank XXZ spin chain. Bosonizations of the boundary vacuum

states are realized. Integral representations of correlation functions are proposed using

bosonizations. Exploiting the spin reversal property, relations between n-fold integrals of

double-infinite products are conjectured. References :

[1] T.Kojima, Diagonalization of infinite transfer matrix of boundary Uq,p(A
(1)
N−1) face

model, J.Math.Phys.52 01351 (26pages) (2011)

[2] P.Baseilhac, T.Kojima, Correlation functions of the half-infinite XXZ spin chain with

a triangular boundary, Nucl.Phys.B880 378-413 (2014)

[3] P.Baseilhac, T.Kojima, Form factors of the half-infinite XXZ spin chain with a tri-

angular boundary, accepted for publication in J.Stat.Mech. (2014)
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• Professor Satoru Odake (Shinshu University)

Title : Solvable discrete quantum mechanics: q-orthogonal polynomials with

|q| = 1 and quantum dilogarithm.

Abstract : Several kinds of q-orthogonal polynomials with —q—=1 are constructed

as the main parts of the eigenfunctions of new solvable discrete quantum mechanical

systems. Their orthogonality weight functions consist of quantum dilogarithm functions,

which are a natural extension of the Euler gamma functions and the q-gamma functions (q-

shifted factorials). The dimensions of the orthogonal spaces are finite. These q-orthogonal

polynomials are expressed in terms of the Askey-Wilson polynomials and their certain

limit forms. This talk is based on the collaboration with R.Sasaki, arXiv:1406.2768.

• Professor Yas-Hiro Quano (Suzuka University of Medical Science)

Title : Form factors of spin 1 analogue of the eight-vertex model.

Abstract : The spin 1 analogue of the eight-vertex model (21-vertex model) is considered

on the basis of free field representations of vertex operators in the 2× 2-fold fusion SOS

model and vertex-face transformation. Correlation functions and form factors in the 21-

vertex model can be expressed in terms of type I and type II vertex operators of the

corresponding fused SOS model and so-called tail operators. We need the tail operators

in order to translate correlation functions and form factors in SOS model into those of

elliptic vertex model. For correlation functions we use the tail operators for diagonal

matrix elements with respect to the ground state sectors, and for form factors we use

the ones for off diagonal matrix elements. In this talk we will construct the free field

representations of the tail operators for off diagonal matrix elements with respect to the

ground state sectors. As a result, integral formulae for form factors of any local operators

in the 21-vertex model can be obtained, in principle.
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• Professor Igor Salom (Institute of Physics, University of Belgrade (Serbia))

Title : Permutation-symmetric three-particle hyper-spherical harmonics.

Abstract : We consider the non-relativistic three-body body problem in quantum me-

chanics. Following the approach from the two-body case, the goal is to split the problem

into radial and angular parts. To this end, the key element is to obtain three-body

equivalent of the standard spherical harmonics (which are used for solving the two-body

problem). We demonstrate the construction of the three-body permutation symmetric

hyperspherical harmonics, both in the case of planar motion (2D case) and in the case of

general motion (3D case).

• Professor Hiroto Sekido (Kyoto University)

Title : Polynomial regression with time evolution of discrete integrable sys-

tems and its applications.

Abstract : Abstract: In this talk, D-optimal designs are considered. D-optimal de-

signs for polynomial regression models correspond to the discrete Toda equation through

canonical moments and the Hankel determinant expression. We show that polynomial

regression models and its D-optimal designs are generalized by using the time evolution

of the discrete Toda equation. Then we introduce some applications of the generalized

models.

• Professor Fumihiko Sugino (Okayama Institute for Quantum Physics)

Title : A SUSY double-well matrix model for 2D type IIA superstring theory.

Abstract : After a review of matrix models for bosonic string theories, we consider a

double-well supersymmetric matrix model and its interpretation as a nonperturbative def-

inition of two-dimensional type IIA superstring theory. The interpretation is confirmed

by direct comparison of symmetries and amplitudes in both sides of the matrix model

10



and the IIA superstring theory. Next, we obtain the full nonperturbative free energy of

the matrix model in terms of the Tracy-Widom distribution in random matrix theory. Its

weak coupling expansion implies spontaneous supersymmetry breaking due to instantons,

and strong coupling behavior suggests the existence of a well-defined S-dual theory. Fur-

thermore, from the expression of the free energy, we see a smooth connection between a

non-supersymmetric string theory and the IIA superstring theory.

• Professor Kouichi Takemura (Chuo University)

Title : Ultradiscrete Painlevé equations with parity variables.

Abstract : We introduce a ultradiscretization with parity variables of the q- difference

Painlevé VI system of equations. We investigate solutions of ultradiscrete Painlevé equa-

tions and give a conjecture. This tale is based on a joint work with Terumitsu Tsutsui.

• Professor Satoshi Tsujimoto (Kyoto University)

Title : Spectral coincidence of transition operators, automata groups and box-

ball systems.

Abstract : We give the automata which describe time evolution rules of the box-ball

systems with a carrier. It can be shown by use of tropical geometry, such systems are

ultradiscrete analogues of KdV equation. We discuss their relation with the lamplighter

group generated by an automaton. We present spectral analysis of the stochastic matrices

induced by these automata, and verify their spectral coincidence.

• Professor Hiroshi Miki (Doshisha University)

Title : Two-variable orthogonal polynomials and quantum state transfer model.

Abstract : In this talk, we show that a two-dimensional spin lattice could be solvable

where an exact solution of the one excitation dynamics is provided in terms of 2-variable

orthogonal polynomials. Then the perfect state transfer, the quantum state transfer with

11



the probability 1, is shown to take place on the lattice.

• Professor Hiroyuki Yamane (Toyama University)

Title : Representation theory of generalized quantum groups via Weyl groupoids.

Abstract : To any bi-homomorphism χ from a free abelian group to a field K, we can

associate a generalized quantum group U(χ) in a standard way. U(χ) can be: (a) a quan-

tum group, (b) a Lusztig’s small quantum group at a root of unity, (c) a multi-parameter

quantum group, (d) a quantum group associated with a basic classical Lie superalgebra,

and (e) the Drinfeld quantum doubles of ta Nichols algebras of diagonal type. Let R(χ)

be a generalized roo system of U(χ). Let W (χ) be the Weyl groupoid of R(χ). We apply

W (χ) to obtain the classification of finite dimensional irreducible representations of U(χ),

the Shapovalov determinants of U(χ), and the classification of (skew) centers of U(χ).

We emphasis that especially for χ comming from the Lie superalgebra of type B(m,n),

there are many finite dimensional irreducible representations of U(χ) which can not be

taken q → 1.
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Three Quarks Confined
by an Area-Dependent Potential
in Two Dimensions

Igor Salom and V. Dmitrašinović

Abstract We study the low-lying parts of the spectrum of three-quark states with
definite permutation symmetry bound by an area-dependent three-quark potential.
Such potentials generally confine three quarks in non-collinear configurations, but
classically allow for free (unbound) collinear motion. We use our previous work
to evaluate the low-lying parts of the spectrum in a non-adiabatic approximation.
We show that the eigen-energies are positive and discrete, i.e., that the system is
quantum-mechanically confined in spite of the classically allowed free collinear
motion.

Keywords Potential models · Baryons · Y-junction string

1 Introduction

In a recent series of papers we have developed an algebraic theory of quantum
mechanical three-body bound states in two [1–3] and in three dimensions [4–6].
This theory is based on the O(4) and O(6) symmetries, respectively, of the relativistic
kinetic energy and the corresponding O(4) and O(6) hyperspherical harmonics. One
expands the three-body potential and the wave functions in these hyperspherical
harmonics and then uses the O(n) algebra to simplify the Schrödinger equation.

If the three-body potential is homogenous, then, under certain conditions on the
expansion coefficients v of the three-body potential, allow for an energy spectrum
that depends essentially only on the said coefficients. This fact leads to a well-known
theorem [7–12] about energy-level ordering in the lower shells of the spectrum.
Most three-body confining potentials, such as the Δ- and Y-string ones, satisfy these
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conditions, and consequenty their states have the “universal” ordering properties, so
that their low-lying spectra look alike.

In continuation of our previous work on the quantum mechanics of three-particle
bound states, here we present an example of a potential that is homogenous and
generally confines classically, except under (very) special circumstances, and yet
does not satisfy the aforementioned conditions. Consequently its energy spectrum is
not readily calculable using our previous (adiabatic) formulae/results and does not
have the “universal” properties. We present the results of a non-adiabatic calculation
for low-lying parts of the spectrum in two dimensions.1 We show that the ordering
of states is significantly distorted, as compared with the conventional one, but the
energy spectrum remains discrete and positive, i.e., it corresponds to a quantum-
mechanically confined system.

2 An Area-Dependent Potential

We define the model potential as an harmonic oscillator perturbed by an “area term”,
with the coupling strength vb,

VHY = k

2

(
va(ρ

2 + λ2) + vb|ρ × λ|) . (1)

This potential is homogenous with homogeneity coefficient α = 2. It can be viewed
as harmonic (α = 2) generalization of the Y-string potential, which is homogenous
with α = 1, so we may call it the “harmonic Y-string”.

In the limit va > 0, vb = 0 this potential turns into the standard harmonic oscilla-
tor, with the well-known discrete, equidistant energy spectrum. In the limit va = 0,
vb > 0 the potential is still harmonic in the sense that it is proportional to the square
of the hyper-radius R2, but it depends only on the area of the triangle |ρ × λ|. Man-
ifestly, this area vanishes for all collinear quark configurations, i.e. whenever vector
ρ is parallel with the vector λ, thus making such collinear classical motions free,
i.e., unconfined.

An interesting question is what happens to this one unconfined mode of classical
motion?2 In other words, can such a “deformation” of the harmonic oscillator poten-
tial change the discrete nature of the original harmonic oscillator energy spectrum?
In order to try and answer that question we shall solve the full (i.e. non-adiabatic)
Schrödinger equation, Ref. [3]. The three-body potential Eq. (1) can be expanded in
terms of L = 0 SO(4) hyper-spherical harmonics Y J

0M(α,φ, Φ), Ref. [3]

V3−body (α,φ) =
√

π

2

∞∑

J,M

v
3−body
JM Y J

0M(α,φ, Φ) (2)

1The three-dimensional calculation will be shown elsewhere.
2which has measure zero as compared with the set of all three-body configurations - “shape space”.
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which is equivalent to an expansion in SO(3) hyper-spherical harmonics,

V3−body (α,φ) =
∞∑

J,M

v
3−body
JM YJM(α,φ) (3)

that are functions of the two hyper-angles (α,φ). The fact that the potential does not
depend on the angle φ implies that only SO(3) hyper-spherical harmonics with M =
0 enter the expansion, which is equivalent to an expansion in Legendre polynomials
of the variable x = cosα, see the Appendix.

In the followingwe shall keep only the first two terms in theLegendre expansion of
the potential, Eq. (10) and then use it to solve the Schrodinger equation numerically
for an arbitrarily large ratio of strengths of the area- and harmonic potentials vb

va
→ ∞,

which corresponds to the va → 0 limit, while keeping vb finite.
In that limit, the ratio of the two“harmonicYstring” effective potential coefficients

limk→0
(
vHY
20 /vHY

00

) =
√
5
4 remains finite, however, as can be seen in the Appendix,

and thus ensures that there remains an effective harmonic oscillator component in
the effective potential and thus preserves confinement.

3 Low-Lying Energy Spectrum

The Hilbert space of this problem naturally separates into the even- and odd-parity
parts, that are fully disconnected from each other. Moreover, other conserved quan-
tities, (“good quantum numbers”), such as the total angular momentum L and the
permutation symmetry multiplets, also provide other “super-selection rules” that fur-
ther split the Hilbert space into smaller subsets. One particularly interesting Hilbert
sub-space is the L = 0 space: this iswhere the deconfined (“continuum”) states ought
to appear, provided that they exist at all. This is because collinear motion implies
vanishing angular momentum, but not vice versa.

Following Sect. IV.A in Ref. [3] we may use m1 = 1
2

(
lρ + lλ

) = L
2 = 0 and

m2 = G3 = 0 as the definition of the invariant sub-space. This condition means
that these are the [SU (6), LP ] = [56, 0+] and [SU (6), LP ] = [20, 0+] states (in the
spectroscopy notation), the former appears first in the K = 0 band and the latter in
the K = 2 band. They re-appear at even K ’s, with increasing multiplicity.

We look at the strongly perturbed spectrum of the first 21 even-K states (K =
0, 2, 4, 6, 8, 10) sub-space satisfying the m1 = m2 = 0, i.e., L = 0 = G3 condition.
For convenience we (re)define the Hamiltonian as

H = H0 + Cpot
R2

√
2π

(
Y J=0
00 + 2√

5
Y J=2
00

)
(4)

where H0 is the harmonic oscillator Hamiltonian, with eigenvalues that are multiples
of C0 = h̄ω and Cpot is the coefficient multiplying the area term, i.e., Cpot � vb.



406 I. Salom and V. Dmitrašinović

Equation (4) contains the Y J=0
00 term which is the part of the area-term and due to

the presence of this term in expansion there is no appearance of artificial negative
eigenvalues.

Thus, we need the Hamiltonian matrix for the 21-dimensional even-K state (K =
0, 2, 4, . . . , 10) sub-space of the full Hilbert space satisfying the condition m1 =
m2 = 0.Wemust diagonalize the corresponding 21× 21 Hamiltonian matrix; below
we show the upper-left-hand corner 6 × 6 submatrix, corresponding to K = 0, 2, 4
states, of the full 21 × 21 matrix

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

Cpot

2λπ2 + 2C0 0
√

3
2 Cpot

5λπ2 0 0 0
0 9Cpot

10λπ2 + 4C0 0 0 0 0√
3
2 Cpot

5λπ2 0 11Cpot

14λπ2 + 6C0

√
3Cpot

5λπ2 0 Cpot

5λ
√
2π2

0 0
√
3Cpot

5λπ2
Cpot

2λπ2 + 4C0 0 0
0 0 0 0 9Cpot

10λπ2 + 6C0 0

0 0 Cpot R2

5
√
2π2 0 0 Cpot

2λπ2 + 6C0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

(5)

where λ = mω
h̄

and ω =
√

k
m . In the vanishing “area interaction” coupling constant

limit Cpot

C0
∝ vb

ω
→ 0 we recover the usual harmonic oscillator spectrum together

with its characteristic degeneracy, see Fig. 1top. As we increase the ratio of the “area
interaction” coupling constant and the harmonic one, first to unity, Cpot

C0
∝ vb

va
→ 1

Fig. 1middle, and then to seven Cpot

C0
∝ vb

va
→ 7, Fig. 1bottom, one can see that the

states are shifted, at first a little, and then much more into a more-or-less smooth
distribution of states, with no degeneracies, or manifest accumulation points.

Another interesting limit is vb
va

→ ∞, i.e., va → 0, when this Hamiltonian does
not confine all three-body configurations: the collinear classical motion is free in
this potential. What this means in the quantized case is not yet clear: naively one
might expect to see (at least) one continuum in the spectrum, corresponding to the
unconfined (“free”) collinear motion.

The lowest-lying such continuum ought to correspond to states with vanishing
total angularmomentum L = 0 and high values of K , as the collinearmotion implies:
1) vanishing total angular momentum L = 0; 2) one (hyper)-angle in the triangle
always being precisely equal to Φ = π. The second requirement leads to the vanish-
ing of the (hyper)-angular uncertainty ΔΦ = 0, which, in turn demands, an infinite
uncertainty in the corresponding (hyper)angular momentum ΔK → ∞. That can
be fulfilled only by states with vanishing total and very large/infinite/ values of the
hyper-angular momentum K. In other words, one might expect the (binding) energy
of some high hyper-angular momentumK states to decrease and ultimately to vanish
in the infinite angular momentum limit. If there are sufficiently many such states,
they may form something that resembles a continuum.
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Fig. 1 The spectrum of the
first six even-K bands (K =
0, 2, 4, 6, 8, 10) of the
three-body harmonic
oscillator perturbed by the
area-dependent three-body
potential with coupling
constant Cpot

C0
equal to 0, 1

and 7. This is a
21-dimensional sub-space of
the full Hilbert space
consisting of states satisfying
the conditions m1 = m2 = 0,
or L = 0 = G3, equivalent
to [SU (6), LP ] = [20, 0+]
in the spectroscopy notation.
Note the rearrangement of
the levels until the K-shells
become practically
indiscernible
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In order to check this limit numericallywe increase the “area interaction” coupling
constant ratio vb

v0
to e.g. Cpot

C0
(∝ vb

va
) → 10, 100, and 1000, and show the results in

Fig. 2.
There one sees a spectrum consisting of discrete, positive energy eigen-values. Of

course, one cannot expect to find a “true” continuumwith a finite number of states N ,
but one might see some hints thereof, if the number of states N and the off-diagonal
matrix elements are large enough: our results shown in Fig. 2 do not give even a hint
of such a continuum at N = 19 and Cpot

C0
= 1000.
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Fig. 2 The spectrum of the
first six even-K bands (K =
2, 4, 6, 8, 10, 12) of the
three-body harmonic
oscillator perturbed by the
area-dependent three-body
potential with coupling
constant Cpot

C0
equal to 10,

100 and 1000. This is a
21-dimensional sub-space of
the full Hilbert space
consisting of states satisfying
the conditions m1 = m2 = 0,
or L = 0 = G3, equivalent
to [SU (6), LP ] = [20, 0+]
in the spectroscopy notation.
We show only N = 19
levels, as the last two seem to
be adversely affected by the
boundary. Note that the
pattern of the levels is
essentially unchanged, only
the scale on the ordinate is
different
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4 Summary

In this paper we have reported our calculation of three-quark energy spectrum in a
three-body potential that depends only on the area of the triangle subtended by the
three quarks. The spectrum shows no signs of deconfinement in spite of classically
allowed unbound one-dimensional motion.
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Appendix

Equation (1) can be re-written as a function of (the absolute value of) only one O(3)
(hyper-)spherical harmonic in the shape (hyper-)space: the |Y10(α,φ)|:

2

R2
|ρ × λ| = | cosα| =

√
4π

3
|Y10(α,φ)|. (6)

Now, the absolute value of |Y10(α,φ)| can be expressed as √
Y ∗
10(α,φ)Y10(α,φ) and

the O(3) Clebsch–Gordan expansion can be applied to Y ∗
10(α,φ)Y10(α,φ), which

contains only the (obviously even) values of L = 0, 2, as in Eq. (A12) of Ref. [3].

2

R2
|ρ × λ| =

√
1

3

√

1 + 2√
5

Y20(α,φ)

Y00(α,φ)
. (7)

The square root can be expanded in a Taylor-like series, the first two terms of which
coincide with the expansion in Legendre polynomials, or O(3) spherical harmonics,
and for L = 0, even in O(4) hyper-spherical harmonics

2

R2
|ρ × λ| =

√
1

3

(
1 + 1√

5

Y20(α,φ)

Y00(α,φ)
+ · · ·

)
. (8)

Manifestly the Legendre polynomial expansion, Eq. (8) is limited to even-order
J = 0, 2, 4, . . . terms only,

VHY(R,α,φ) = k

2

(
va(ρ

2 + λ2) + vb|ρ × λ|) . (9)

= k

2
R2

(

va + vb
1

2

√
1

3

(
1 + 1√

5

Y20(α,φ)

Y00(α,φ)
+ · · ·

))

= k

2
R2 vHY

0√
4π

(
1 + vHY

2

vHY
0

√
4πY20(α,φ) + · · ·

)
. (10)

Note, however, that vb/va �= vHY
2 /vHY

0 . In particular the additive constant in the
expansion Eq. (8) is important, as it ensures the (overall) positivity of this potential
and leads to the change of “effective couplings”

vHY
00 = √

4π

(

va + vb
1

2

√
1

3

)

,
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and

vHY
2 = vb

1

2

√
4π

15
.

These two equations in turn lead to

vHY
20

vHY
00

=
vb

1
2

√
4π
15

√
4π

(
va + vb

1
2

√
1
3

) = vb

2
√
15

(
va + vb

1
2

√
1
3

) ,

and in particular in the va → 0 limit, this ratio for the HY potential equals that of
the pure area potential:

limva→0

(
vHY
20

vHY
00

)
= 1√

5
.
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Abstract

We study the open deformed XXX spin chain. In particular we obtain the
explicit expression of the Sklyanin monodromy matrix in terms of the entries of
the local Lax operator of the Jordanian chain. These results are essential in the
study of the so-called quasi-classical limit of the system.

1. Introduction

A particularly interesting feature of quantum groups is the so-called twist
transformation [1]. It yields new quantum groups form already known ones.
More precisely, a twist of a quantum group, or more generally, of a Hopf
algebra A is a similarity transformation of the co-product ∆ : A → A⊗A
by an invertible twist element

∆(a) 7→ ∆t(a) = F∆(a)F−1, ∀a ∈ A. (1)
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In order to guarantee the co-associativity property of the twisted co-product
the element F must satisfy the so-called twist equation [1]

F12 (∆⊗ id) (F) = F23 (id⊗∆) (F) , (2)

where

(∆⊗ id)F = (∆⊗ id)
∑
j

f
(1)
j ⊗f

(2)
j =

∑
j

∆
(
f
(1)
j

)
⊗f (2)j ∈ A⊗A⊗A. (3)

Although the twist transformation generates an equivalence relation be-
tween quantum groups they produce different R-matrices. Namely, the
transformation law of the co-product also determines how the correspond-
ing universal R-matrix changes,

R 7→ R(t) = F21RF−1, here F21 =
∑
j

f
(2)
j ⊗ f

(1)
j . (4)

This new R-matrix allows building and studying new integrable models
[2, 3].

2. Deformed Yang R-matrix and the corresponding K-ma-
trix

As our initial step, we briefly review the Jordanian twist element, as a
particular solution of the twist equation. We consider s`(2) generators Sα

with α = +,−, 3, with the commutation relations

[S3, S±] = ±S±, [S+, S−] = 2S3, (5)

and Casimir operator

c2 = (S3)2 +
1

2
(S+S− + S−S+) = (S3)2 + S3 + S−S+ = ~S · ~S. (6)

The universal enveloping algebra U(s`(2)) admits the Jordanian twist ele-
ment [4, 5]

F = exp 2
(
S3 ⊗ σ

)
∈ U (s`(2))⊗ U (s`(2)) , (7)

where

σ =
1

2
log
(
1 + 2θS+

)
. (8)

It straightforward to check that the Jordanian twist element satisfies the
following equations [6]

(∆⊗ id) (F) = F13F23, (id⊗∆t) (F) = F12F13. (9)
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In the equations above the co-product ∆ is the usual co-product of the
U(s`(2)) and ∆t is the twisted co-product. Evidently the equations (9)
imply the twist equation (2) [6]. Thus the the Jordanian twist element (7)
satisfies the Drinfeld twist equation (2).

The XXX Heisenberg spin chain is related to the Yangian Y(s`(2)) and
the SL(2)-invariant Yang R-matrix [7]

R(λ) = λ1 + ηP =

 λ+ η 0 0 0
0 λ η 0
0 η λ 0
0 0 0 λ+ η

 , (10)

where λ is a spectral parameter, η is a quasi-classical parameter. We use
1 for the identity operator and P for the permutation in C2 ⊗ C2.

The universal enveloping algebra of s`(2) is a Hopf sub-algebra of the
Yangian, U(s`(2)) ⊂ Y(s`(2)). Notice that the matrix form of F in the
spin-1/2 representation ρ1/2 is F12 ∈ End(C2 ⊗ C2),

F12 =
(
ρ1/2 ⊗ ρ1/2

)
(F) = 1 + 2θS3 ⊗ S+ =

 1 θ 0 0
0 1 0 0
0 0 1 −θ
0 0 0 1

 , (11)

in particular, in the spin-1/2 representation the generators Sα are given by
the Pauli matrices

Sα =
1

2
σα =

1

2

(
δα3 2δα+

2δα− −δα3

)
.

Therefore the transformation of the Yang R-matrix by the Jordanina twist
element yields the R-matrix of the twisted Yangian Yθ(s`(2)) [8, 9, 6]

RJ(λ) = F21R12(λ)F−112 =

 λ+ η −λθ λθ λθ2

0 λ η −λθ
0 η λ λθ
0 0 0 λ+ η

 , (12)

where F21 = PF12P. In what follows, we will use only twisted R-matrix
(12) and in order to simplify the notation we will omit the symbol J in the
superscript.

The R-matrix (12) satisfies the Yang-Baxter equation

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ). (13)

By setting θ = −ξη we can guarantee the quasi-classical property

1

λ+ η
R(λ, η, θ)|θ=−ξη = 1 + ηr(λ) +O(η2), (14)
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where r(λ) is the classical r-matrix

r(λ) =


0 ξ −ξ 0
0 − 1

λ
1
λ ξ

0 1
λ − 1

λ −ξ
0 0 0 0

 , (15)

which satisfies the classical Yang-Baxter equation

[r13(λ), r23(µ)] + [r12(λ− µ), r13(λ) + r23(µ)] = 0 (16)

and has the unitarity property r21(−λ) = −r12(λ).
The R-matrix (12) has the so-called regularity property

R(0, η) = ηP, (17)

and the unitarity property

R12(λ)R21(−λ) = g(λ)1, with g(λ) = η2 − λ2. (18)

The PT symmetry is broken

R21(λ) 6= Rt1t212 (λ), (19)

where the indices t1 and t2 denote the respective transpositions in the first
and second space of the tensor product C2 ⊗ C2. The R-matrix does not
have the crossing symmetry, but it satisfies the weaker condition(((

Rt212(λ)
)−1)t2)−1

=
g(λ+ η)

g(λ+ 2η)
M2R12(λ+ 2η)M−12 , (20)

with

M =

(
1 −2θ
0 1

)
.

In [9] it was shown that the general solution to the reflection equation

R12(λ− µ)K−1 (λ)R21(λ+ µ)K−2 (µ) = K−2 (µ)R12(λ+ µ)K−1 (λ)R21(λ− µ)
(21)

is given by

K−(λ) =

(
ζ + λ− φθ

η λ
2 ψλ

φλ ζ − λ− φθ
η λ

2

)
. (22)

Also, the dual reflection equation was derived and it was shown that its the
general solution is given by [9]

K+(λ) = K−(−λ− η)M. (23)
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Final observation is that by setting θ = −ξη we achieve that the matrix
K−(λ) (22) does not depend on the parameter η i.e.,

∂K−(λ)

∂η
= 0. (24)

This is an important step in the so-called quasi-classical limit of the corre-
sponding chain [10, 11, 12, 13].

Using the results obtained above, in the next section, we will study the
open deformed XXX spin chain following Sklyanin’s approach [14] as we
have successfully done in the case of XXX Heisenberg spin chain [10] and
XXZ Heisenberg spin chain [12].

3. Jordanian deformation of the XXX spin chain

The Hilbert space of the system is

H =
N
⊗
m=1

Vm = (C2s+1)⊗N , (25)

we study the deformed inhomogeneous spin chain with N sites, charac-
terised by the local space Vm = C2s+1, corresponding inhomogeneous pa-
rameter αm and the operators

Sαm = 1⊗ · · · ⊗ Sα︸︷︷︸
m

⊗ · · · ⊗ 1, (26)

with α = +,−, 3 and m = 1, 2, . . . , N .
We introduce the Lax operator

L0m(λ) =

(
e−σm 2θS3

me
σm

0 eσm

)

+
η

λ

(
S3
m (1m + 2θS+

m) e−σm
(
S−m − 2θ(S3

m)2
)
eσm

S+
me
−σm −S3

me
σm

)
. (27)

In the case when the quantum space is a spin 1
2 representation, the Lax

operator is equal to the R-matrix, L0m(λ) = 1
λR0m (λ− η/2).

Due to the commutation relations (5), it is straightforward to check
that the Lax operator satisfies the RLL-relations

R00′(λ−µ)L0m(λ−αm)L0′m(µ−αm) = L0′m(µ−αm)L0m(λ−αm)R00′(λ−µ).
(28)

The so-called monodromy matrix

T0(λ) = L0N (λ− αN ) · · ·L01(λ− α1) (29)
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is used to describe the system. Notice that T (λ) is a two-by-two matrix
acting in the auxiliary space V0 = C2, whose entries are operators acting
in H

T (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
. (30)

From RLL-relations (28) it follows that the monodromy matrix satisfies the
RTT-relations

R00′(λ− µ)T0(λ)T0′(µ) = T0′(µ)T0(λ)R00′(λ− µ). (31)

The RTT-relations define the commutation relations for the entries of the
monodromy matrix.

Also, we define the Lax operator

L̃0m(λ) =

(
eσm −2θeσmS3

m

0 e−σm

)

+
η

λ

(
eσmS3

m eσm
(
S−m − 2θ(S3

m)2
)

e−σmS+
m −e−σm (1m + 2θS+

m)S3
m

)
. (32)

It obeys the following important identity

L0m(λ)L̃0m(η − λ) =
(

1 + η2
sm(sm + 1)

λ(η − λ)

)
10 , (33)

where sm is the value of spin in the space Vm. Thus the monodromy matrix

T̃0(λ) =

(
Ã(λ) B̃(λ)

C̃(λ) D̃(λ)

)
= L̃01(λ+ α1 + η) · · · L̃0N (λ+ αN + η), (34)

obeys the following relations

T̃0′(µ)R00′(λ+ µ)T0(λ) = T0(λ)R00′(λ+ µ)T̃0′(µ), (35)

T̃0(λ)T̃0′(µ)R00′(µ− λ) = R00′(µ− λ)T̃0′(µ)T̃0(λ). (36)

By construction it follows that the entries of the Sklyanin monodromy
matrix

T0(λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
= T0(λ)K−0 (λ)T̃0(λ), (37)

obey the exchange relations of the so-called reflection equation algebra [14,
10, 12]

R00′(λ− µ)T0(λ)R0′0(λ+ µ)T0′(µ) = T0′(µ)R00′(λ+ µ)T0(λ)R0′0(λ− µ).
(38)
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4. Conclusions

The formulae (37), together with (27) and (32), yields, along the lines pre-
viously used successfully in the cases of the XXX and XXZ Heisenberg spin
chains [10, 12], the quasi-classical expansion of the Sklyanin monodromy
of the deformed chain. We believe that these results will help complete
the study of the open deformed Gaudin model which we have initiated in
[6]. Notice that the open trigonometric Gaudin was reviewed in [15]. The
algebraic Bethe ansatz for the periodic deformed Gaudin model was done
in [16, 17]. It is very likely that the implementation of the algebraic Bethe
ansatz for the open deformed Gaudin model would require specific set of
generators of the corresponding generalized Gaudin algebra, as in the s`(2)
case [18]. These considerations will be reported elsewhere.
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[10] N. Cirilo António, N. Manojlović and I. Salom, Algebraic Bethe ansatz for the
XXX chain with triangular boundaries and Gaudin model, Nuclear Physics B 889
(2014) 87-108; arXiv:1405.7398.
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Positive Energy Unitary Irreducible

Representations of the Superalgebras

osp(1|2n, IR) and Character Formulae for

n = 3

V.K. Dobrev
Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy
of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria

I. Salom
Institute of Physics, University of Belgrade, Pregrevica 118, 11080
Zemun, Belgrade, Serbia

Abstract. We overview our study of the positive energy (lowest
weight) unitary irreducible representations of the superalgebras
osp(1|2n, IR). We give more explicitly character formulae for these
representations in the case n = 3.

1. Introduction
Recently, superconformal field theories in various dimensions are attracting
more interest, in particular, due to their duality to AdS supergravities. Until
recently only those for D 6 6 were studied since in these cases the relevant
superconformal algebras satisfy [1] the Haag-Lopuszanski-Sohnius theorem
[2]. Thus, such classification was known only for the D = 4 superconformal
algebras su(2, 2/N) [3] (for N = 1), [4, 5, 6, 7] (for arbitrary N). More
recently, the classification for D = 3 (for even N), D = 5, and D = 6
(for N = 1, 2) was given in [8] (some results are conjectural), and then the
D = 6 case (for arbitrary N) was finalized in [9].
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On the other hand the applications in string theory require the knowledge
of the UIRs of the conformal superalgebras for D > 6. Most prominent
role play the superalgebras osp(1| 2n). Initially, the superalgebra osp(1| 32)
was put forward for D = 10 [10]. Later it was realized that osp(1| 2n) would
fit any dimension, though they are minimal only for D = 3, 9, 10, 11 (for
n = 2, 16, 16, 32, resp.) [11]. In all cases we need to find first the UIRs
of osp(1| 2n, IR) which study was started in [12] and [13]. Later, in [14]
we finalized the UIR classification of [12] as Dobrev-Zhang-Salom (DZS)
Theorem. There we also proved the DZS Theorem for osp(1| 6), while the
case osp(1| 8) was proved in [15].

In the present paper we present more explicitly the character formulae
for osp(1| 6). For the lack of space we refer for extensive literature on the
subject in [12, 14].

2. Preliminaries on representations
Our basic references for Lie superalgebras are [16, 17], although in this
exposition we follow [12].

The even subalgebra of G = osp(1| 2n, IR) is the algebra sp(2n, IR) with
maximal compact subalgebra K = u(n) ∼= su(n)⊕ u(1).

We label the relevant representations of G by the signature:

χ = [ d ; a1 , ..., an−1 ] (1)

where d is the conformal weight, and a1, ..., an−1 are non-negative integers
which are Dynkin labels of the finite-dimensional UIRs of the subalgebra
su(n) (the simple part of K).

We present the classification of the positive energy (lowest weight)
UIRs of G following [12, 14] where were used the methods used for the
D = 4, 6 conformal superalgebras, cf. [4, 5, 6, 7, 9]. The main tool is an
adaptation of the Shapovalov form [18] on the Verma modules V χ over the
complexification GC = osp(1| 2n) of G.

The root system of GC are given in terms of δ1 . . . , δn , (δi, δj) = δij ,
i, j = 1, ..., n. The even and odd roots systems are [16]:

∆0̄ = {±δi ± δj , 1 6 i < j 6 n , ± 2δi , 1 6 i 6 n} , (2)
∆1̄ = {±δi , 1 6 i 6 n}

(we remind that the signs ± are not correlated). We shall use the following
distinguished simple root system [16]:

Π = { δ1 − δ2 , , . . . , δn−1 − δn , δn } , (3)

2
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or introducing standard notation for the simple roots:

Π = {α1 , ..., αn } , (4)
αj = δj − δj+1 , j = 1, ..., n− 1 , αn = δn .

The root αn = δn is odd, the other simple roots are even. The Dynkin
diagram is:

◦
1
−−− · · · −−− ◦

n−1
==⇒ •

n
(5)

The black dot is used to signify that the simple odd root is not nilpotent. In
fact, the superalgebras B(0, n) = osp(1| 2n) have no nilpotent generators
unlike all other types of basic classical Lie superalgebras [16].

The corresponding to Π positive root system is:

∆+
0̄

= {δi±δj , 1 6 i < j 6 n, 2δi , 1 6 i 6 n}, ∆+
1̄

= {δi , 1 6 i 6 n}
(6)

Conversely, we give the elementary functionals through the simple roots:

δk = αk + · · ·+ αn . (7)

From the point of view of representation theory more relevant is the
restricted root system, such that:

∆̄+ = ∆̄+
0̄
∪∆+

1̄
, (8)

∆̄+
0̄
≡ {α ∈ ∆+

0̄
| 1

2α /∈ ∆+
1̄
} = {δi ± δj , 1 6 i < j 6 n}

The superalgebra G = osp(1| 2n, IR) is a split real form of osp(1| 2n)
and has the same root system.

The above simple root system is also the simple root system of the
complex simple Lie algebra Bn (dropping the distinction between even
and odd roots) with Dynkin diagram:

◦
1
−−− · · · −−− ◦

n−1
==⇒ ◦

n
(9)

and root system:

∆+
Bn

= {δi ± δj , 1 6 i < j 6 n , δi , 1 6 i 6 n} ∼= ∆̄+ (10)

This shall be used essentially below.
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We need explicitly the lowest weight Λ ∈ H∗ (where H is the Cartan
subalgebra of GC) the values of which should be related to the signature (1):

(Λ, α∨k ) = − ak , 1 6 k 6 n , (11)

where α∨k ≡ 2αk/(αk, αk), and the minus signs anticipate the fact that
we shall use lowest weight Verma modules (instead of the highest weight
modules used in [17]) and to Verma module reducibility w.r.t. the roots αk

(this is explained in detail in [6, 12]).
Obviously, an must be related to the conformal weight d which is a

matter of normalization so as to correspond to some known cases. Thus,
our choice is:

an = − 2d− a1 − · · · − an−1 . (12)

The actual Dynkin labelling is given by:

mk = (ρ− Λ, α∨k ) (13)

where ρ ∈ H∗ is given by the difference of the half-sums ρ0̄ , ρ1̄ of the even,
odd, resp., positive roots (cf. (6):

ρ
.= ρ0̄ − ρ1̄ = (n− 1

2)δ1 + (n− 3
2)δ2 + · · ·+ 3

2δn−1 + 1
2δn , (14)

ρ0̄ = nδ1 + (n− 1)δ2 + · · ·+ 2δn−1 + δn ,

ρ1̄ = 1
2(δ1 + · · ·+ δn) .

Naturally, the value of ρ on the simple roots is 1: (ρ, α∨i ) = 1, i = 1, ..., n.
Unlike ak ∈ Z+ for k < n the value of an is arbitrary. In the cases when

an is also a non-negative integer, and then mk ∈ N (∀k) the corresponding
irreps are the finite-dimensional irreps of G.

To introduce Verma modules we use the standard decomposition:

GC = G+ ⊕H ⊕ G− (15)

where G+, G−, resp., are the subalgebras corresponding to the positive,
negative, roots, resp., and H denotes the Cartan subalgebra.

We consider lowest weight Verma modules, so that V Λ ∼= U(G+)⊗ v0 ,
where U(G+) is the universal enveloping algebra of G+, and v0 is a lowest
weight vector v0 such that:

Z v0 = 0 , Z ∈ G−
H v0 = Λ(H) v0 , H ∈ H . (16)
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Further, for simplicity we omit the sign ⊗ , i.e., we write p v0 ∈ V Λ with
p ∈ U(G+).

Adapting the criterion of [17] to lowest weight modules, one finds that a
Verma module V Λ is reducible w.r.t. the positive root β iff the following
holds [12]:

(ρ− Λ, β∨) = mβ , β ∈ ∆+ , mβ ∈ N . (17)

If a condition from (17) is fulfilled then V Λ contains a submodule which
is a Verma module V Λ′ with shifted weight given by the pair m,β :
Λ′ = Λ + mβ. The embedding of V Λ′ in V Λ is provided by mapping
the lowest weight vector v′0 of V Λ′ to the singular vector vm,β

s in
V Λ which is completely determined by the conditions [19]:

X vm,β
s = 0 , X ∈ G− ,

H vm,β
s = Λ′(H) v0 , H ∈ H , Λ′ = Λ + mβ . (18)

Explicitly, vm,β
s is given by a polynomial in the positive root generators

[20, 21]:
vm,β
s = Pm,β v0 , Pm,β ∈ U(G+) . (19)

Thus, the submodule Iβ of V Λ which is isomorphic to V Λ′ is given by
U(G+) Pm,β v0 .

Certainly, (17) may be fulfilled for several positive roots (even for all of
them). Let ∆Λ denote the set of all positive roots for which (17) is fulfilled,
and let us denote: ĨΛ ≡ ∪β∈∆Λ

Iβ . Clearly, ĨΛ is a proper submodule
of V Λ. Let us also denote FΛ ≡ V Λ/ĨΛ.

The Verma module V Λ contains a unique proper maximal submodule
IΛ (⊇ ĨΛ) [17, 22]. Among the lowest weight modules with lowest weight
Λ there is a unique irreducible one, denoted by LΛ, i.e., LΛ = V Λ/IΛ.

It may happen that the maximal submodule IΛ coincides with the
submodule ĨΛ generated by all singular vectors. This is, e.g., the case for
all Verma modules if rank G 6 2, or when (17) is fulfilled for all simple
roots (and, as a consequence for all positive roots). Here we are interested
in the cases when ĨΛ is a proper submodule of IΛ. We need the following
notion.

Definition: [22, 23, 24] Let V Λ be a reducible Verma module. A vector
vssv ∈ V Λ is called a subsingular vector if vsu /∈ ĨΛ and the following
holds:

X vsu ∈ ĨΛ , ∀X ∈ G− (20)

Going from the above more general definitions to G we recall that in [12]
it was established that from (17) follows that the Verma module V Λ(χ) is
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reducible if one of the following relations holds:

N 3 m−
ij = j − i + ai + · · ·+ aj−1 (21a)

N 3 m+
ij = 2n− i− j + 1 + aj + · · ·+ an−1 − a1 − · · · − ai−1 − 2d (21b)

N 3 mi = 2n− 2i + 1 + ai + · · ·+ an−1 − a1 + · · · − ai−1 − 2d (21c)
N 3 mii = n− i + 1

2(1 + ai + · · ·+ an−1 − a1 + · · · − ai−1)− d (21d)

corresponding to the roots δi − δj , δi + δj , (i < j), δi, 2δi, resp. Further
we shall use the fact from [12] that we may eliminate the reducibilities and
embeddings related to the roots 2δi . Indeed, since mi = 2mii , whenever
(21d) is fulfilled also (21c) is fulfilled.

For further use we introduce notation for the root vector X+
j ∈ G+,

j = 1, . . . , n, corresponding to the simple root αj .
Further, we notice that all reducibility conditions in (21a) are fulfilled.

In particular, for the simple roots from those condition (21a) is fulfilled with
β → αi = δi − δi+1 , i = 1, ..., n − 1 and m−

i ≡ m−
i,i+1 = 1 + ai . The

corresponding submodules Iαi = U(G+) vi
s , where Λi = Λ + m−

i αi and
vi
s = (X+

i )1+ai v0 . These submodules generate an invariant submodule
which we denote by IΛ

c ⊂ ĨΛ. Since these submodules are nontrivial for all
our signatures in the question of unitarity instead of V Λ we shall consider
also the factor-modules:

FΛ
c = V Λ / IΛ

c ⊃ FΛ . (22)

We shall denote the lowest weight vector of FΛ
c by |Λc〉 and the singular

vectors above become null conditions in FΛ
c :

(X+
i )1+ai |Λc〉 = 0 , i = 1, ..., n− 1. (23)

If the Verma module V Λ is not reducible w.r.t. the other roots, i.e.,
(21b,c,d) are not fulfilled, then FΛ

c = FΛ is irreducible and is isomorphic
to the irrep LΛ with this weight.

In fact, for the factor-modules reducibility is controlled by the value of
d, or in more detail:

The maximal d coming from the different possibilities in (21b) are
obtained for m+

ij = 1 and they are:

dij ≡ n + 1
2(aj + · · ·+ an−1 − a1 − · · · − ai−1 − i− j) , i < j, (24)

the corresponding root being δi + δj .

6

ISQS                                                                                                                                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 804 (2017) 012015         doi:10.1088/1742-6596/804/1/012015



The maximal d coming from the different possibilities in (21c) are
obtained for mi = 1 and they are:

di ≡ n− i + 1
2(ai + · · ·+ an−1 − a1 − · · · − ai−1) , (25)

the corresponding roots being δi .
There are some orderings between these maximal reduction points [12]:

d1 > d2 > · · · > dn , (26)
di,i+1 > di,i+2 > · · · > din ,

d1,j > d2,j > · · · > dj−1,j ,

di > djk > d` , i 6 j < k 6 ` .

Obviously the first reduction point is:

d1 = n− 1 + 1
2(a1 + · · ·+ an−1) . (27)

Below we shall use the following notion. The singular vector v1 is called
descendant of the singular vector v2 /∈ Cv1 if there exists a homogeneous
polynomial P12 in U(G+) so that v1 = P12 v2 . Clearly, in this case we
have: I1 ⊂ I2 , where Ik is the submodule generated by vk . Thus, when
we factor the submodule I2 this means factoring also the submodule I1.

3. Unitarity
The first results on the unitarity were given in [12], and then improved
in [14]. Thus, the statement below should be called Dobrev-Zhang-Salom
Theorem:
Theorem DZS: All positive energy unitary irreducible representations
of the superalgebras osp(1| 2n, IR) characterized by the signature χ in (1)
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are obtained for real d and are given as follows:

d > n− 1 + 1
2(a1 + · · ·+ an−1) = d1 , a1 6= 0 , (28)

d > n− 3
2 + 1

2(a2 + · · ·+ an−1) = d12 , a1 = 0, a2 6= 0 ,

d = n− 2 + 1
2(a2 + · · ·+ an−1) = d2 > d13 , a1 = 0, a2 6= 0 ,

d > n− 2 + 1
2(a3 + · · ·+ an−1) = d2 = d13 , a1 = a2 = 0, a3 6= 0 ,

d = n− 5
2 + 1

2(a3 + · · ·+ an−1) = d23 > d14 , a1 = a2 = 0, a3 6= 0 ,

d = n− 3 + 1
2(a3 + · · ·+ an−1) = d3 = d24 > d15 , a1 = a2 = 0, a3 6= 0 ,

(29)
...

d > n− 1− κ + 1
2(a2κ+1 + · · ·+ an−1) , a1 = ... = a2κ = 0, a2κ+1 6= 0 ,

κ = 1
2 , 1, ..., 1

2(n− 1) ,

d = n− 3
2 − κ + 1

2(a2κ+1 + · · ·+ an−1) , a1 = ... = a2κ = 0, a2κ+1 6= 0 ,

...

d = n− 1− 2κ + 1
2(a2κ+1 + · · ·+ an−1) , a1 = ... = a2κ = 0, a2κ+1 6= 0 ,

...

d > 1
2(n− 1) , a1 = ... = an−1 = 0

d = 1
2(n− 2) , a1 = ... = an−1 = 0

...

d = 1
2 , a1 = ... = an−1 = 0

d = 0 , a1 = ... = an−1 = 0

Parts of the Proof were given in [12], while in [14] was given a detailed sketch
of the Proof. In [14] was given also the Proof for the case n = 3, while the
proof for n = 4 was given in [15].

4. Character formulae
Let Ĝ be a simple Lie algebra of rank ` with Cartan subalgebra Ĥ, root
system ∆̂, simple root system π̂. Let Γ, (resp. Γ+), be the set of all
integral, (resp. integral dominant), elements of Ĥ∗, i.e., λ ∈ Ĥ∗ such that
(λ, α∨i ) ∈ Z, (resp. Z+), for all simple roots αi , (α∨i ≡ 2αi/(αi, αi)). Let V
be a lowest weight module with lowest weight Λ and lowest weight vector
v0 . It has the following decomposition:

V = ⊕
µ∈Γ+

Vµ , (30)

Vµ = {u ∈ V | Hu = (Λ + µ)(H)u, ∀ H ∈ H}
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(Note that V0 = Cv0 .) Let E(H∗) be the associative abelian algebra
consisting of the series

∑
µ∈H∗ cµe(µ) , where cµ ∈ C, cµ = 0 for µ outside

the union of a finite number of sets of the form D(λ) = {µ ∈ H∗|µ > λ} ,
using some ordering of H∗, e.g., the lexicographic one; the formal exponents
e(µ) have the properties: e(0) = 1, e(µ)e(ν) = e(µ + ν).

Then the (formal) character of V is defined by:

ch0 V =
∑

µ∈Γ+

(dim Vµ) e(Λ + µ) =

= e(Λ)
∑

µ∈Γ+

(dim Vµ) e(µ) (31)

(We shall use subscript ’0’ for the even case.)
For a Verma module, i.e., V = V Λ one has dim Vµ = P (µ), where P (µ)

is a generalized partition function, P (µ) = # of ways µ can be presented as
a sum of positive roots β, each root taken with its multiplicity dimGβ (= 1
here), P (0) ≡ 1. Thus, the character formula for Verma modules is:

ch0 V Λ = e(Λ)
∑

µ∈Γ+

P (µ)e(µ) = (32)

= e(Λ)
∏

α∈∆+

(1− e(α))−1

Further we recall the standard reflections in Ĥ∗ :

sα(λ) = λ− (λ, α∨)α , λ ∈ Ĥ∗ , α ∈ ∆̂. (33)

The Weyl group W is generated by the simple reflections si ≡ sαi ,
αi ∈ π̂ . Thus every element w ∈ W can be written as the product of
simple reflections. It is said that w is written in a reduced form if it is
written with the minimal possible number of simple reflections; the number
of reflections of a reduced form of w is called the length of w, denoted by
`(w).

The Weyl character formula for the finite-dimensional irreducible LWM
LΛ over Ĝ, i.e., when Λ ∈ −Γ+ , has the form:

ch0 LΛ =
∑

w∈W

(−1)`(w) ch0 V w·Λ , Λ ∈ −Γ+ (34)

where the dot · action is defined by w · λ = w(λ − ρ) + ρ. For future
reference we note:

sα · Λ = Λ + nαα (35)
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where

nα = nα(Λ) .= (ρ− Λ, α∨) = (ρ− Λ)(Hα) , α ∈ ∆+. (36)

In the case of basic classical Lie superalgebras the first character formulae
were given by Kac. They are more complicated than the bosonic case, except
for the algebras we consider. Actually, for osp(1/2n) the Verma module
character formula is the same as (32):

ch V Λ = e(Λ)
∏

α∈∆̄+

1
1− e(α)

(37)

using the restricted root system ∆̄+. Naturally, the character formula for
the finite-dimensional irreducible LWM LΛ is again (34) using the Weyl
group Wn of Bn .

Multiplets

A Verma module V Λ may be reducible w.r.t. to many positive roots,
and thus there maybe many Verma modules isomorphic to its submodules.
They themselves may be reducible, and so on.

One main ingredient of the approach of [20] is as follows. We group the
(reducible) Verma modules with the same Casimirs in sets called multiplets
[20]. The multiplet corresponding to fixed values of the Casimirs may be
depicted as a connected graph, the vertices of which correspond to the
reducible Verma modules and the lines between the vertices correspond to
embeddings between them. The explicit parametrization of the multiplets
and of their Verma modules is important for understanding of the situation.

If a Verma module V Λ is reducible w.r.t. to all simple roots (and thus
w.r.t. all positive roots), i.e., mk ∈ N for all k, then the irreducible
submodules are isomorphic to the finite-dimensional irreps of GC [20].
(Actually, this is a condition only for mn since mk ∈ N for k = 1, . . . , n−1.)
In these cases we have the main multiplets which are isomorphic to the
Weyl group of GC [20].

In the cases of non-dominant weight Λ the character formula for the
irreducible LWM is [25] :

ch LΛ =
∑
w∈W
w6wΛ

(−1)`(wΛw) Pw,wΛ(1) ch V w·(w−1
Λ ·Λ) , Λ ∈ Γ (38)

where Py,w(u) are the Kazhdan–Lusztig polynomials y, w ∈ W [25] (for
an easier exposition see [24]), wΛ is a unique element of W with minimal
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length such that the signature of Λ0 = w−1
Λ · Λ is anti-dominant or

semi-anti-dominant:

χ0 = (m′
1, . . . ,m

′
n), m′

k = 1− Λ0(Hk) ∈ Z− . (39)

Note that Py,w(1) ∈ N for y 6 w.
When Λ0 is semi-anti-dominant, i.e., at least one m′

k = 0, then in fact
W is replaced by a reduced Weyl group WR .

Most often the value of Py,w(1) is equal to 1 (as in the character formula
for the finite-dimensional irreps), while the cases Py,w(1) > 1 are related to
the appearance of subsingular vectors, though the situation is more subtle,
see [24].

It is interesting to see how the reducible points relevant for unitarity fit
in the multiplets. In the case of dij using (24) we have:

mn(dij) = 1− 2mj − · · · − 2mn−1 −mi − · · · −mj−1 . (40)

In the case of di (25) we have:

mn(di) = 1− 2mi − · · · − 2mn−1 . (41)

As expected the weights related to positive energy d are not dominant
(mn(dij) ∈ Z−, mn(di) ∈ −N, (i < n)), since the positive energy UIRs are
infinite-dimensional. (Naturally, mn(dn) = 1 falls out of the picture since
dn < 0.)

Thus, the Verma modules with weights related to positive energy would
be somewhere in the main multiplet (or in a reduction of the main multiplet),
and the first task for calculating the character is to find the wΛ in the
character formula (38). This we do in the next subsection in the case n = 3.

5. The case of osp(1|6)
For n = 3 formula (26) simplifies to:

d1

�
d12

�
d2

�
d23

�
d3

� ��
d13

�
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The Theorem now reads:

d > 2 + 1
2(a1 + a2) = d1 , a1 6= 0 , (42)

d > 3
2 + 1

2a2 = d12 , a1 = 0, a2 6= 0 ,

d = 1 + 1
2a2 = d2 > d13 , a1 = 0, a2 6= 0 ,

d > 1 = d2 = d13 , a1 = a2 = 0 ,

d = 1
2 = d23 , a1 = a2 = 0 ,

d = 0 = d3 , a1 = a2 = 0 .

The Weyl group Wn of Bn has 2nn! elements, i.e., 48 for B3. Let
S = (s1, s2, s3), si ≡ sαi , be the simple reflections. They fulfill the
following relations:

s2
1 = s2

2 = s2
3 = e, (s1s2)3 = e, (s2s3)4 = e, s1s3 = s3s1 , (43)

e being the identity of W3 . The 48 elements may be listed as:

e , s1 , s2 , s3 (44)
s1s2 , s1s3 , s2s1 , s2s3 , s3s2 ,

s1s2s1 , s1s2s3 , s1s3s2 , s2s1s3 , s2s3s2 ,

s3s2s1 , s3s2s3 ,

s1s2s1s3 , s1s2s3s2 , s1s3s2s1 , s1s3s2s3 ,

s2s3s2s1 , s2s1s3s2 , s3s2s3s1 , s3s2s3s2 ,

s1s2s3s2s1 , s1s3s2s1s3 , s1s2s1s3s2 ,

s1s3s2s3s2 , s2s1s3s2s1 , s2s1s3s2s3 ,

s3s2s3s1s2 , s3s2s3s2s1 ,

s1s3s2s3s2s1 , s1s3s2s1s3s2 , s1s2s1s3s2s1 ,

s2s1s3s2s1s3 , s2s1s3s2s3s2 , s3s2s3s1s2s1 ,

s3s2s3s1s2s3 , s2s1s3s2s3s2s1 ,

s2s1s3s2s3s1s2 , s3s2s1s2s3s2s1 ,

s3s2s3s1s2s1s3 , s3s2s3s1s2s3s2 ,

s2s3s2s1s2s3s2s1 , s3s2s1s3s2s3s2s1 ,

s3s2s1s3s2s3s1s2 , s2s3s2s1s3s2s3s2s1 .

The character formula for the Verma modules in our case is given
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explicitly by:

ch V Λ =
e(Λ)

(1− t1)(1− t2)(1− t1t2)
×

× 1
(1− t3)(1− t2t3)(1− t1t2t3)

×

× 1
(1− t2t23)(1− t1t2t23)(1− t1t22t

2
3)

(45)

where tj ≡ e(αj).
Now we give the character formulae of the five boundary or isolated

unitarity cases. Below we shall denote the signature of the dominant weight
Λ0 which determines the main multiplet by (m′

1,m
′
2,m

′
3), m′

k ∈ N, using
primes to distinguish from the signatures of the weights we are interested.
We shall use also reductions of the main multiplet when the weights are
semi-dominant, i.e., when some m′

k = 0.

• In the case of d = d1 = 2 + 1
2(a1 + a2) there are twelve members

of the multiplet which is a submiltiplet of a main multiplet. (Remember
that that m1 > 1 since a1 6= 0.) They are grouped into two standard
sl(3) submultiplets of six members. The first submultiplet starts from
V Λ

d1
0 , where Λd1

0 = w · Λ0, w = w
Λ

d1
0

= s2s1s3s2s3 , with signature:

Λd1
0 : (m1,m2,m

′
3 = 1− 2m12) , (46)

m1,m2 ∈ N , m12 ≡ m1 + m2 .

The other submultiplet starts from V Λ′0 with Λ′0 = Λd1
0 + δ1 = Λd1

0 +
α1 + α2 + α3, with signature: Λ′0 : (m1 − 1,m2,m

′
3 = 1− 2m12), m1 > 1.

The character formula is (38) with wΛ = w
Λ

d1
0

:

chΛd1
0 =

e(Λd1
0 )

(1− t3)(1− t2t3)(1− t1t2t3)
× (47)

× 1
(1− t2t23)(1− t1t2t23)(1− t1t22t

2
3)

×

× { chΛm1,m2(t1, t2) − t1t2t3 chΛm1−1,m2(t1, t2) } , m1 > 1

where chΛm1,m2(t1, t2) is the normalized character of the finite-dimensional
sl(3) irrep with Dynkin labels (m1,m2) (and dimension m1m2(m1 +
m2)/2):

ch Λm1,m2(t1, t2) =
1− tm1

1 − tm2
2 + tm1

1 tm12
2 + tm12

1 tm2
2 − tm12

1 tm12
2

(1− t1)(1− t2)(1− t1t2)
(48)
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Naturally, the latter formula is a polynomial in t1, t2 , e.g.,
ch Λ1,1(t1, t2) = 1, ch Λ2,1(t1, t2) = 1 + t1 + t1t2 .

In the case m1 = 2,m2 = 1 the character formula (47) simplifies to:

chΛd1
0 =

e(Λd1
0 )

(1− t3)(1− t2t3)(1− t2t23)(1− t1t2t23)(1− t1t22t
2
3)

×

×
(

1 +
t1(1 + t2)
1− t1t2t3

)
, m1 = 2,m2 = 1 (49)

• In the case of d = d12 = 1
2(3 + a2) which is relevant for unitarity,

i.e., m1 = 1, there are again twelve members of the multiplet. Omitting the
details [14] the character f-la is:

chΛd12
0 =

e(Λd12
0 )

(1− t3)(1− t2t3)(1− t1t2t3)
× (50)

× 1
(1− t2t23)(1− t1t2t23)(1− t1t22t

2
3)

×{ chΛ1,m2(t1, t2) − (t1t22t
2
3)

m2 chΛ1,m2−1(t1, t2) } , m2 > 1

In the case m2 = 2 it simplifies to:

chΛd12
0 =

e(Λd12
0 )

(1− t3)(1− t2t3)(1− t1t2t3)(1− t2t23)(1− t1t2t23)
×

×{ 1 + t1t
2
2t

2
3 +

t2(1 + t1)
1− t1t22t

2
3

} (51)

• In the case d = d2 = d13 = 1 and a1 = a2 = 0, m1 = m2 = 1, the
signature is:

Λd2=d13
0 : (1, 1,−1) . (52)

Again there are twelve members of the multiplet which has two sl(3)
submultiplets. First there is a sl(3) sextet starting from Λd2=d13

0 with
parameters (1, 1). Then there is a sl(3) sextet starting from Λd2=d13

0 +
α1 + 2α2 + 3α3 with parameters (1, 1). Note that that α1 + 2α2 + 3α3 =
δ1 + δ2 + δ3 is the weight of a subsingular vector [14], yet the corresponding
KL polynomial Py,w(1) is equal to 1. Thus, the character formula is [14]:

chΛd2=d13
0 = (53)

=
e(Λd2=d13

0 )
(

1− t1t
2
2t

3
3

)

(1− t3)(1− t2t3)(1− t1t2t3)(1− t2t23)(1− t1t2t23)(1− t1t22t
2
3)

14

ISQS                                                                                                                                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 804 (2017) 012015         doi:10.1088/1742-6596/804/1/012015



Note that the above formula may be rewritten as:

chΛd2=d13
0 =

e(Λd2=d13
0 )

(1− t2t3)(1− t1t2t3)(1− t2t23)(1− t1t2t23)
×

×
( 1

1− t1t22t
2
3

+
t3

1− t3

)
(54)

• In the case of d = d2 = 1+ 1
2a2 > d13 = 1, i.e., m1 = 1, m2 = 1+a2 > 1.

The multiplet has 24 members for m2 > 2. Omitting the details [14] the
character f-la is:

chΛ
′d2
0 =

e(Λ
′d2
0 )

(1− t3)(1− t2t3)(1− t1t2t3)
× (55)

× 1
(1− t2t23)(1− t1t2t23)(1− t1t22t

2
3)

×

× { chΛ1,m2(t1, t2) − t2t3 chΛ2,m2−1(t1, t2) +

+ t1t
3
2t

3
3 chΛ2,m2−2(t1, t2) − t21t

4
2t

4
3 chΛ1,m2−2(t1, t2) }

When m2 = 2 (a2 = 1) the multiplet reduces to only 12 members, and
the character formula simplifies to:

chΛ
′d2
0 =

e(Λ
′d2
0 )

(1− t2t23)(1− t1t2t23)(1− t1t22t
2
3)

× (56)

× { 1
(1− t3)(1− t1t2t3)

+
t2

(1− t3)(1− t2t3)

+
t1t2

(1− t2t3)(1− t1t2t3)
}

• In the case of d = d23 = 1
2 , a1 = a2 = 0, i.e., m1 = m2 = 1, again we

have a multiplet with 24 members. Omitting the details [14] the character
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formula is:

chΛd23
0 =

e(Λd23
0 )

(1− t3)(1− t2t3)(1− t1t2t3)
× (57)

× 1
(1− t2t23)(1− t1t2t23)(1− t1t22t

2
3)

×

× { 1 − t2t
2
3 chΛ2,1(t1, t2) + t1t

2
2t

4
3 chΛ1,2(t1, t2) − t21t

4
2t

6
3 } =

=
e(Λd23

0 )
(1− t3)(1− t2t3)(1− t1t2t3) (1− t2t23)(1− t1t2t23)(1− t1t22t

2
3)

×

× { 1 − t2t
2
3 (1 + t1 + t1t2) + t1t

2
2t

4
3 (1 + t2 + t1t2) − t21t

4
2t

6
3 }

Note that the above formula may be rewritten as:

chΛd23
0 =

e(Λd23
0 )

(1− t3)(1− t2t3)(1− t1t2t3)
(58)

Note that formulae (49),(51),(54),(56),(58) are new w.r.t. [14].
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Three-particle hyper-spherical harmonics and quark

bound states

Igor Salom, and V. Dmitrašinović

Institute of Physics, Belgrade University, Pregrevica 118, Zemun,
P.O.Box 57, 11080 Beograd, Serbia

E-mail: isalom@ipb.ac.rs

Abstract. We construct the three-body permutation symmetric hyperspherical harmonics
based on the subgroup chain S3 ⊗ SO(3)rot ⊂ O(2) ⊗ SO(3)rot ⊂ O(6) (and the subalgebra
chain u(1) ⊗ so(3)rot ⊂ u(3) ⊂ so(6)). These hyperspherical harmonics represent a natural
basis for solving non-relativistic three-body Schrödinger equation in three spatial dimensions.
In particular, we apply the calculated three-particle harmonics to the three-quark bound state
problem. We consider confining ∆- and Y-string three-quark effective potentials, and then
calculate the spectrum of low-lying (K ≤ 4) bound states.

1. Introduction
The quantum-mechanical three-body bound-state problem has been addressed by a huge
literature, in which the hyperspherical harmonics, Refs. [1, 2, 3, 4], provide one of the most
firmly established theoretical tools. Nevertheless, little is known about the general structure
of the three-body bound-state spectrum, such as the ordering of states, even in the (simplest)
case of three indentical particles. In comparison, the two-body bound state problem is well
understood, see Refs. [5, 6, 7, 8], where theorems controlling the ordering of bound states in
convex two-body potentials were proven more than 30 years ago. In this paper we make the first
significant advance in the three-body problem after the 1990 paper by Taxil & Richard, Ref. [9].

The basic difficulty lay in the absence of a systematic construction of permutation-
symmetric three-body wave functions. Classification of wave functions into distinct classes
under permutation symmetry in the three-body system, should be a matter of course, and yet
permutation symmetric three-body hyperspherical harmonics in three dimensions were known
explicitly only in a few special cases, such as those with total orbital angular momentum L = 0,
see Refs. [3, 10] before the recent progress made in Ref. [11]. In this paper we confine ourselves
to the study of factorizable (in the hyper-radius and hyper-angles) three-body potentials for
technical reasons: For this class of potentials our method allows closed-form (“analytical”)
results, at sufficiently small values of the grand angular momentum K (i.e. up to, and including
the K ≤ 8 shell). Factorizable potentials include homogenous potentials, which in turn include
pair-wise sums of two-body power-law potentials, such as the linear (confining) “∆-string”, and
the Coulomb ones, as well as the genuine three-body “Y-string” potential [12, 13].

In this paper, we shall: 1) show how the Schrödinger equation for three particles in a
homogenous/factorizable potential can be reduced to a single differential equation and an
algebraic/numerical problem for their coupling strengths; 2) use this result to explicitly confirm
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Richard and Taxil’s results, [9], for the ordering of K = 3 shell three-quark states, and thus
resolve the controversy with [14]; 3) calculate the K = 4 shell’s (purported “universal”) spectral
splittings in terms of four parameters (lowest hyperspherical harmonics expansion coefficients)
that characterize the three-body potential. 4) show that the first manifest differences in the
ordering of states in the Y- and ∆-string potentials appear in the K = 3 shell, and then reappear
more emphatically in the K = 4 shell.

Our work is based on the recent advances in the construction of three-body wave functions
with well-defined permutation symmetry, see Ref. [11].

2. Three-body problem in hyper-spherical coordinates
The three-body wave function Ψ(ρ,λ) can be transcribed from the Euclidean relative position
(Jacobi) vectors ρ = 1√

2
(x1 − x2), λ = 1√

6
(x1 + x2 − 2x3), into hyper-spherical coordinates as

Ψ(R,Ω5), where R =
√

ρ2 + λ2 is the hyper-radius, and five angles Ω5 that parametrize a hyper-
sphere in the six-dimensional Euclidean space. Three (Φi; i = 1, 2, 3) of these five angles (Ω5)
are just the Euler angles associated with the orientation in a three-dimensional space of a spatial
reference frame defined by the (plane of) three bodies; the remaining two hyper-angles describe
the shape of the triangle subtended by three bodies; they are functions of three independent
scalar three-body variables, e.g. ρ · λ, ρ2, and λ2. As we saw above, one linear combination
of the two variables ρ2, and λ2, is already taken by the hyper-radius R, so the shape-space is
two-dimensional, and topologically equivalent to the surface of a three-dimensional sphere.

There are two traditional ways of parameterizing this sphere: 1) the standard Delves choice,
[1], of hyper-angles (χ, θ), that somewhat obscures the full S3 permutation symmetry of the

problem; 2) the Iwai, Ref. [4], hyper-angles (α, ϕ): (sinα)2 = 1−
(
2ρ×λ
R2

)2
, tanϕ =

(
2ρ·λ

ρ2−λ2

)
,

reveal the full S3 permutation symmetry of the problem: the angle α does not change under
permutations, so that all permutation properties are encoded in the ϕ-dependence of the wave
functions. We shall use the latter choice, as it leads to permutation-symmetric hyperspherical
harmonics, see Ref. [11].

We expand the wave function Ψ(R,Ω5) in terms of hyper-spherical harmonics YK
[m](Ω5),

Ψ(R,Ω5) =
∑

K,[m] ψ
K
[m](R)Y

K
[m](Ω5), where K together with [m] = [Q, ν, L, Lz = m] constitute

the complete set of hyperspherical quantum numbers: K is the hyper-spherical angular
momentum, L is the (total orbital) angular momentum, Lz = m its projection on the z-axis, Q
is the Abelian quantum number conjugated with the Iwai angle ϕ, and ν is the multiplicity label
that distinguishes between hyperspherical harmonics with remaining four quantum numbers that
are identical.

The hyper-spherical harmonics turn the Schrödinger equation into a set of (infinitely) many
coupled equations,

− 1

2µ

[
d2

dR2
+

5

R

d

dR
− K(K + 4)

R2
+ 2µE

]
ψK
[m](R)

+ Veff.(R)
∑

K′,[m′]

CK K′

[m][m′]ψ
K′

[m′](R) = 0 (1)

with a hyper-angular coupling coefficients matrix CK K′

[m][m′] defined by

Veff.(R)C
K′ K
[m′][m] = ⟨YK′

[m′](Ω5)|V (R,α, ϕ)|YK
[m](Ω5)⟩

= V(R)⟨YK′

[m′](Ω5)|V (α, ϕ)|YK
[m](Ω5)⟩. (2)

In Eq. (1) we used the factorizability of the potential V (R,α, ϕ) = V (R)V (α, ϕ) to reduce this
set to one (common) hyper-radial Schrödinger equation. The hyper-angular part V (α, ϕ) can
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be expanded in terms of O(6) hyper-spherical harmonics with zero angular momenta L = m = 0
(due to the rotational invariance of the potential),

V (α, ϕ) =

∞∑
K,Q

v3−body
K,Q YKQν

00 (α, ϕ) (3)

where v3−body
K,Q =

∫
YKQν∗
00 (Ω5)V (α, ϕ) dΩ(5) leading to

Veff.(R)C
K′′ K′

[m′′][m′] = V(R)

∞∑
K,Q

v3−body
K,Q

⟨YK′′

[m′′](Ω5)| YKQν
00 (α, ϕ)|YK′

[m′](Ω5)⟩ (4)

There is no summation over the multiplicity index in Eq. (3), because no multiplicity arises for

harmonics with L < 2. Here we separate out the K = 0 term and absorb the factor
v3−body
00

π
√
π

into

the definition of Veff.(R) =
v3−body
00

π
√
π
V(R) to find

CK′′ K′

[m′′][m′] = δK′′,K′δ[m′′],[m′] + π
√
π
∑∞

K>0,Q

v3−body
K,Q

v3−body
00

×⟨YK′′

[m′′](Ω5)|YKQν
00 (α, ϕ)|YK′

[m′](Ω5)⟩. (5)

Homogenous potentials, such as the ∆ and Y-string ones, which are linear in R, and the

Coulomb one, have first coefficients v3−body
00 in the h.s. expansion that are one order of

magnitude larger than the rest v3−body
K>0,Q . This reflects the fact that, on the average, these potential

energies depend more on the overall size of the system than on its shape, thus justifying the
perturbative approach taken in Ref. [9], with the first term in Eq. (5) taken as the zeroth-order
approximation.1

In such cases Eqs. (1) decouple, leading to zeroth order solutions for ψ K
0[m](R) that are

independent of [m] and thus have equal energies within the same K shell, and different energies in
different K shells. Two known exceptions are potentials with the homogeneity degree k = −1, 2,
that lead to “accidental degeneracies” and have to be treated separately.

The first-order corrections are obtained by diagonalization of the block matrices CK K
[m][m′],

K = 1, 2, ..., while the off-diagonal couplings CK K′

[m][m′],K ̸= K′ appear only in the second-

order corrections. Rather than calculating perturbative first-order energy shifts, a better
approximation is obtained when the diagonalized block matrices are plugged back into Eq.
(1), which equations then decouple into a set of (separate) individual ODEs in one variable,
that differ only in the value of the effective coupling constant:[

d2

dR2
+

5

R

d

dR
− K(K + 4)

R2
+ 2µ(E − V K

[md]
(R))

]
ψK
[md]

(R) = 0, (6)

where V K
[md]

(R) = CK
[md]

Veff.(R), with C
K
[md]

being the eigenvalues of matrix CK K
[m][m′].

The spectrum of three-body systems in homogenous potentials is now reduced to finding
the eigenvalues of a single differential operator, just as in the two-body problem with a radial
potential. The matrix elements in Eq. (5) can be readily evaluated using the permutation-
symmetric O(6) hyper-spherical harmonics and the integrals that are spelled out in Ref. [11].

1 (note that the h.s. matrix elements ⟨YK′′
[m′′](Ω5)|YKQν

00 (α, ϕ)|YK′
[m′](Ω5)⟩ under the sum are always less than 1

π
√

π
).
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This is our main (algebraic) result: combined with the hyperspherical harmonics recently
obtained in Ref. [11], it allows one to evaluate the discrete part of the (energy) spectrum of a

three-body potential as a function of its shape-sphere harmonic expansion coefficients v3−body
K,Q .

Generally, these matrix elements obey selection rules: they are subject to the “triangular”
conditions K′ +K′′ ≥ K ≥ |K′ −K′′| plus the condition that K′ +K′′ +K = 0, 2, 4, . . . , and the
angular momenta satisfy the selection rules: L′ = L′′, m′ = m′′. Moreover, Q is an Abelian (i.e.
additive) quantum number that satisfies the simple selection rule: Q′′ = Q′ +Q. That reduces

the sum in Eq. (5) to a finite one, that depends on a finite number of coefficients v3−body
K,Q ; for

small values of K, this number is also small.
A matrix such as that in Eq. (5) is generally sparse in the permutation-symmetric basis, so

its diagonalization is not a serious problem, and, for sufficiently small K values it can even be
accomplished in closed form: for example, for K ≤ 5, all results depend only on four coefficients
(v00, v40, v6±6, v80), and there is at most three-state mixing, so the eigenvalue equations are at
most cubic ones, with well-known solutions. For brevity’s sake we confine ourselves to K ≤ 4
states here.

3. Results
1) In the K = 2 band/shell of the three-body energy spectrum the eigen-energies depend on
two coefficients (v00, v40), and the splittings among various levels depend only on the (generally
small, see Table 1) ratio v40/v00. This means that the eigen-energies form a fixed pattern
(“ordering”) that does not depend on the shape of the three-body potential. The actual size
of the K = 2 shell energy splitting depends on the small parameter v40/v00, provided that the
potential is permutation symmetric. This fact was noticed almost 40 years ago, Refs. [15, 16],
and it suggested that similar patterns might exist in higher-K shells.

The advantage of permutation-symmetric hyperspherical harmonics over the conventional
ones is perhaps best illustrated here: the K = 2 shell splittings in the Y- and ∆-string potentials
were obtained, after some complicated calculations using conventional hyperspherical harmonics
in Ref. [17], whereas here they follow from the calculation of four (simple) hyper-angular matrix
elements.

2) Historically, extensions of this kind of calculations to higher (K ≥ 3) bands, for general
three-body potentials turned out more difficult than expected: Bowler et. al, Ref. [14], published
a set of predictions for the K = 3, 4 bands, which were later questioned by Richard and Taxil’s
[9], K = 3 hyperspherical harmonic calculation; see also Refs. [18]. This controversy had not
been resolved to the present day, to our knowledge, so we address that problem first: In the
K = 3 case the energies depend on three coefficients (v00, v40, v6±6), and there is no mixing of
multiplets, so all eigen-energies can be expressed in simple closed form that agrees with Ref. [9]
and depends on two small parameters v40/v00, v6±6/v00.

Note that the third coefficient v6±6 vanishes in the simplified Y-string potential without two-
body terms and thus causes the first observable difference between Y- and ∆-string potentials:
the splittings between [20, 1−], and [56, 1−], as well as between [20, 3−], and [56, 3−]. The
vanishing of v6±6 implies that the Y-string potential is independent of the Iwai angle ϕ, and
that consequently there is a (new) dynamical “kinematic rotations/democracy transformations”
O(2) symmetry, [12, 13] associated with it.

3) In the K = 4 band SU(6), or S3 multiplets have one of the following 12 values of the
diagonalized C-matrix CK

[md]
× v00

π
√
π
, from which one can evaluate the eigen-energies. We use

the baryon-spectroscopic notation: [dim., LP ], where dim. is the dimension of the SUFS(6)
representation and the correspondence with the representations of the permutation group S3
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is given as 70 ↔M , 20 ↔ A, 56 ↔ S.

[
70, 0+

]
:

1

π
√
π

(
v00 +

√
3

2
v40 +

1

2
√
5
v80

)
[
56, 0+

]
:

1

π
√
π

(
v00 +

2√
5
v80

)
[
70, 1+

]
:

1

π
√
π

(
v00 − 1√

5
v80

)
[
70, 2+

]
:

1

π
√
π

(
v00 +

1

35

(
7
√
3v40 + 2

√
5v80

−3

√
3v240 − 2

√
15v40v80 + 5v280 + 120v26±6

))
[
70

′
, 2+

]
:

1

π
√
π

(
v00 +

1

35

(
7
√
3v40 + 2

√
5v80

+3

√
3v240 − 2

√
15v40v80 + 5v280 + 120v26±6

))
[
56, 2+

]
:

1

π
√
π

(
v00 −

12
√
3

35
v40 +

√
5

7
v80

)
[
20, 2+

]
:

1

π
√
π

(
v00 − 1√

5
v80

)
[
20, 3+

]
:

1

π
√
π

(
v00 −

3
√
3

14
v40 −

√
5

14
v80

)
[
70, 3+

]
:

1

π
√
π

(
v00 −

5
√
3

14
v40 +

1

14
√
5
v80

)
[
56, 4+

]
:

1

π
√
π

(
v00 +

5
√
3

14
v40 +

3

14
√
5
v80

)
[
70, 4+

]
:

1

π
√
π

(
v00 +

1

42
√
5

(
− 2v80

−
√

1215v240 − 54
√
15v40v80 + 9v280 + 1280v26±6

))
[
70

′
, 4+

]
:

1

π
√
π

(
v00 +

1

42
√
5

(
− 2v80

+

√
1215v240 − 54

√
15v40v80 + 9v280 + 1280v26±6

))
.

Table 1 shows that the ordering of K = 4 states is not universally valid even for these two
convex confining potentials. This, of course, is a consequence of different ratios v40/v00, v6±6/v00
and v80/v00. That goes to show that one cannot expect strongly restrictive ordering theorems
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Table 1. Expansion coefficients vKQ of the Y- and ∆-string potentials in terms of O(6) hyper-

spherical harmonics YK,0,0
0,0 , for K = 0, 4, 8, respectively, and of the hyper-spherical harmonics

Y6,±6,0
0,0 .

(K,Q) (0,0) (4,0) (6,±6) (8,0)

vKQ(Y) 8.18 -0.44 0 -0.09

vKQ(∆) 16.04 -0.44 -0.14 -0.06

to hold for three-body systems in general, the way they hold in the two-body problem, Ref.
[8]. Nevertheless, even the present results can be useful, as they indicate that certain groups
of multiplets are jointly lifted, or depressed in the spectrum, subject to the value of the ratio
v40/v00, with ordering within each group being subject to the finer structure of the potential,
i.e., to higher coefficients ratios v6±6/v00 and v80/v00.

Of course, similar conclusions hold also for K = 3 spectrum splitting, but are less pronounced,
as that shell depends only on two numbers: the ratios v40/v00 and v6±6/v00. As the difference
between ∆ and Y-string potentials is most pronounced in the value of v6±6, that is the case
where the distinction between these two potentials is most clearly seen.

4. Summary and Conclusions
We have reduced the non-relativistic (quantum) three-identical-body problem to a single
ordinary differential equation for the hyper-radial wave function with coefficients multiplying the
linear hyper-radial potential determined by O(6) group-theoretical arguments. That equation
can be solved in the same way as the radial Schrödinger equation in 3D. The breaking of the
O(6) symmetry by the three-body potential determines the ordering of states in the spectrum.

In three dimensions (3D) the hyper-spherical symmetry group is O(6), and the residual
dynamical symmetry of the potential is S3 ⊗ SO(3)rot ⊂ O(2) ⊗ SO(3)rot ⊂ O(6), where
SO(3)rot is the rotational symmetry associated with the (total orbital) angular momentum L.
We showed how the energy eigenvalues can be calculated in terms of the three-body potential’s
(hyper-)spherical harmonics expansion coefficients vKQ.

The ordering of bound states has its most immediate application in the physics of three
confined quarks, where the question was raised originally, Refs. [9, 14, 15, 16, 17]. We have
used these results to calculate the energy splittings of various SU(6)/S3 multiplets in the K ≤ 4
shells of the Y- and ∆-string potential spectra. The dynamical O(2) dynamical symmetry of
the Y-string potential was discovered in Ref. [12], with the permutation group S3 ⊂ O(2) as its
subgroup. The existence of an additional dynamical symmetry strongly suggested an algebraic
approach to this problem, such as that used in two-dimensional space, in Ref. [13]. We have
shown that the first clear difference between the spectra of these two models of confinement
appears in the K ≥ 3 shell. That is also the first explicit consequence of the dynamical O(2)
symmetry of the “Y-string” potential. We stress the analytical nature of our results, in contrast
to the numerical results of Refs. [18].

The next step would be to apply the method to linear combinations of homogenous potentials,
which can only be done numerically, however. Several “realistic” two-body potentials, such as
the Lennard-Jones inter-atomic one, as well as the “Coulomb + linear” quark-quark one, are
simple linear combinations of (only) two homogenous potentials.
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Abstract

We continue the study of positive energy (lowest weight) unitary irreducible
representations of the superalgebras osp(1|2n, IR). We update previous results
and present the full list of these UIRs. We give also some character formulae for
these representations.

1. Introduction

Recently, superconformal field theories in various dimensions are attract-
ing more interest, in particular, due to their duality to AdS supergravities.
Until recently only those for D ≤ 6 were studied since in these cases the
relevant superconformal algebras satisfy [1] the Haag-Lopuszanski-Sohnius
theorem [2]. Thus, such classification was known only for the D = 4 su-
perconformal algebras su(2, 2/N) [3] (for N = 1), [4–7] (for arbitrary N).
More recently, the classification for D = 3 (for even N), D = 5, and D = 6
(for N = 1, 2) was given in [8] (some results are conjectural), and then the
D = 6 case (for arbitrary N) was finalized in [9].

On the other hand the applications in string theory require the knowl-
edge of the UIRs of the conformal superalgebras for D > 6. Most promi-
nent role play the superalgebras osp(1| 2n). Initially, the superalgebra
osp(1| 32) was put forward for D = 10 [10]. Later it was realized that
osp(1| 2n) would fit any dimension, though they are minimal only for D =
3, 9, 10, 11 (for n = 2, 16, 16, 32, resp.) [11]. In all cases we need to find first
the UIRs of osp(1| 2n, IR) which study was started in [12] and [13].

In the present paper we intend to finalize unitarity classification of [12]
and in addition to provide some character formulae.

∗ e-mail address: dobrev@inrne.bas.bg
† e-mail address: isalom@phy.bg.ac.rs
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Since this paper is a sequel of [12], where there is extensive literature,
and for the lack of space we only update the supersymmetry literature (for
D > 2) after 2004, cf. [14–61]

2. Representations of the superalgebras osp(1| 2n) and osp(1| 2n, IR)

2.1. The setting

Our basic references for Lie superalgebras are [62, 63], although in this
exposition we follow [12].

The even subalgebra of G = osp(1| 2n, IR) is the algebra sp(2n, IR)
with maximal compact subalgebra K = u(n) ∼= su(n)⊕ u(1).

We label the relevant representations of G by the signature:

χ = [ d ; a1 , ..., an−1 ] (1)

where d is the conformal weight, and a1, ..., an−1 are non-negative integers
which are Dynkin labels of the finite-dimensional UIRs of the subalgebra
su(n) (the simple part of K).

In [12] were classified (with some omissions to be spelled out below) the
positive energy (lowest weight) UIRs of G following the methods used for
the D = 4, 6 conformal superalgebras, cf. [4–7,9], resp. The main tool was
an adaptation of the Shapovalov form [64] on the Verma modules V χ over
the complexification GCI = osp(1| 2n) of G.

2.2. Root systems

We recall some facts about GCI = osp(1| 2n) (denoted B(0, n) in [62]) as
used in [12]. The root systems are given in terms of δ1 . . . , δn , (δi, δj) = δij ,
i, j = 1, ..., n. The even and odd roots systems are [62]:

∆0̄ = {±δi ± δj , 1 ≤ i < j ≤ n , ± 2δi , 1 ≤ i ≤ n} , (2)

∆1̄ = {±δi , 1 ≤ i ≤ n}

(we remind that the signs ± are not correlated). We shall use the following
distinguished simple root system [62]:

Π = { δ1 − δ2 , , . . . , δn−1 − δn , δn } , (3)

or introducing standard notation for the simple roots:

Π = {α1 , ..., αn } , (4)

αj = δj − δj+1 , j = 1, ..., n− 1 , αn = δn .

The root αn = δn is odd, the other simple roots are even. The Dynkin
diagram is:

◦
1
−−− · · · −−− ◦

n−1
==⇒ •

n
(5)



Positive Energy Unitary Irreducible Representations 61

The black dot is used to signify that the simple odd root is not nilpo-
tent, otherwise a gray dot would be used [62]. In fact, the superalgebras
B(0, n) = osp(1| 2n) have no nilpotent generators unlike all other types of
basic classical Lie superalgebras [62].

The corresponding to Π positive root system is:

∆+
0̄

= {δi±δj , 1 ≤ i < j ≤ n , 2δi , 1 ≤ i ≤ n} , ∆+
1̄

= {δi , 1 ≤ i ≤ n}
(6)

We record how the elementary functionals are expressed through the simple
roots:

δk = αk + · · ·+ αn . (7)

From the point of view of representation theory more relevant is the
restricted root system, such that:

∆̄+ = ∆̄+
0̄
∪∆+

1̄
, (8)

∆̄+
0̄

≡ {α ∈ ∆+
0̄
| 1
2α /∈ ∆+

1̄
} = {δi ± δj , 1 ≤ i < j ≤ n} (9)

The superalgebra G = osp(1| 2n, IR) is a split real form of osp(1| 2n)
and has the same root system.

The above simple root system is also the simple root system of the
complex simple Lie algebra Bn (dropping the distinction between even
and odd roots) with Dynkin diagram:

◦
1
−−− · · · −−− ◦

n−1
==⇒ ◦

n
(10)

Naturally, for the Bn positive root system we drop the roots 2δi

∆+
Bn

= {δi ± δj , 1 ≤ i < j ≤ n , δi , 1 ≤ i ≤ n} ∼= ∆̄+ (11)

This shall be used essentially below.

2.3. Lowest weight through the signature

Besides (1) we shall use the Dynkin-related labelling:

(Λ, α∨
k ) = − ak , 1 ≤ k ≤ n , (12)

where α∨
k ≡ 2αk/(αk, αk), and the minus signs are related to the fact that

we work with lowest weight Verma modules (instead of the highest weight
modules used in [63]) and to Verma module reducibility w.r.t. the roots
αk (this is explained in detail in [6, 12]).

Obviously, an must be related to the conformal weight d which is a
matter of normalization so as to correspond to some known cases. Thus,
our choice is:

an = − 2d− a1 − · · · − an−1 . (13)
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The actual Dynkin labelling is given by:

mk = (ρ− Λ, α∨
k ) (14)

where ρ ∈ H∗ is given by the difference of the half-sums ρ0̄ , ρ1̄ of the even,
odd, resp., positive roots (cf. (6):

ρ
.
= ρ0̄ − ρ1̄ = (n− 1

2)δ1 + (n− 3
2)δ2 + · · ·+ 3

2δn−1 +
1
2δn , (15)

ρ0̄ = nδ1 + (n− 1)δ2 + · · ·+ 2δn−1 + δn ,

ρ1̄ = 1
2(δ1 + · · ·+ δn) .

Naturally, the value of ρ on the simple roots is 1: (ρ, α∨
i ) = 1, i =

1, ..., n.
Unlike ak ∈ ZZ+ for k < n the value of an is arbitrary. In the cases when

an is also a non-negative integer, and then mk ∈ IN (∀k) the corresponding
irreps are the finite-dimensional irreps of G (and of Bn).

Having in hand the values of Λ on the basis we can recover them for
any element of H∗.

We shall need only (Λ, β∨) for all positive roots β as given in [12]:

(Λ, (δi − δj)
∨) = (Λ, δi − δj) = − ai − · · · − aj−1 (16)

(Λ, (δi + δj)
∨) = (Λ, δi + δj) = 2d + a1 + · · ·+ ai−1 − aj − · · · − an−1

(Λ, δ∨i ) = (Λ, 2δi) = 2d + a1 + · · ·+ ai−1 − ai − · · · − an−1

(Λ, (2δi)
∨) = (Λ, δi) = d + 1

2(a1 + · · ·+ ai−1 − ai − · · · − an−1)

2.4. Verma modules

To introduce Verma modules we use the standard triangular decomposition:

GCI = G+ ⊕H⊕ G− (17)

where G+, G−, resp., are the subalgebras corresponding to the positive,
negative, roots, resp., and H denotes the Cartan subalgebra.

We consider lowest weight Verma modules, so that V Λ ∼= U(G+)⊗ v0 ,
where U(G+) is the universal enveloping algebra of G+, and v0 is a lowest
weight vector v0 such that:

Z v0 = 0 , Z ∈ G−

H v0 = Λ(H) v0 , H ∈ H . (18)

Further, for simplicity we omit the sign ⊗ , i.e., we write p v0 ∈ V Λ with
p ∈ U(G+).

Adapting the criterion of [63] (which generalizes the BGG-criterion [65]
to the super case) to lowest weight modules, one finds that a Verma module
V Λ is reducible w.r.t. the positive root β iff the following holds [12]:

(ρ− Λ, β∨) = mβ , β ∈ ∆+ , mβ ∈ IN . (19)
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If a condition from (19) is fulfilled then V Λ contains a submodule

which is a Verma module V Λ′
with shifted weight given by the pair m,β :

Λ′ = Λ +mβ. The embedding of V Λ′
in V Λ is provided by mapping

the lowest weight vector v′0 of V Λ′
to the singular vector vm,β

s in
V Λ which is completely determined by the conditions:

X vm,β
s = 0 , X ∈ G− ,

H vm,β
s = Λ′(H) v0 , H ∈ H , Λ′ = Λ+mβ . (20)

Explicitly, vm,β
s is given by a polynomial in the positive root generators

[6, 66]:

vm,β
s = Pm,β v0 , Pm,β ∈ U(G+) . (21)

Thus, the submodule Iβ of V Λ which is isomorphic to V Λ′
is given by

U(G+)Pm,β v0 .

Note that the Casimirs of GCI take the same values on V Λ and V Λ′
.

Certainly, (19) may be fulfilled for several positive roots (even for all
of them). Let ∆Λ denote the set of all positive roots for which (19) is

fulfilled, and let us denote: ĨΛ ≡ ∪β∈∆Λ
Iβ . Clearly, ĨΛ is a proper

submodule of V Λ. Let us also denote FΛ ≡ V Λ/ĨΛ.
Further we shall use also the following notion. The singular vector

v1 is called descendant of the singular vector v2 /∈ CIv1 if there exists a
homogeneous polynomial P12 in U(G+) so that v1 = P12 v2 . Clearly,
in this case we have: I1 ⊂ I2 , where Ik is the submodule generated by
vk .

The Verma module V Λ contains a unique proper maximal submodule
IΛ (⊇ ĨΛ) [63, 65]. Among the lowest weight modules with lowest weight
Λ there is a unique irreducible one, denoted by LΛ, i.e., LΛ = V Λ/IΛ.
(If V Λ is irreducible then LΛ = V Λ.)

It may happen that the maximal submodule IΛ coincides with the
submodule ĨΛ generated by all singular vectors. This is, e.g., the case for
all Verma modules if rank G ≤ 2, or when (19) is fulfilled for all simple
roots (and, as a consequence for all positive roots). Here we are interested

in the cases when ĨΛ is a proper submodule of IΛ. We need the following
notion.

Definition: [65, 67, 68] Let V Λ be a reducible Verma module. A

vector vssv ∈ V Λ is called a subsingular vector if vsu /∈ ĨΛ and
the following holds:

X vsu ∈ ĨΛ , ∀X ∈ G− (22)

Going from the above more general definitions to G we recall that
in [12] it was established that from (19) follows that the Verma module
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V Λ(χ) is reducible if one of the following relations holds (following the
order of (16):

IN ∋ m−
ij = j − i+ ai + · · ·+ aj−1 (23a)

IN ∋ m+
ij = 2n− i− j + 1 + aj + · · ·+ an−1 − a1 − · · · − ai−1 − 2d(23b)

IN ∋ mi = 2n− 2i+ 1 + ai + · · ·+ an−1 − a1 + · · · − ai−1 − 2d (23c)

IN ∋ mii = n− i+ 1
2(1 + ai + · · ·+ an−1 − a1 + · · · − ai−1)− d . (23d)

Further we shall use the fact from [12] that we may eliminate the reducibil-
ities and embeddings related to the roots 2δi . Indeed, since mi = 2mii ,
whenever (23d) is fulfilled also (23c) is fulfilled.

For further use we introduce notation for the root vector X+
j ∈ G+,

j = 1, . . . , n, corresponding to the simple root αj . Naturally, X−
j ∈

G− corresponds to −αj .
Further, we notice that all reducibility conditions in (23a) are fulfilled.

In particular, for the simple roots from those condition (23a) is fulfilled with
β → αi = δi − δi+1 , i = 1, ..., n − 1 and m−

i ≡ m−
i,i+1 = 1 + ai . The

corresponding submodules Iαi = U(G+) vis , where Λi = Λ+m−
i αi and

vis = (X+
i )1+ai v0 . These submodules generate an invariant submodule

which we denote by IΛc ⊂ ĨΛ. Since these submodules are nontrivial for all
our signatures in the question of unitarity instead of V Λ we shall consider
also the factor-modules:

FΛ
c = V Λ / IΛc ⊃ FΛ . (24)

We shall denote the lowest weight vector of FΛ
c by |Λc⟩ and the singular

vectors above become null conditions in FΛ
c :

(X+
i )1+ai |Λc⟩ = 0 , i = 1, ..., n− 1. (25)

If the Verma module V Λ is not reducible w.r.t. the other roots, i.e.,
(23b,c,d) are not fulfilled, then FΛ

c = FΛ is irreducible and is isomorphic
to the irrep LΛ with this weight.

In fact, for the factor-modules reducibility is controlled by the value of
d, or in more detail:

The maximal d coming from the different possibilities in (23b) are
obtained for m+

ij = 1 and they are:

dij ≡ n+ 1
2(aj + · · ·+ an−1 − a1 − · · · − ai−1 − i− j) , (26)

the corresponding root being δi + δj .
The maximal d coming from the different possibilities in (23c,d), resp.,

are obtained for mi = 1, mii = 1, resp., and they are:

di ≡ n− i+ 1
2(ai + · · ·+ an−1 − a1 − · · · − ai−1) , (27)

dii = di − 1
2 ,
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the corresponding roots being δi , 2δj , resp.
There are some orderings between these maximal reduction points [12]:

d1 > d2 > · · · > dn , (28)

di,i+1 > di,i+2 > · · · > din ,

d1,j > d2,j > · · · > dj−1,j ,

di > djk > dℓ , i ≤ j < k ≤ ℓ .

Obviously the first reduction point is:

d1 = n− 1 + 1
2(a1 + · · ·+ an−1) . (29)

3. Unitarity

The first results on the unitarity were given in [12]. These were not complete
so the statement below should be called Dobrev-Zhang-Salom Theorem.
Theorem: All positive energy unitary irreducible representations of the
superalgebras osp(1| 2n, IR) characterized by the signature χ in (1) are
obtained for real d and are given as follows:

d ≥ n− 1 + 1
2(a1 + · · ·+ an−1) = d1 , a1 ̸= 0 , (30)

d ≥ n− 3
2 + 1

2(a2 + · · ·+ an−1) = d12 , a1 = 0, a2 ̸= 0 ,

d = n− 2 + 1
2(a2 + · · ·+ an−1) = d2 > d13 , a1 = 0, a2 ̸= 0 , (31)

d ≥ n− 2 + 1
2(a3 + · · ·+ an−1) = d2 = d13 , a1 = a2 = 0, a3 ̸= 0 ,

d = n− 5
2 + 1

2(a3 + · · ·+ an−1) = d23 > d14 , a1 = a2 = 0, a3 ̸= 0 ,

d = n− 3 + 1
2(a3 + · · ·+ an−1) = d3 = d24 > d15 , a1 = a2 = 0, a3 ̸= 0 ,

...

...

d ≥ n− 1− κ+ 1
2(a2κ+1 + · · ·+ an−1) , a1 = ... = a2κ = 0, a2κ+1 ̸= 0 ,

κ = 1
2 , 1, ...,

1
2(n− 1) ,

d = n− 3
2 − κ+ 1

2(a2κ+1 + · · ·+ an−1) , a1 = ... = a2κ = 0, a2κ+1 ̸= 0 ,

...

d = n− 1− 2κ+ 1
2(a2κ+1 + · · ·+ an−1) , a1 = ... = a2κ = 0, a2κ+1 ̸= 0 ,

...

...

d ≥ 1
2(n− 1) , a1 = ... = an−1 = 0

d = 1
2(n− 2) , a1 = ... = an−1 = 0

...

d = 1
2 , a1 = ... = an−1 = 0

d = 0 , a1 = ... = an−1 = 0
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Proof: The statement of the Theorem for d > d1 is clear in [12]
from the general considerations since this is the First reduction point. For
d = d1 (also following [12]) we have the first zero norm state which is
naturally given by the corresponding singular vector v1δ1 = P1,δ1 v0 . In

fact, all states of the embedded submodule V Λ+δ1 built on v1δ1 have zero
norms. Due to the above singular vector we have the following additional
null condition in FΛ

c :

P1,δ1 |̃Λ⟩ = 0 . (32)

The above condition factorizes the submodule built on v1δ1 . There are
no other vectors with zero norm at d = d1 since by a general result [63],
the elementary embeddings between Verma modules are one-dimensional.
Thus, FΛ is the UIR LΛ = FΛ.
Below d < d1 there is no unitarity for a1 ̸= 0. On the other hand
(as shown in [12]) for a1 = 0 the singular vector v1δ1 is descendant of the

compact root singular vector X+
1 v0 which is already factored out for

a1 = 0. Thus, below we set a1 = 0.
The next reducibility point is d = d12 = n− 3

2 +
1
2(a2+ · · ·+an−1). The

corresponding root is δ1 + δ2 = α1 +2α2 + · · ·+2αn . The corresponding
singular vector is v1δ1+δ2

= P1,δ1+δ2 v0 . All states of the embedded

submodule V Λ+δ1+δ2 built on v1δ1+δ2
have zero norms for d = d12 . Due

to the above singular vector we have the following additional null condition
in FΛ

c :

P1,δ1+δ2 |̃Λ⟩ = 0 , d = d12 . (33)

The above conditions factorizes the submodule built on v1δ1+δ2
. Thus,

FΛ
c is the UIR LΛ = FΛ

c .
Below d < d12 there is no unitarity for a2 ̸= 0, except at the isolated

point: d2 = n−2+ 1
2(a2+· · ·+an−1). At the latter point there is a singular

vector v1δ2 which must be factored for unitarity. In addition, the previous

singular vector is descendant of v1δ2 and the compact root singular vector

X+
1 v0.

Further, for for a2 = 0 the singular vectors v1δ1+δ2
and v1δ2 are descen-

dants of the compact root singular vectors X+
1 v0 and X+

2 v0 which are
factored out for a1 = a2 = 0. Thus, below we set also a2 = 0 and there
would be no obstacles for unitarity until the next reducibility points (coin-
ciding due a2 = 0): d2 = d13 = n−2+ 1

2(a3+· · ·+an−1). The singular vector
for d = d13 and m = 1 has weight δ1+δ3 = α1+α2+2α3+· · · 2αn and for
a1 = 0 it is a descendant of the compact root singular vector X1 v0 [70].
However, at d2 = d13 there is a subsingular vector which must be factored
for unitarity. For d < d2 = d13 and a3 ̸= 0 the norm of that subsingu-
lar vector is negative, and there will be no unitarity except at some lower
reducibility points.
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For d23 = n− 5
2 +

1
2(a3+ · · ·+an−1) there is singular vector v1δ2+δ3

of
weight δ2 + δ3 = α2 + 2α3 + · · · 2αn [70] which must be factored for
unitarity. The previous subsingular vector is also factored out since it is
descendant of v1δ2+δ3

and compact root singular vectors.
Further on, the Proof goes on similar lines. We list the points at which

there are subsingular vectors - these happen when reducibility points coin-
cide due the zero values of some ai :

d2 = d13 = n− 2 + 1
2(a3 + · · ·+ an−1) , a1 = a2 = 0 , (34)

d23 = d14 = n− 5/2 + 1
2(a4 + · · ·+ an−1) , a1 = a2 = a3 = 0, n > 3,

d3 = d24 = d15 = n− 3 + 1
2(a5 + · · ·+ an−1) , a1 = a2 = a3 = a4 = 0,

n > 3,

...

dj = d1,2j−1 = d2,2j−2 = · · · = dj−1,j+1 = n− j + 1
2(a2j−1 + · · ·+ an−1) ,

a1 = · · · = a2j−2 = 0, j < n,

dj,j+1 = d1,2j = d2,2j−1 = · · · = dj−1,j+2 = n− j − 1
2 + 1

2(a2j + · · ·+ an−1) ,

a1 = · · · = a2j−1 = 0, j < n− 1.

Above it is understood that aj ≡ 0 for j ≥ n.
At the points of the subsingular vectors the associated singular vectors are
factored out automatically. This happens also when the subsingular vectors
are inside a continuous part of the unitarity spectrum. �

The Proof above is not as explicit as we would like it to be, but due
to the lack of space we postpone it to [74]. Below we give separately and
explicitly the case n = 3.

Example: n=3. For n = 3 f-la (28) simplifies to:

d1 1 d12 1 d2 1 d23 1 d3

¿ ¼

1 d13 1

The Theorem now reads:

d ≥ 2 + 1
2(a1 + a2) = d1 , a1 ̸= 0 , (35)

d ≥ 3
2 + 1

2a2 = d12 , a1 = 0, a2 ̸= 0 ,

d = 1 + 1
2a2 = d2 > d13 , a1 = 0, a2 ̸= 0 ,

d ≥ 1 = d2 = d13 , a1 = a2 = 0 ,

d = 1
2 = d23 , a1 = a2 = 0 ,

d = 0 = d3 , a1 = a2 = 0 .
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For d > d1 there are no singular vectors and we have unitarity. At
d = d1 there is a singular vector:

v1δ1 =
(
a1(a1 + a2 + 1)Xδ1 − a1Xδ3 X13 − (a1 + a2 + 1)Xδ2 X+

1 +

+ Xδ3 X+
2 X+

1

)
v0 (36)

which is given in PBW basis, where Xδj ∈ G+ are the vectors corre-
sponding to the weight vectors δj , X13 is the compact root vector for
α13 = α1+α2 = δ1−δ3 . This singular vector is non-trivial for a1 ̸= 0 and
must be eliminated to obtain an UIR. Below d < d1 there is no unitarity
for a1 ̸= 0. On the other hand for a1 = 0 the singular vector v1δ1 is descen-

dant of the compact root singular vector X+
1 v0 which is already factored

out for a1 = 0. Thus, below we discuss only the cases with a1 = 0.
The singular vector at d = d12 corresponding to the root δ1 + δ2 =
α1 + 2α2 + 2α3 is:

v1δ1+δ2 =

(
Xδ3Xδ2X

+
2 X+

1 +
1

2
(Xδ3)

2(X+
2 )2X+

1 − a1 (Xδ3)
2X+

2 X13

+ 2 (a2 + 1) Xδ3Xδ2X13 − 2 (a1 + a2 + 1) Xδ3Xδ1X
+
2

+ (a1 + 1) (a1 + a2 + 1) Xδ1+δ3X
+
2 + 4a2 (a1 + a2 + 1) Xδ2Xδ1

+ 2a2 (a1 + a2 + 1) (Xδ2)
2X+

1 − 1

2
(a1 + 2a2 + 1) Xδ2+δ3X

+
2 X+

1

− (−a2a1 + a1 + a2 + 1) Xδ2+δ3X13

− 2 (a1 + 1) a2 (a1 + a2 + 1)Xδ1+δ2

)
v0

(37)

with norm:

16 (2d− a2 − 3)
(
a21 + 2a1 + 2d− a2 − 2

)
a2 (a2 + 1) (a1 + a2 + 1) (a1 + a2 + 2) .

For a1 = 0, a2 ̸= 0 it is non-trivial and gives rise to a invariant subspace
which must be factored out for unitarity. For d < d12 the vector (37) has
negative norm and there is no unitarity for a2 ̸= 0, except at the isolated
unitary point d = 1 + 1

2a2 = d2 > d13. At this point there is a singular
vector vs2, while the vector (37) is descendant of compact root singular
vector X1 v0 and vs2 .
Further, we consider a1 = a2 = 0. Then the vector v1δ1+δ2

is descendant of

compact root singular vectors X+
1 v0 and X+

2 v0 , thus, there is no obstacle
for unitarity for 1 < d. The next reducibility points (coinciding here) are
d = d13 = d2 = 1. The singular vector for d = d2 and m = 1 has weight
δ2 = α2 + α3 and is given by:

v1δ2 =
(
a2X

+
2 X+

3 − (a2 + 1)X+
3 X+

2

)
v0 (38)
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For a2 = 0 it is a descendant of the compact root singular vector X+
2 v0 .

The singular vector for d = d13 = 1 and m = 1 has weight δ1 + δ3 =
α1 + α2 + 2α3 [70] :

v1δ1+δ3 =
(
ha1X

+
1 (X+

3 )2X+
2 + a1X

+
1 X+

3 X+
2 X+

3 −

− h(a1 + 1)(X+
3 )2X+

2 X+
1 −

− ha1X
+
1 X+

2 (X+
3 )2 − (a1 + 1)X+

3 X+
2 X+

3 X+
1 +

+ h(a1 + 1)X+
2 (X+

3 )2X+
1

)
, (39)

h = 1 + 1
2(a1 + a2)

The above vector is given in the simple root basis most appropriate for the
case. For a1 = 0 it is a descendant of the compact root singular vector
X+

1 v0 . However, there is a subsingular vector:

vss = (Xδ1Xδ2Xδ3 −Xδ3Xδ2Xδ1)v0 (40)

with norm: 16d(d− 1)(2d− 1). This must be factorized in order to obtain
UR. Then for 1

2 < d < 1 there will be no unitarity due to the last norm.

Finally, at the next reducibility point: d = d23 =
1
2 there is a singular

vector of weight δ2 + δ3 = α2 + 2α3 :

v1δ2+δ3 = (2Xδ2+δ3 − 4Xδ2Xδ3 +X2δ3X
+
2 )v0 (41)

It should be factored out to get unitarity. The subsingular vector (40) has
zero norm for d = 1

2 and furthermore it is descendant of v1δ2+δ3
and

the compact root singular vector X+
2 v0 . Finally, for d < 1

2 there is
no unitarity since then the norm of (41) is negative, except at the trivial
isolated unitary point d = 0 = a1 = a2 of one-dimensional irrep. �

4. Character formulae

4.1. Character formulae: generalities

In the beginning of this subsection we follow [73]. Let Ĝ be a simple Lie

algebra of rank ℓ with Cartan subalgebra Ĥ, root system ∆̂, simple root
system π̂. Let Γ, (resp. Γ+), be the set of all integral, (resp. integral

dominant), elements of Ĥ∗, i.e., λ ∈ Ĥ∗ such that (λ, α∨
i ) ∈ ZZ, (resp.

ZZ+), for all simple roots αi , (α∨
i ≡ 2αi/(αi, αi)). Let V be a lowest

weight module with lowest weight Λ and lowest weight vector v0 . It has
the following decomposition:

V = ⊕
µ∈Γ+

Vµ , Vµ = {u ∈ V | Hu = (λ+ µ)(H)u, ∀ H ∈ H} (42)
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(Note that V0 = CIv0 .) Let E(H∗) be the associative abelian algebra con-
sisting of the series

∑
µ∈H∗ cµe(µ) , where cµ ∈ CI, cµ = 0 for µ outside the

union of a finite number of sets of the form D(λ) = {µ ∈ H∗|µ ≥ λ} , using
some ordering of H∗, e.g., the lexicographic one; the formal exponents e(µ)
have the properties: e(0) = 1, e(µ)e(ν) = e(µ+ ν).

Then the (formal) character of V is defined by:

ch0 V =
∑
µ∈Γ+

(dim Vµ) e(Λ + µ) = e(Λ)
∑
µ∈Γ+

(dim Vµ) e(µ) (43)

(We shall use subscript ’0’ for the even case.)
For a Verma module, i.e., V = V Λ one has dim Vµ = P (µ), where P (µ)

is a generalized partition function, P (µ) = # of ways µ can be presented
as a sum of positive roots β, each root taken with its multiplicity dimGβ

(= 1 here), P (0) ≡ 1. Thus, the character formula for Verma modules is:

ch0 V Λ = e(Λ)
∑
µ∈Γ+

P (µ)e(µ) = e(Λ)
∏

α∈∆+

(1− e(α))−1. (44)

Further we recall the standard reflections in Ĥ∗ :

sα(λ) = λ− (λ, α∨)α , λ ∈ Ĥ∗ , α ∈ ∆̂. (45)

The Weyl group W is generated by the simple reflections si ≡ sαi , αi ∈
π̂ . Thus every element w ∈ W can be written as the product of simple
reflections. It is said that w is written in a reduced form if it is written with
the minimal possible number of simple reflections; the number of reflections
of a reduced form of w is called the length of w, denoted by ℓ(w).

The Weyl character formula for the finite-dimensional irreducible LWM
LΛ over Ĝ, i.e., when Λ ∈ −Γ+ , has the form:

ch0 LΛ =
∑
w∈W

(−1)ℓ(w) ch0 V w·Λ , Λ ∈ −Γ+ (46)

where the dot · action is defined by w · λ = w(λ − ρ) + ρ. For future
reference we note:

sα · Λ = Λ + nαα (47)

where

nα = nα(Λ)
.
= (ρ− Λ, α∨) = (ρ− Λ)(Hα) , α ∈ ∆+. (48)

In the case of basic classical Lie superalgebras the first character for-
mulae were given by Kac [63, 71].1 For all such superalgebras – except

1Kac considers highest weight modules but his results are immediately transferable
to lowest weight modules.
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osp(1/2n) – the character formula for Verma modules is [63,71]:

ch V Λ = e(Λ)

 ∏
α∈∆+

0̄

(1− e(α))−1


 ∏

α∈∆+
1̄

(1 + e(α))

 . (49)

We are however interested exactly in the osp(1/2n) when the Verma
module character formula is:

ch V Λ = e(Λ)

 ∏
α∈∆̄+

(1− e(α))−1

 (50)

Naturally, the character formula for the finite-dimensional irreducible LWM
LΛ is again (46) using the Weyl group Wn of Bn .

4.2. Multiplets

A Verma module V Λ may be reducible w.r.t. to many positive roots, and
thus there maybe many Verma modules isomorphic to its submodules. They
themselves may be reducible, and so on.

One main ingredient of the approach of [66] is as follows. We group the
(reducible) Verma modules with the same Casimirs in sets called multiplets
[69]. The multiplet corresponding to fixed values of the Casimirs may be
depicted as a connected graph, the vertices of which correspond to the
reducible Verma modules and the lines between the vertices correspond to
embeddings between them. The explicit parametrization of the multiplets
and of their Verma modules is important for understanding of the situation.

If a Verma module V Λ is reducible w.r.t. to all simple roots (and thus
w.r.t. all positive roots), i.e., mk ∈ IN for all k, then the irreducible
submodules are isomorphic to the finite-dimensional irreps of GCI [66]. (Ac-
tually, this is a condition only for mn since mk ∈ IN for k = 1, . . . , n− 1.)
In these cases we have the main multiplets which are isomorphic to the
Weyl group of GCI [66].

In the cases of non-dominant weight Λ the character formula for the
irreducible LWM is [72] :

ch LΛ =
∑
w∈W
w≤wΛ

(−1)ℓ(wΛw) Pw,wΛ(1) ch V w·(w−1
Λ ·Λ) , Λ ∈ Γ (51)

where Py,w(u) are the Kazhdan–Lusztig polynomials y, w ∈ W [72] (for
an easier exposition see [68]), wΛ is a unique element of W with minimal
length such that the signature of Λ0 = w−1

Λ · Λ is anti-dominant or
semi-anti-dominant:

χ0 = (m′
1, . . . ,m

′
n), m′

k = 1− Λ0(Hk) ∈ ZZ− . (52)
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Note that Py,w(1) ∈ IN for y ≤ w.

When Λ0 is semi-anti-dominant, i.e., at least one m′
k = 0, then in fact

W is replaced by a reduced Weyl group WR .

Most often the value of Py,w(1) is equal to 1 (as in the character
formula for the finite-dimensional irreps), while the cases Py,w(1) > 1 are
related to the appearance of subsingular vectors, though the situation is
more subtle, see [68].

It is interesting to see how the reducible points relevant for unitarity fit
in the multiplets. In the case of dij (26) and using (13) we have:

mn(dij) = 1− 2mj − · · · − 2mn−1 −mi − · · · −mj−1 . (53)

In the case of di (27) we have:

mn(di) = 1− 2mi − · · · − 2mn−1 . (54)

As expected the weights related to positive energy d are not dominant
(mn(dij) ∈ ZZ−, mn(di) ∈ −IN , (i < n)), since the positive energy UIRs
are infinite-dimensional. (Naturally, mn(dn) = 1 falls out of the picture
since dn < 0.)

Thus, the Verma modules with weights related to positive energy would
be somewhere in the main multiplet (or in a reduction of the main multi-
plet), and the first task for calculating the character is to find the wΛ in
the character formula (51). This we do in the next subsection in the case
n = 3.

4.3. The case n=3

In order to illustrate what the main ideas we consider the first non-trivial
example n = 3, i.e., osp(1/6) actually using B3. The Weyl group Wn of
Bn has 2nn! elements, i.e., 48 for B3. Let S = (s1, s2, s3), si ≡ sαi , be
the simple reflections. They fulfill the following relations:

s21 = s22 = s23 = e, (s1s2)
3 = e, (s2s3)

4 = e, s1s3 = s3s1 , (55)
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e being the identity of W3 . The 48 elements may be listed as:

e , s1 , s2 , s3 (56)

s1s2 , s1s3 , s2s1 , s2s3 , s3s2 ,

s1s2s1 , s1s2s3 , s1s3s2 , s2s1s3 , s2s3s2 , s3s2s1 , s3s2s3 ,

s1s2s1s3 , s1s2s3s2 , s1s3s2s1 , s1s3s2s3 ,

s2s3s2s1 , s2s1s3s2 , s3s2s3s1 , s3s2s3s2 ,

s1s2s3s2s1 , s1s3s2s1s3 , s1s2s1s3s2 , s1s3s2s3s2 ,

s2s1s3s2s1 , s2s1s3s2s3 , s3s2s3s1s2 , s3s2s3s2s1 ,

s1s3s2s3s2s1 , s1s3s2s1s3s2 , s1s2s1s3s2s1 , s2s1s3s2s1s3 ,

s2s1s3s2s3s2 , s3s2s3s1s2s1 , s3s2s3s1s2s3 ,

s2s1s3s2s3s2s1 , s2s1s3s2s3s1s2 , s3s2s1s2s3s2s1 ,

s3s2s3s1s2s1s3 , s3s2s3s1s2s3s2 ,

s2s3s2s1s2s3s2s1 , s3s2s1s3s2s3s2s1 , s3s2s1s3s2s3s1s2 ,

s2s3s2s1s3s2s3s2s1 .

This Weyl group may be pictorially represented on a cube as in the
figure, where we have given only the simple root reflections, namely, con-
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tinuous (red) arrows represent action of reflection s1, dashed (blue) arrows
represent action of reflection s2, dotted (green) arrows represent action of
reflection s3. Each face of the cube contains eight elements related by blue
and green arrows representing the Weyl group of B2 generated by s2 and
s3 . The figure contains also eight sextets (around the eight corners of the
cube). Each sextet is related by red and green arrows representing the
Weyl group of A2 generated by s1 and s2 . Finally there are 12 quar-
tets (straddling the edges of the cube). Each quartet is formed by red and
blue arrows representing the Weyl group of A1 × A1 generated by the
commuting reflections s1 and s3 .

We use the same diagram to depict the main multiplets containing the
Verma modules V Λ0 which contain (as factor module) the finite-dimensional
irreps of B3, i.e., with dominant weights Λ0, i.e., with Dynkin labels
(m1,m2,m3), mk ∈ IN . We may do this since these multiplets are isomor-
phic to the Weyl group, W3 in our case. On the picture we have indicated
the modules, Λ0 and Λk = sk · Λ0 , k = 1, 2, 3. The mentioned isomor-
phism is fixed by assigning to Λ0 the identity element e of W3, and to
Λk the reflections sk .

The character formula for the Verma modules in our case is given ex-
plicitly by:

ch V Λ =
e(Λ)

(1− t1)(1− t2)(1− t1t2)
× (57)

× 1

(1− t3)(1− t2t3)(1− t1t2t3)(1− t2t23)(1− t1t2t23)(1− t1t22t
2
3)

where tj ≡ e(αj).
Now we give the character formulae of the five boundary or isolated

unitarity cases. Below we shall denote the signature of the dominant weight
Λ0 which determines the main multiplet by (m′

1,m
′
2,m

′
3), m′

k ∈ IN , using
primes to distinguish from the signatures of the weights we are interested.
We shall use also reductions of the main multiplet when the weights are
semi-dominant, i.e., when some m′

k = 0.

• In the case of d = d1 = 2 + 1
2(a1 + a2) there are twelve members

of the multiplet which is a submultiplet of a main multiplet. (Remember
that that m1 > 1 since a1 ̸= 0.) They are grouped into two standard
sl(3) submultiplets of six members. The first submultiplet starts from

V Λ
d1
0 , where Λd1

0 = w · Λ0, w = w
Λ
d1
0

= s2s1s3s2s3 , with signature:

Λd1
0 : (m1,m2,m

′
3 = 1−2m12) , m1,m2 ∈ IN , m12 ≡ m1+m2 . (58)

The other submultiplet starts from V Λ′
0 with Λ′

0 = Λd1
0 + δ1 = Λd1

0 +
α1 +α2 +α3, with signature: Λ′

0 : (m1 − 1,m2,m
′
3 = 1− 2m12), m1 > 1.
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The character formula is (51) with wΛ = w
Λ
d1
0

:

chΛd1
0 =

e(Λd1
0 )

(1− t3)(1− t2t3)(1− t1t2t3)(1− t2t23)(1− t1t2t23)(1− t1t22t
2
3)

× { chΛm1,m2(t1, t2) − t1t2t3 chΛm1−1,m2(t1, t2) } , m1 > 1 (59)

where chΛm1,m2(t1, t2) is the normalized character of the finite-dimensional
sl(3) irrep with Dynkin labels (m1,m2) (and dimension m1m2(m1 +
m2)/2):

ch Λm1,m2(t1, t2) =
1− tm1

1 − tm2
2 + tm1

1 tm12
2 + tm12

1 tm2
2 − tm12

1 tm12
2

(1− t1)(1− t2)(1− t1t2)
(60)

Naturally, the latter formula is a polynomial in t1, t2 , e.g., ch Λ1,1(t1, t2) = 1.
Note that (59) trivializes for m1 = 1 since the second term disappears by
the formal substitution: ch Λ0,m2(t1, t2) = 0.

• In the case of d = d12 = 1
2(3 + a2) which is relevant for unitarity, i.e.,

m1 = 1, there are again twelve members of the multiplet. The correspond-
ing signature is:

Λd12
0 : (1,m2,m

′
3 = −2m2) , m2 ∈ IN . (61)

The multiplet is submultiplet of a reduced multiplet with 24 members ob-
tained from a main multiplet for m′

3 = 0. As above our multiplet consists
of two standard sl(3) submultiplets of six members. The first submultiplet

starts from V Λ
d12
0 , where Λd12

0 = w · Λ0, w = w
Λ
d12
0

= s3s2s1 . The

other submultiplet starts from V Λ′
0 with Λ′

0 = Λd12
0 +m2(α1 + 2α2 +

2α3) = Λd12
0 + m2(δ1 + δ2) with signature: Λ′

0 : (1,m2 − 1,−2m2).
The character formula is (51), with W 7→ WR , (where WR is a reduced
24-member Weyl group) and with wΛ = w

Λ
d12
0

:

chΛd12
0 =

e(Λd12
0 )

(1− t3)(1− t2t3)(1− t1t2t3)(1− t2t23)(1− t1t2t23)(1− t1t22t
2
3)

×{ chΛ1,m2(t1, t2) − (t1t
2
2t

2
3)

m2 chΛ1,m2−1(t1, t2) } , m2 > 1 (62)

where chΛm1,m2 are the sl(3) characters defined in (60).

• In the case of d = d2 = 1 + 1
2a2 ≥ d13 , i.e., m′

3 = 1 − 2m2, the
corresponding signature is:

Λd2
0 : (m1,m2,m

′
3 = 1− 2m2) . (63)
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We should consider two subcases

1 +m1 −m2 > 0 or 1 +m1 −m2 ≤ 0

We start with the first subcase which is relevant when d = d2 = d13 =
1 and a1 = a2 = 0, then m1 = m2 = 1, and the signature is:

Λd2=d13
0 : (1, 1,−1) . (64)

Our multiplet is a submultiplet of a 12-member reduced multiplet ob-
tained when the signature of Λ0 is (m′

1,m
′
2,m

′
3) = (1, 0, 1), and then

Λd2=d13
0 is a submodule with signature (64). Thus, we have Λd2=d13

0 = s3 ·
Λ0 , i.e., w

Λ
d2=d13
0

= s3 .

Explicitly, our 12-member multiplet has two sl(3) submultiplets. First

we take into account a sl(3) sextet starting from Λd2=d13
0 with parameters

(1, 1). Then there is a sl(3) sextet starting from Λd2=d13
0 + α1 + 2α2 +

3α3 with parameters (1, 1). Note that that α1+2α2+3α3 = δ1+δ2+δ3 is
the weight of the subsingular vector (40).

The character formula is (51), with W 7→ WR , (where WR is a
reduced 12-member Weyl group) and wΛ = s3 :

chΛd2=d13
0 =

=
e(Λd2=d13

0 )

(1− t3)(1− t2t3)(1− t1t2t3)(1− t2t23)(1− t1t2t23)(1− t1t22t
2
3)

×

× { 1 − t1t
2
2t

3
3 } (65)

• In the case of d = d2 = 1+ 1
2a2 > d13 = 1, i.e., m1 = 1, m2 = 1+a2 > 1,

thus, this is the subcase 1 + m1 − m2 = m13 ≤ 0. The multiplet has 24

members for m2 > 2 (m13 < 0) and starts with Λ
′d2
0 = = s3 s2 s1 ·Λ0 ,

with signatures:

Λ0 : (m2 − 2, 1, 1) ,

Λ
′d2
0 : (1,m2,m

′
3 = 1− 2m2) , m2 ∈ 1 + IN . (66)

It has four sl(3) submultiplets. First we take into account a sl(3) sextet

starting from Λ
′d2
0 with parameters (1,m2). Then there is a sl(3) sextet

starting from Λ
′d2
0 + α23 with parameters (2,m2 − 1). Then there is a

sl(3) sextet with parameters (2,m2 − 2) starting from a Verma module

V Λ′′
, Λ′′ = Λ

′d2
0 +α1+3α23. Finally, there is a sl(3) sextet with parameters

(1,m2−2), starting from a Verma module V Λ′′′
, Λ′′′ = Λ

′d2
0 +2(α1+2α2+
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2α3).
We have the Conjecture that the character formula is (51) and wΛ =
s3 s2 s1 :

chΛ
′d2
0 =

e(Λ
′d2
0 )

(1− t3)(1− t2t3)(1− t1t2t3)(1− t2t23)(1− t1t2t23)(1− t1t22t
2
3)

× { chΛ1,m2(t1, t2) − t2t3 chΛ2,m2−1(t1, t2) +

+ t1t
3
2t

3
3 chΛ2,m2−2(t1, t2) − t21t

4
2t

4
3 chΛ1,m2−2(t1, t2) } (67)

When m2 = 2 (a2 = 1, m13 = 0) the weight Λ0 is semi dominant, the
main multiplet reduces to 24 members, our multiplet reduces to only 12
members, consisting of the first two sl(3) submultiplets mentioned above.
The character formula takes this into account by construction since for
m2 = 2 the terms in the 2nd row are automatically zero (due to the fact
that the sl(3) character formula gives zero: chΛ1,0(t1, t2) = 0).

• In the case of d = d23 = 1
2 , a1 = a2 = 0, i.e., m1 = m2 = 1, and the

signature is:

Λd23
0 : (1, 1, 0) . (68)

This is in fact a multiplet with 24 members which is reduction of the main
multiplet starting with the semi dominant weight (68).

The multiplet consists of four sl(3) submultiplets. First there is a sl(3)

sextet starting from Λd23
0 with parameters (1, 1). Then a sl(3) sextet

starting from Λd23
0 + α2 + 2α3 with parameters (2, 1). Then a sl(3)

sextet starting from Λd23
0 + α1+2α2+4α3 with parameters (1, 2). Then

a sl(3) sextet starting from Λd23
0 + 2α1 + 4α2 + 6α3 with parameters

(1, 1).

The character formula is (51), however, with W 7→ WR , where
WR is the reduced 24-member Weyl group, (generated by s1, s2, s3s2s3 )
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and wΛ = 1 :

chΛd23
0 =

e(Λd23
0 )

(1− t3)(1− t2t3)(1− t1t2t3)(1− t2t23)(1− t1t2t23)(1− t1t22t
2
3)

× { 1 − t1t
2
2t

4
3 chΛ1,2(t1, t2) +

+ t2t
2
3 chΛ2,1(t1, t2) − t21t

4
2t

6
3 } =

=
e(Λd23

0 )

(1− t3)(1− t2t3)(1− t1t2t3)(1− t2t23)(1− t1t2t23)(1− t1t22t
2
3)

× { 1 − t1t
2
2t

4
3 (1 + t2 + t1t2) +

+ t2t
2
3 (1 + t1 + t1t2) − t21t

4
2t

6
3 } (69)
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Abstract

Following Sklyanin’s proposal in the rational case, we derive the
generating function of the Gaudin Hamiltonians in the trigonometric
case. Our derivation is based on the quasi-classical expansion of the
linear combination of the transfer matrix of the inhomogeneous XXZ
Heisenberg spin chain and the central element, the so-called Sklyanin
determinant. The corresponding Gaudin Hamiltonians are obtained
as the residues of the generating function.
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1. Introduction

Gaudin models were introduced as interacting spins in a chain [1, 2, 3, 4]. In
this approach, these models were obtained as a quasi-classical limit of the
integrable quantum chains. Moreover, the Gaudin models were extended
to any simple Lie algebra, with arbitrary irreducible representation at each
site of the chain [4].

The rational sℓ(2) invariant model was studied in the framework of the
quantum inverse scattering method [5]. In his studies, Sklyanin used the
sℓ(2) invariant classical r-matrix [5]. A generalization of these results to
all cases when skew-symmetric r-matrix satisfies the classical Yang-Baxter
equation [6] was relatively straightforward [7, 8]. Therefore, considerable
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attention has been devoted to Gaudin models corresponding to the the
classical r-matrices of simple Lie algebras [9, 10] and Lie superalgebras[11,
12]. In the case of the sℓ(2) Gaudin system, its relation to Knizhnik-
Zamolodchikov equation of conformal field theory [13, 14, 15] or the method
of Gauss factorization [16], provided alternative approaches to computation
of correlation functions. The non-unitary r-matrices and the corresponding
Gaudin models have been studied recently, see [17, 18] and the references
therein. In [19] we have derived the generating function of the sℓ(2) Gaudin
Hamiltonians with boundary terms. Moreover, we have implemented the
algebraic Bethe ansatz, based on the appropriate non-unitary r-matrices
and the corresponding linear bracket, obtaining the spectrum of the gener-
ating function and the corresponding Bethe equations [19].

Here, following Sklyanin’s proposal in the rational case [5, 19], we derive
the generating function of the Gaudin Hamiltonians in the trigonometric
case. Our derivation is based on the quasi-classical expansion of the linear
combination of the transfer matrix of the inhomogeneous XXZ Heisenberg
spin chain and the central element, the so-called quantum determinant.

2. Inhomogeneous XXZ Heisenberg spin chain

With the aim deriving the Gaudin Hamiltonians in the trigonometric case,
we consider the R-matrix of the XXZ Heisenberg spin chain [20, 21, 22]

R(λ, η) =


sinh(λ+ η) 0 0 0

0 sinh(λ) sinh(η) 0

0 sinh(η) sinh(λ) 0

0 0 0 sinh(λ+ η)

 . (1)

This R-matrix satisfies the Yang-Baxter equation in the space C2⊗C2⊗C2

[24, 23]

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ). (2)

Here we study the inhomogeneous XXZ spin chain with N sites, char-
acterised by the local space Vm = C2s+1 and an inhomogeneous parameter
αm. The Hilbert space of the system is

H =
N
⊗

m=1
Vm = (C2s+1)⊗N . (3)

We introduce the Lax operator as the following two-by-two matrix in the
auxiliary space
V0 = C2,

L0m(λ) =
1

sinh(λ)

(
sinh

(
λ1m + ηS3

m

)
sinh(η)S−

m

sinh(η)S+
m sinh

(
λ1m − ηS3

m

) ) . (4)
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When the quantum space is also a spin 1
2 representation, the Lax oper-

ator becomes the R-matrix,

L0m(λ) =
1

sinh(λ)
R0m (λ− η/2) .

Due to the commutation relations (34), it is straightforward to check that
the Lax operator satisfies the RLL-relations

R00′(λ−µ)L0m(λ−αm)L0′m(µ−αm) = L0′m(µ−αm)L0m(λ−αm)R00′(λ−µ).
(5)

The so-called monodromy matrix

T (λ) = L0N (λ− αN ) · · ·L01(λ− α1) (6)

is used to describe the system. For simplicity we have omitted the depen-
dence on the quasi-classical parameter η and the inhomogeneous parameters
{αj , j = 1, . . . , N}. Notice that T (λ) is a two-by-two matrix acting in the
auxiliary space V0 = C2, whose entries are operators acting in H

T (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
. (7)

From RLL-relations (5) it follows that the monodromy matrix satisfies the
RTT-relations

R00′(λ− µ)T0(λ)T0′(µ) = T0′(µ)T0(λ)R00′(λ− µ). (8)

The periodic boundary conditions and the RTT-relations (8) imply that
the transfer matrix

t(λ) = tr0T (λ), (9)

commute at different values of the spectral parameter,

[t(µ), t(ν)] = 0. (10)

The RTT-relations (8) admit a central element [5]

∆ [T (λ)] = tr00′P
−
00′T0 (λ− η/2)T0′ (λ+ η/2) , (11)

where

P−
00′ =

−1

2 sinh(η)
R00′(−η) =

1− P00′

2
, (12)

where 1 is the identity and P is the permutation in C2 ⊗ C2. A straight-
forward calculation shows that ∆ [T (λ)] is a scalar operator

∆ [T (λ)] =

N∏
m=1

sinh
(
λ− αm + (2sm+1)η

2

)
sinh

(
λ− αm − (2sm+1)η

2

)
sinh

(
λ− αm + η

2

)
sinh

(
λ− αm − η

2

) ,

(13)
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and therefore, it is evidently central,[
∆[T (λ)] , T (ν)

]
= 0. (14)

In the next section we will seek a linear combination of the transfer
matrix (9) and the central element (11) whose quasi-classical expansion
yields the generating function of the trigonometric Gaudin Hamiltonians in
the case when the periodic boundary conditions are imposed.

3. Trigonometric Gaudin model

The Gaudin models were introduce as a quasi-classical limit of the in-
tegrable quantum chains [3, 4]. Therefore it is to be expected that the
generating function of the trigonometric Gaudin Hamiltonians could be
obtained from the quasi-classical expansion of the transfer matrix of the
periodic XXZ Heisenberg spin chain. Thus, our first step is to consider the
expansion of the monodromy matrix (6) with respect to the quasi-classical
parameter η

T (λ) = 1+ η
∑N

m=1

σ3
0⊗cosh(λ−αm)S3

m+ 1
2(σ

+
0 ⊗S−

m+σ−
0 ⊗S+

m)
sinh(λ−αm) + η2

2 10 ⊗
∑N

m=1

(
S3
m

)2
+ η2

2

∑N
n,m=1
n ̸=m

10⊗(cosh(λ−αm) cosh(λ−αn)S3
mS3

n+
1
2(S

+
mS−

n +S−
mS+

n ))
sinh(λ−αm) sinh(λ−αn)

+ η2

2

∑N
m=1

∑N
n<m

σ3
0⊗(S

−
mS+

n −S+
mS−

n )+σ+
0 ⊗(cosh(λ−αm)S3

mS−
n −cosh(λ−αn)S

−
mS3

n)
2 sinh(λ−αm) sinh(λ−αn)

+ η2

2

∑N
m=1

∑N
n<m

σ−
0 ⊗(cosh(λ−αn)S

+
mS3

n−cosh(λ−αm)S3
mS−

n )
2 sinh(λ−αm) sinh(λ−αn)

+ η2

2

∑N
m=1

∑N
n>m

σ3
0⊗(S

−
n S+

m−S+
n S−

m)+σ+
0 ⊗(cosh(λ−αn)S3

nS
−
m−cosh(λ−αm)S−

n S3
m)

2 sinh(λ−αn) sinh(λ−αm)

+ η2

2

∑N
m=1

∑N
n>m

σ−
0 ⊗(cosh(λ−αm)S+

n S3
m−cosh(λ−αn)S3

nS
−
m)

2 sinh(λ−αn) sinh(λ−αm) +O(η3).

(15)

It is important to notice that the spin operators Sα
m, with α = +,−, 3, on

the right hand side of (15) satisfy the usual commutation relations

[S3
m, S±

n ] = ±S±
m δmn, [S+

m, S−
n ] = 2S3

m δmn. (16)

If the Gaudin Lax matrix is defined by

L0(λ) =

N∑
m=1

σ3
0 ⊗ cosh(λ− αm)S3

m + 1
2

(
σ+
0 ⊗ S−

m + σ−
0 ⊗ S+

m

)
sinh(λ− αm)

(17)

and the quasi-classical property of the R-matrix (1) [23]

1

sinh(λ)
R(λ) = 1− ηr(λ) +O(η2), (18)
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where

r(λ) =
−1

2 sinh(λ)

(
cosh(λ)(1⊗ 1+ σ3 ⊗ σ3) +

1

2

(
σ+ ⊗ σ− + σ− ⊗ σ+

))
,

(19)
is taken into account, then substitution of the expansion (15) into the RTT-
relations (8) yields the so-called Sklyanin linear bracket [5]

[L1(λ), L2(µ)] = [r12(λ− µ), L1(λ) + L2(µ)] . (20)

The classical r-matrix (19) has the unitarity property

r21(−λ) = −r12(λ), (21)

and satisfies the classical Yang-Baxter equation [6]

[r13(λ), r23(µ)] + [r12(λ− µ), r13(λ) + r23(µ)] = 0. (22)

Thus the Sklyanin linear bracket (20) is anti-symmetric and it obeys the
Jacobi identity. It follows that the entries of the Lax matrix (17) generate
a Lie algebra relevant for the Gaudin model.

Using the expansion (15) it is evident that

t(λ) = 2 + η2
N∑

m=1

((
S3
m

)2
+
∑N

n̸=m

cosh(λ−αm) cosh(λ−αn)S3
mS3

n+
1
2(S

+
mS−

n +S−
mS+

n )
sinh(λ−αm) sinh(λ−αn)

)
+O(η3). (23)
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Analogously, we can expand (11) to obtain

∆ [T (λ)] =1+η trL(λ)+ η2

2 (tr
2L(λ)−trL2(λ))

+η2
∑N

m=1

(
(S3

m)
2
+
∑N

n̸=m

cosh(λ−αm) cosh(λ−αn)S3
mS3

n+1
2(S

+
mS−

n +S−
mS+

n )
sinh(λ−αm) sinh(λ−αn)

)

+ η2

2
tr00′P

−
00′
∑N

m=1

∑N
m>n

(
σ3
0⊗(S−

mS+
n −S+

mS+
n )+σ+

0 ⊗(cosh(λ−αm)S3
mS−

n −cosh(λ−αn)S−
mS3

n)
2 sinh(λ−αm) sinh(λ−αn)

+
σ−
0 ⊗(cosh(λ−αn)S+

mS3
n−cosh(λ−αm)S3

mS+
n )

2 sinh(λ−αm) sinh(λ−αn)

)
10′

+ η2

2
tr00′P

−
00′
∑N

m=1

∑N
n>m

(
σ3
0⊗(S−

n S+
m−S+

n S+
m)+σ+

0 ⊗(cosh(λ−αn)S3
nS−

m−cosh(λ−αm)S−
n S3

m)
2 sinh(λ−αn) sinh(λ−αm)

+
σ−
0 ⊗(cosh(λ−αm)S+

n S3
m−cosh(λ−αn)S3

nS+
m)

2 sinh(λ−αn) sinh(λ−αn)

)
10′

+ η2

2
tr00′P

−
00′10

∑N
m=1

∑N
m>n

(
σ3
0′⊗(S

−
mS+

n −S+
mS+

n )+σ+
0′

⊗(cosh(λ−αm)S3
mS−

n −cosh(λ−αn)S−
mS3

n)
2 sinh(λ−αm) sinh(λ−αn)

+
σ−
0′

⊗(cosh(λ−αn)S+
mS3

n−cosh(λ−αm)S3
mS+

n )
2 sinh(λ−αm) sinh(λ−αn)

)

+ η2

2
tr00′P

−
00′10

∑N
m=1

∑N
n>m

(
σ3
0′⊗(S

−
n S+

m−S+
n S+

m)+σ+
0′

⊗(cosh(λ−αn)S3
nS−

m−cosh(λ−αm)S−
n S3

m)
2 sinh(λ−αn) sinh(λ−αm)

+
σ−
0′

⊗(cosh(λ−αm)S+
n S3

m−cosh(λ−αn)S3
nS+

m)
2 sinh(λ−αn) sinh(λ−αn)

)
+O(η3), (24)

where L(λ) is given in (17). The final expression for the expansion of
∆ [T (λ)] is obtained after taking all the traces

∆ [T (λ)] = 1+ η2

×
N∑

m=1

(S3
m

)2
+

N∑
n ̸=m

cosh(λ− αm) cosh(λ− αn)S
3
mS3

n + 1
2 (S

+
mS−

n + S−
mS+

n )

sinh(λ− αm) sinh(λ− αn)


− η2

2
trL2(λ) +O(η3). (25)

To obtain the generation function of the Gaudin Hamiltonians notice that
(23) and (25) yield

t(λ)−∆[T (λ)] = 1+
η2

2
trL2(λ) +O(η3). (26)

Therefore

τ(λ) =
1

2
trL2(λ) (27)

commute for different values of the spectral parameter,

[τ(λ), τ(µ)] = 0. (28)
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Moreover, substituting (17) into (27) it is straightforward to obtain the
expansion

τ(λ) =

N∑
m=1

sm(sm + 1)

sinh2(λ− αm)
+ 2

N∑
m=1

coth(λ− αm)Hm + (S3
gl)

2 , (29)

with the Gaudin Hamiltonians

Hm =
N∑

n̸=m

coth(αm−αn)S
3
mS3

n+
1

2 sinh(αm − αn)

(
S+
mS−

n + S−
mS+

n

)
(30)

and the global generator

S3
gl =

N∑
m=1

S3
m. (31)

The global generator defined above generates the U(1) symmetry[
S3
gl, Hm

]
= 0, with m = 1, 2 . . . N. (32)

Evidently, we have

[Hm,Hn] = 0, with m,n = 1, 2 . . . N. (33)

This shows that τ(λ) is the generating function of Gaudin Hamiltonians
(30) when the periodic boundary conditions are imposed [5].

4. Conclusion

Following Sklyanin’s proposal [5, 19], we have derive the generating func-
tion of the Gaudin Hamiltonians in the trigonometric case by considering
the quasi-classical expansion of the linear combination of the transfer ma-
trix of the XXZ Heisenberg spin chain and the corresponding quantum
determinant. The Gaudin Hamiltonians are obtained as the residues of the
generating function. It would be of considerable interest to generalise these
results to the case of non-periodic boundary conditions.

A Basic definitions

We consider the operators Sα with α = +,−, 3, acting in some (spin s)
representation space C2s+1 with the commutation relations [25]

[S3, S±] = ±S±, [S+, S−] =
sinh(2ηS3)

sinh(η)
= [2S3]q, (34)
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with q = eη. In the space C2s+1 these operators admit the following matrix
representation [25, 26, 27]

S3 =
2s+1∑
i=1

aiei i, S+ =
2s+1∑
i=1

biei i+1, and S− =
2s+1∑
i=1

biei+1 i (35)

where

(eij)kl = δi kδj l, ai = s+1−i, bi =
√

[i]q [2s+ 1− i]q and [x]q =
qx − q−x

q − q−1
.

(36)
In the particular case of spin 1

2 representation, one recovers the Pauli ma-
trices

Sα =
1

2
σα =

1

2

(
δα3 2δα+
2δα− −δα3

)
.

We consider a spin chain with N sites with spin s representations, i.e.
a local C2s+1 space at each site and the operators

Sα
m = 1⊗ · · · ⊗ Sα︸︷︷︸

m

⊗ · · · ⊗ 1, (37)

with α = +,−, 3 and m = 1, 2, . . . , N .
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Abstract

We define new creation operators relevant for implementation of
the algebraic Bethe ansatz for the sℓ(2) Gaudin model with the gen-
eral reflection matrix. This approach is based on the linear bracket
corresponding to the relevant non-unitary classical r-matrix.

PACS: 02.20.Tw, 03.65.Fd, 05.50+q, 75.10.Jm; MSC 2010: 81R12, 82B23.

1. Introduction

In [1] we have derived the generating function of the sℓ(2) Gaudin Hamil-
tonians with boundary terms. We have shown that the implementation of
the algebraic Bethe ansatz requires an appropriate non-unitary r-matrices
and the corresponding linear bracket [1]. The non-unitary r-matrices and
the corresponding Gaudin models have been studied recently, see [2, 3] and
the references therein. In [1] we have obtained the spectrum of the gener-
ating function and the corresponding Bethe equations. However, explicit
and compact form of the Bethe vector φM (µ1, µ2, . . . , µM ), for an arbitrary
positive integer M , remained open. Our aim here is to propose creation
operators which should solve this problem.

2. sℓ(2) Gaudin model with boundary terms

The classical r-matrix relevant for the sℓ(2) Gaudin model is given by [4]

r(λ) = −P
λ
, (1)

∗ Work of I. Salom is supported by the Serbian Ministry of Science and Technological
Development under grant number OI 171031.

† e-mail address: isalom@ipb.ac.rs
‡ e-mail address: nmanoj@ualg.pt
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where P is the permutation matrix in C2 ⊗ C2. This classical r-matrix
satisfies the classical Yang-Baxter equation

[r13(λ), r23(µ)] + [r12(λ− µ), r13(λ) + r23(µ)] = 0, (2)

and it has the unitarity property

r21(−λ) = −r12(λ). (3)

The general solution of the corresponding classical reflection equation [5,
6, 7]:

r12(λ− µ)K1(λ)K2(µ) +K1(λ)r21(λ+ µ)K2(µ) =

= K2(µ)r12(λ+ µ)K1(λ) +K2(µ)K1(λ)r21(λ− µ),
(4)

is give by [1]

K̃(λ) =

(
ξ − λ ψ̃λ

ϕ̃λ ξ + λ

)
. (5)

An important preliminary step in the implementation of the algebraic Bethe
ansatz for the open Gaudin model is to bring the K-matrix (5) to the upper,
or lower, triangular form [1]

K(λ) = U−1K̃(λ)U =

(
ξ − λν λψ

0 ξ + λν

)
, (6)

where ψ = ϕ̃+ ψ̃ and

U =

(
−1− ν ϕ̃

ϕ̃ −1− ν

)
, (7)

with ν =

√
1 + ϕ̃ ψ̃ .

Here we study the sℓ(2) Gaudin model with N sites, characterised by
the local space Vm = C2s+1 and inhomogeneous parameter αm. The Hilbert
space of the system is

H =
N
⊗
m=1

Vm = (C2s+1)⊗N . (8)

Following [1] we introduce the Lax operator

L0(λ) =

(
H(λ) F (λ)
E(λ) −H(λ)

)
=

N∑
m=1

(
σ⃗0 · S⃗m
λ− αm

+
K0(λ)σ⃗0K

−1
0 (λ) · S⃗m

λ+ αm

)
,

(9)
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with the following local realisation for the entries of the Lax matrix

E(λ) =

N∑
m=1

(
S+
m

λ− αm
+

(ξ + λν)S+
m

(ξ − λν)(λ+ αm)

)
, (10)

F (λ) =

N∑
m=1

(
S−
m

λ− αm
+

(ξ − λν)2S−
m − λ2ψ2S+

m − 2λψ(ξ − λν)S3
m

(ξ + λν)(ξ − λν)(λ+ αm)

)
,

(11)

H(λ) =

N∑
m=1

(
S3
m

λ− αm
+
λψ S+

m + (ξ − λν)S3
m

(ξ − λν)(λ+ αm)

)
. (12)

Due to the commutation relations (36), it is straightforward to check that
the Lax operator (9) satisfies the following linear bracket relations

[L0(λ),L0′(µ)] =
[
rK00′(λ, µ),L0(λ)

]
−
[
rK0′0(µ, λ),L0′(µ)

]
, (13)

where the non-unitary r-matrix is give by

rK00′(λ, µ) = r00′(λ− µ)−K0′(µ)r00′(λ+ µ)K−1
0′ (µ). (14)

The commutator (13) is obviously anti-symmetric. It obeys the Jacobi
identity because the r-matrix (14) satisfies the classical Yang-Baxter equa-
tion

[rK32(λ3, λ2), r
K
13(λ1, λ3)] + [rK12(λ1, λ2), r

K
13(λ1, λ3) + rK23(λ2, λ3)] = 0. (15)

The linear bracket (13) based on the r-matrix rK00′(λ, µ) (14), corresponding
to (6) and the classical r-matrix (1), defines the Lie algebra relevant for the
open sℓ(2) Gaudin model.

As it was shown in [1], it is instructive to introduce the new generators
e(λ), h(λ) and f(λ) as the following linear combinations of the original ones

e(λ) = −ξ+λν
λ E(λ), h(λ) = 1

λ

(
H(λ)− ψλ

2ξ E(λ)
)
,

f(λ) = 1
λ ((ξ + λν)F (λ) + ψλH(λ)) . (16)

The key observation is that in the new basis we have

[e(λ), e(µ)] = [h(λ), h(µ)] = [f(λ), f(µ)] = 0. (17)
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Therefore there are only three nontrivial relations

[h(λ), e(µ)] =
2

λ2 − µ2
(e(µ)− e(λ)) , (18)

[h(λ), f(µ)] =
−2

λ2 − µ2
(f(µ)− f(λ))− 2ψν

(λ2 − µ2)ξ

(
µ2h(µ)− λ2h(λ)

)
− ψ2

(λ2 − µ2)ξ2
(
µ2e(µ)− λ2e(λ)

)
, (19)

[e(λ), f(µ)] =
2ψν

(λ2 − µ2)ξ

(
µ2e(µ)− λ2e(λ)

)
− 4

λ2 − µ2
(
(ξ2 − µ2ν2)h(µ)− (ξ2 − λ2ν2)h(λ)

)
. (20)

In the Hilbert space H (8), in every Vm = C2s+1 there exists a vector
ωm ∈ Vm such that

S3
mωm = smωm and S+

mωm = 0. (21)

We define a vector Ω+ to be

Ω+ = ω1 ⊗ · · · ⊗ ωN ∈ H. (22)

From the definitions above, the formulas (10) - (12) and (16) it is straight-
forward to obtain the action of the generators e(λ) and h(λ) on the vector
Ω+

e(λ)Ω+ = 0, and h(λ)Ω+ = ρ(λ)Ω+, (23)

with

ρ(λ) =
1

λ

N∑
m=1

(
sm

λ− αm
+

sm
λ+ αm

)
=

N∑
m=1

2sm
λ2 − α2

m

. (24)

The generating function of the Gaudin Hamiltonians with boundary
terms is given by [1]:

τ(λ) = tr0 L2
0(λ) = 2λ2

(
h2(λ) +

2ν2

ξ2 − λ2ν2
h(λ)− h′(λ)

λ

)

− 2λ2

ξ2 − λ2ν2

(
f(λ) +

ψλ2ν

ξ
h(λ) +

ψ2λ2

4ξ2
e(λ)− ψν

ξ

)
e(λ).

(25)

An important initial observation in the implementation of the algebraic
Bethe ansatz is that the vector Ω+ (22) is an eigenvector of the generating
function τ(λ). To show this we use the expression (23) and (24):

τ(λ)Ω+ = χ0(λ)Ω+ = 2λ2
(
ρ2(λ) +

2ν2 ρ(λ)

ξ2 − λ2ν2
− ρ′(λ)

λ

)
Ω+. (26)
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With the aim of obtaining the explicit and compact form of the Bethe
vectors we define the following creation operaters

c(λ) = f(λ) +
ψξ

ν
h(λ) +

ψ2

4ν2
e(λ). (27)

Using the relations (17) - (20) it is straightforward to check that

[c(λ), c(µ)] = 0. (28)

Consequently, the Bethe vectors generated by the action of the operators
(27) on the vector Ω+ (22) will be symmetric functions of theirs arguments.

Our main aim is to show that the Bethe vector φ1(µ) has the form

φ1(µ) = c(µ)Ω+ =

(
f(λ) +

ψξ

ν
ρ(λ)

)
Ω+, (29)

where c(µ) is given by (27). The action of the generating function of the
Gaudin Hamiltonians reads

τ(λ)φ1(µ) = [τ(λ), c(µ)] Ω+ + χ0(λ)φ1(µ). (30)

Using (25) and the commutation relations (17) - (20) it is evident that

[τ(λ), c(µ)] Ω+ = [τ(λ), f(µ)] Ω+. (31)

Then, a straightforward calculation show that

[τ(λ), f(µ)] Ω+ = − 8λ2

λ2 − µ2

(
ρ(λ) +

ν2

ξ2 − λ2ν2

)
φ1(µ)

+
8λ2(ξ2 − µ2ν2)

(λ2 − µ2)(ξ2 − λ2ν2)

(
ρ(µ) +

ν2

ξ2 − µ2ν2

)
φ1(λ). (32)

Therefore the action of the generating function τ(λ) on φ1(µ) is given by

τ(λ)φ1(µ) = χ1(λ, µ)φ1(µ)+
8λ2(ξ2 − µ2ν2)

(λ2 − µ2)(ξ2 − λ2ν2)

(
ρ(µ) +

ν2

ξ2 − µ2ν2

)
φ1(λ),

(33)
with

χ1(λ, µ) = χ0(λ)−
8λ2

λ2 − µ2

(
ρ(λ) +

ν2

ξ2 − λ2ν2

)
. (34)

The unwanted term in (33) vanishes when the following Bethe equation is
imposed on the parameter µ,

ρ(µ) +
ν2

ξ2 − µ2ν2
= 0. (35)

Thus we have shown that φ1(µ) (29) is the desired Bethe vector of the
generating function τ(λ) corresponding to the eigenvalue χ1(λ, µ).
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3. Conclusion

We have proposed a new creation operators relevant for implementation of
the algebraic Bethe ansatz for the sℓ(2) Gaudin model with the general re-
flection matrix. However, explicit and compact form of the relevant Bethe
vector φM (µ1, µ2, . . . , µM ), for an arbitrary positive integerM , requires fur-
ther studies and will be reported elsewhere. Such a formula would be crucial
for the off shell scalar product of the Bethe vectors and these results could
lead to the correlations functions of Gaudin model with boundary. More-
over, it would be of considerable interest to establish a relation between
Bethe vectors and solutions of the corresponding Knizhnik-Zamolodchikov
equations.

A Basic definitions

We consider the spin operators Sα with α = +,−, 3, acting in some (spin
s) representation space C2s+1 with the commutation relations

[S3, S±] = ±S±, [S+, S−] = 2S3, (36)

and Casimir operator

c2 = (S3)2 +
1

2
(S+S− + S−S+) = (S3)2 + S3 + S−S+ = S⃗ · S⃗.

In the particular case of spin 1
2 representation, one recovers the Pauli ma-

trices

Sα =
1

2
σα =

1

2

(
δα3 2δα+
2δα− −δα3

)
.

We consider a spin chain with N sites with spin s representations, i.e.
a local C2s+1 space at each site and the operators

Sαm = 1⊗ · · · ⊗ Sα︸︷︷︸
m

⊗ · · · ⊗ 1, (37)

with α = +,−, 3 and m = 1, 2, . . . , N .
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On the Structure of Green’s Ansatz

Igor Salom

Abstract It is well known that the symmetric group has an important role (via
Young tableaux formalism) both in labelling of the representations of the unitary
group and in construction of the corresponding basis vectors (in the tensor product of
the defining representations). We show that orthogonal group has a very similar role
in the context of positive energy representations of osp.1j2n;R/. In the language
of parabose algebra, we essentially solve, in the parabosonic case, the long standing
problem of reducibility of Green’s Ansatz representations.

1 Introduction

The osp.1j2n;R/ superalgebra attracts nowadays significant attention, primarily
as a natural generalization of the conformal supersymmetry in higher dimensions
[1–9]. In the context of space-time supersymmetry, knowing and understanding
unitary irreducible representations (UIR’s) of this superalgebra is of extreme
importance, as these should be in a direct relation with the particle content of the
corresponding physical models.

And the most important from the physical viewpoint are certainly, so called,
positive energy UIR’s, which are the subject of this paper. More precisely, the goal
of the paper is to clarify how these representations can be obtained by essentially
tensoring the simplest nontrivial positive energy UIR (the one that corresponds
to oscillator representation). This parallels the case of the UIR’s of the unitary
group U.n/ constructed within the tensor product of the defining (i.e. “one box”)
representations. In both cases the tensor product representation is reducible, and
while this reduction in the U.n/ case is governed by the action of the commuting
group of permutations, in the osp case,1 as we will show, the role of permutations
is played by an orthogonal group. We will clarify the details of this reduction.

1We will often write shortly osp.1j2n/ or osp for the osp.1j2n;R/.
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The osp.1j2n/ superalgebra is also known by its direct relation to parabose
algebra [10,11]. In the terminology of parastatistics, the tensor product of oscillator
UIR’s is known as the Green’s Ansatz [12]. The problem of the decomposition of
parabose Green’s Ansatz space to parabose (i.e. osp.1j2n/) UIR’s is an old one [12],
that we here solve by exploiting additional orthogonal symmetry of a “covariant”
version of the Green’s Ansatz.

2 Covariant Green’s Ansatz

Structural relations of osp.1j2n/ superalgebra can be compactly written in the form
of trilinear relations of odd algebra operators a˛ and a

�
˛:

Œfa˛; a
�

ˇg; a� � D �2ıˇ� a˛; Œfa�
˛; aˇg; a

�
� � D 2ıˇ� a

�
˛; (1)

Œfa˛; aˇg; a� �; Œfa�
˛; a

�

ˇg; a
�
� � D 0; (2)

where operators fa˛; a
�

ˇg, fa˛; aˇg and fa�
˛; a

�

ˇg span the even part of the superalge-
bra and Greek indices take values 1; 2; : : : n (relations obtained from these by use
of Jacobi identity are also implied). This compact notation emphasises the direct
connection [11] of osp.1j2n/ superalgebra with the parabose algebra of n pairs of
creation/annihilation operators [10].

If we (in the spirit of original definition of parabose algebra [10]) additionally
require that the dagger symbol � above denotes hermitian conjugation in the algebra
representation Hilbert space (of positive definite metrics), then we have effectively
constrained ourselves to the, so called, positive energy UIR’s of osp.1j2n/.2

Namely, in such a space, “conformal energy” operator E � 1
2

P
˛fa˛; a

�
˛g must be

a positive operator. Operators a˛ reduce the eigenvalue of E, so the Hilbert space
must contain a subspace that these operators annihilate. This subspace is called
vacuum subspace:V0 D fjvi; a˛jvi D 0g. If the positive energy representation is
irreducible, all vectors from V0 have the common, minimal eigenvalue �0 of E:
Ejvi D �0jvi; jvi 2 V0. Representations with one dimensional subspace V0 are
called “unique vacuum” representations.

In this paper we will constrain our analysis to UIR’s with integer and half-integer
values of �0 (in principle, �0 has also continuous part of the spectrum—above the, so
called, first reduction point of the Verma module). It turns out that all representations
from this class can be obtained by representing the odd superalgebra operators a and
a� as the following sum:

a˛ D Pp
aD1 ba

˛ ea; a
�
˛ D Pp

aD1 b
a�
˛ ea: (3)

2Omitting a short proof, we note that in such a Hilbert space all superalgebra relations actually
follow from one single relation—the first or the second of (1).
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In this expression integer p is known as the order of the parastatistics, ea are
elements of a real Clifford algebra:

fea; ebg D 2ıab (4)

and operators ba
˛ together with adjoint b

a�
˛ satisfy ordinary bosonic algebra relations.

There are total of n � p mutually commuting pairs of bosonic annihilation-creation
operators .ba

˛; b
a�
˛ /:

Œba
˛; b

b�

ˇ � D ıˇ˛ıabI Œba
˛; bb

ˇ� D 0: (5)

Indices a; b; : : : from the beginning of the Latin alphabet will, throughout the paper,
take values 1; 2; : : : p. Relation (3) is a slight variation, more precisely, realization,
of a more common form of the Green’s Ansatz [10, 13].

The representation space of operators (3) can be seen as tensor product
of p multiples of Hilbert spaces Ha of ordinary linear harmonic oscillator in
n-dimensions multiplied by the representation space of the Clifford algebra:

H D H1 ˝ H2 ˝ � � � ˝ Hp ˝ HCL: (6)

A single factor Hilbert space Ha is the space of unitary representation of n

dimensional bose algebra of operators .ba
˛; b

a�
˛ /; ˛ D 1; 2; : : : n: Ha Š U.ba�/j0ia,

where j0ia is the usual Fock vacuum of factor space Ha. The representation space
HCL of real Clifford algebra (4) is of dimension 2Œp=2�, i.e. isomorphic with C

2Œp=2�

(matrix representation). Positive definite scalar product is introduced in usual way
in each of the factor spaces, endowing entire space H also with positive definite
scalar product. The space is spanned by the vectors:

H D l:s:fP.b�/j0i ˝ !g; (7)

where P.b�/ are monomials in mutually commutative operators b
a�
˛ , j0i � j0i1 ˝

j0i2 ˝ � � � ˝ j0ip and w 2 HCL.
In the case p D 1 (the Clifford part becomes trivial) we obtain the simplest

positive energy UIR of osp.1j2n/—the n dimensional harmonic oscillator repre-
sentation. The order p Green’s Ansatz representation of osp.1j2n/ is, effectively,
representation in the p-fold tensor product of oscillator representations [12], with
the Clifford factor space taking care of the anticommutativity properties of odd
superalgebra operators. It is easily verified that even superalgebra elements act
trivially in the Clifford factor space and that their action is simply sum of actions in
each of the factor spaces.

The space (6) is highly reducible under action of osp superalgebra. It necessarily
decomposes into direct sum of positive energy representations (both unique vacuum
and non unique vacuum representations) and thus, from the aspect of osp transfor-
mation properties, space H is spanned by:

H D l:s:fj.�; l/; ��ig; (8)
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where � labels osp.1j2n/ positive energy UIR, l uniquely labels a concrete vector
within the UIR �, and �� D 1; 2; : : : N� labels possible multiplicity of UIR �

in the representation space H. If some UIR � does not appear in decomposition
of H, then the corresponding N� is zero. Label � in (8) runs through all (integer
and halfinteger positive energy) UIR’s of osp.1j2n/ such that N� > 0 and l runs
through all vectors from UIR �.

3 Gauge Symmetry of the Ansatz

Green’s Ansatz in the form (3) possesses certain intrinsic symmetries. First, we note
that hermitian operators

Gab �
nX

˛D1

i.ba�
˛ bb

˛ � bb�
˛ ba

˛/ C i

4
Œea; eb� (9)

commute with entire osp superalgebra, which immediately follows after checking
that ŒGab; a˛� D 0. Operators Gab themselves satisfy commutation relations of
so.p/ algebra. The second term in (9) acts in the Clifford factor space, generating a
faithful representation of Spin.p/ (i.e. spinorial representation of double cover of
SO.p/ group). Action of the first terms from (9) generate SO.p/ group action in the
space H1˝H2˝� � �˝Hp . In the entire space H operators G generate Spin.p/ group
and all vectors belong to spinorial unitary representations of this symmetry group.
The two terms in (9) thus resemble orbital and spin parts of rotation generators
and we will often use that terminology. In particular H � Ho ˝ Hs, where
Ho D H1 ˝ H2 ˝ � � � ˝ Hp and Hs D HCL. Furthermore, due to existence of

operators I a � �iexp.i�
P

˛ b
a�
˛ ba

˛/eea where e � i Œp=2�e1e2 � � � ep , for even
values of p, the symmetry can be extended to P in.p/ group (the double cover of
orthogonal group O.p/). We will refer to the symmetry group of the Green’s ansatz
as the gauge group.

Vectors in space H carry quantum numbers also according to their transformation
properties under the gauge group. As the gauge group commutes with osp.1j2n/,
these numbers certainly remove at least a part of degeneracy of osp representations
in H, in the sense that relation (8) can be rewritten as:

H D l:s:fj.�; l/; .M; m/; �.�;M/ig; (10)

where (�, l) uniquely label vector l within osp.1j2n/ positive energy UIR �,
(M , m) uniquely label vector m within finite dimensional UIR M of the gauge
group, and �.�;M/ D 1; 2; : : : N.�;M/ labels possible remaining multiplicity of
tensor product of these two representations Dosp

� ˝ Dgauge
M in the space H. Again,

if some combination .�; M/ does not appear in decomposition of H, then the
corresponding N.�;M/ is zero.



On the Structure of Green’s Ansatz 509

Important property of the gauge symmetry is that it actually removes all
degeneracy in decomposition of H to osp.1j2n/ UIR’s, i.e. that the multiplicity of
osp.1j2n/ UIR’s is fully taken into account by labeling transformation properties
of the vector w.r.t. the gauge symmetry group. Furthermore, there is one-to-one
correspondence between UIR’s of osp.1j2n/ and of the gauge group that appear in
the decomposition, meaning that transformation properties under the gauge group
action automatically fix the osp.1j2n/ representation. We formulate this more
precisely in the following theorem.

Theorem 1. The following statements hold for the basis (10) of the Hilbert
space H:

1. All multiplicities N.�;M/ are either 1 or 0.
2. Let the N be the set of all pairs .�; M/ for which N.�;M/ D 1, i.e. N D

f.�; M/jN.�;M/ D 1g and let the L and M be sets of all � and M , respectively,
that appear in any of the pairs from N . Then pairs from N naturally define
bijection from L to M, N WL ! M .

The theorem is proved by explicit construction of the bijection N . First we must
go through some preliminary definitions and lemmas.

Corollary 1. If osp.1j2n/ representation � appears in the decomposition of the
space H, then its multiplicity in the decomposition is given by the dimension of the
gauge group representation N .�/.

4 Root Systems

At this point we must introduce root systems, both for osp.1j2n/ superalgebra and
for the so.p/ algebra of the gauge group.

We choose basis of a Cartan subalgebra hosp of (complexified) osp.1j2n/ as:

hosp D l:s:
n 1

2
fa�

˛; a˛g; ˛ D 1; 2; : : : n
o
: (11)

Positive roots, expressed using elementary functionals, are:

	C
osp D fCı˛; 1 � ˛ � nI Cı˛ C ıˇ; 1 � ˛ < ˇ � nI

Cı˛ � ıˇ; 1 � ˛ < ˇ � nI C2ı˛; 1 � ˛ � ng (12)

and the corresponding positive root vectors, spanning subalgebra gC
osp , are (in the

same order):
n
a

�
˛; 1 � ˛ � nI fa�

˛; a
�

ˇg; 1 � ˛ < ˇ � nI

fa�
˛; aˇg; 1 � ˛ < ˇ � nI fa�

˛; a
�
˛g; 1 � ˛ � n

o
: (13)
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Simple root vectors are:

n
fa�

1; a2g; fa�
2; a3g; : : : ; fa�

n�1; ang; a�
n

o
: (14)

With this choice of positive roots, positive energy UIR’s of osp.1j2n/ become low-
est weight representations. Thus, we will label positive energy UIR’s of osp.1j2n/

either by their lowest weight


 D .
1; 
2; : : : ; 
n/; (15)

or by its signature

� D Œd I �1; �2; : : : ; �n�1� (16)

related to the lowest weight 
 by d D 
1, �˛ D 
˛C1 � 
˛ . �˛ are nonnegative
integers [14] and spectrum of d is positive and dependant of �˛ values.

As a basis of Cartan subalgebra hso of so.p/ we take:

hso D l:s:

�

G.k/ � G2k�1;2k; k D 1; 2; : : : q

�

; (17)

where q D Œp=2� is the dimension of Cartan subalgebra (indices k; l; : : : from the
middle of alphabet will take values 1; 2; : : : ; q). Positive roots in case of even p are:

	C
so D fCık C ıl ; 1 � k < l � qI Cık � ıl ; 1 � k < l � qg; (18)

while in the odd case we additionally have fCık; 1 � k � qg.
In accordance with the choice of Cartan subalgebra hso it is more convenient to

use the following linear combinations:

B
.k/�

˛˙ � 1p
2

.b2k�1�
˛ ˙ ib2k�

˛ /; B
.k/

˛˙ D 1p
2

.b2k�1
˛ � ib2k

˛ /; (19)

instead of b� and b , as ŒG.k/; B
.l/�

˛˙ � D ˙ıklB
.l/�

˛˙ and ŒG.k/; B
.l/

˛˙� D �ıklB
.l/

˛˙.

Similarly, we introduce e
.k/

˙ � 1p
2
.e2k�1 ˙ ie2k/ that satisfy:

ŒG.k/; e
.l/

˙ � D ˙ıkle
.l/

˙ : (20)

Odd superalgebra operators take form:

a�
˛ D

� qX

kD1

B
.k/�
˛C e.k/� C B.k/�

˛� e
.k/
C
�

C � bp�
˛ ep; (21)
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a˛ D
� qX

kD1

B
.k/
˛Ce

.k/
C C B.k/

˛�e.k/�
�

C � bp
˛ ep; (22)

where � D p mod 2.
The space H decomposes to spinorial UIR’s of so.p/ with the highest weight

� D .�1; �2; : : : ; �q/ satisfying �1 � �2 � � � � � �q�1 � j�qj � 1
2

with all �q

taking half-integer values (�q can take negative values when p is even). However,
since the gauge symmetry group in the case of even p is enlarged to P in.p/ group,
any highest weight of UIR of the gauge group satisfies: �1 � �2 � � � � � �q � 0.
As the gauge group representation in H is spinorial, all �k take half-integer values
greater or equal to 1

2
. To label UIR’s of the gauge group we will also use signature

M D ŒM 1; M 2; : : : ; M q� (23)

with M k D �k ��kC1; k < q and M q D �q � 1
2
. All M k are nonnegative integers.

The “spin” factor space Hs is irreducible w.r.t. action of the gauge group. Gauge
group representation in the space Hs has the highest weight �s D . 1

2
; 1

2
; : : : ; 1

2
/.

Weight spaces of this representation are one dimensional, meaning that basis vectors
can be fully specified by weights �s:

Hs D l:s:f!�s � !.�1
s ; �2

s ; : : : ; �q
s /j�k

s D ˙1

2
g: (24)

An action of operators e
.k/
C ; e.k/� and ep in this basis is given by:

e
.k/

˙ !.�1
s ; �2

s ; : : : ; �q
s / D p

2

 
k�1Y

lD1

2�l
s

!

!.�1
s ; : : : ; �k�1

s ; �k
s ˙ 1; �kC1

s ; : : : ; �q
s /

(25)
and, when p is odd, also:

ep!.�1
s ; �2

s ; : : : ; �q
s / D

 
qY

lD1

2�l
s

!

!.�1
s ; �2

s ; : : : ; �q
s /: (26)

In these definitions it is implied that !.�1
s ; �2

s ; : : : ; �
q
s / � 0 if any j�k

s j > 1
2
.

Gauge group representation in “orbital” factor space Ho decomposes to highest
weight �o UIR’s such that all �k

o are nonnegative integers. Besides, it is not difficult
to verify that, if n < q, then

�nC1
o D �nC2

o D � � � D �q
o D 0 (27)

(since maximally n operators (19) can be antisymmetrized).
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5 Decomposition of the Green’s Ansatz Space

Now we can formulate the following lemma that is the remaining step necessary for
the proof of Theorem 1.

Lemma 1. The vector j.
; 
/; .�; �/; �.
;�/i 2 H that is the lowest weight vector
of osp.1j2n/ positive energy UIR 
 and the highest weight vector of the gauge group
UIR � exists if and only if signatures � and M (16, 23) satisfy:

Mk D �n�k; (28)

where �0 � d � p=2 and it is implied that Mk D 0; k > q and �˛ D 0; ˛ < 0. In
that case this vector has the following explicit form (up to multiplicative constant)
in the basis (7):

j.
; 
/; .�; �/; �.
;�/i D
�
B

.1/�
nC
��n�1

�
B

.1/�
nC B

.2/�
n�1C � B

.2/�
nC B

.1/�
n�1C

��n�2 � � �

�
� min.n;q/X

k1;k2;:::knD1

"k1k2:::knB
.k1/�
nC B

.k2/�
n�1C � � � B.kn/�

1C
��0 j0i ˝ !.

1

2
;

1

2
; : : : ;

1

2
/: (29)

We will omit a rather lengthy proof of the lemma.
Note that the Lemma 1 also determines whether an osp representation � appears

or not in the decomposition of Green’s Ansatz of order p: UIR � appears in the
decomposition if and only if the condition (28) can be satisfied by allowed integer
values of Mk . However, if q is not sufficiently high, the first n � q of the �

components �0; �1; : : : �n�q�1 are bound to be zero.

Corollary 2. All (half)integer positive energy UIR’s of osp.1j2n/ can be con-
structed in space H with p � 2n C 1.

Proof. Due to relation (28), values �0; �1; : : : �n�1 can be arbitrary integers when
q � n: choice p D 2n contains integer values of d UIR’s while p D 2n C 1

contains half-integer values. That spaces H for some p < 2n also contain all UIR’s
with d < n, can be verified by checking the list of all positive energy UIR’s of
osp.1j2n/ will be given elsewhere. ut

In other words, the above corollary states that no additional (half)integer energy
UIR’s of osp.1j2n/ appear when considering p > 2n C 1, i.e. it is sufficient to
consider only p � 2n C 1.

The proof of the Theorem 1 now follows from the Lemma 1.

Proof. Lemma 1 gives the explicit form of the vector that is the lowest weight vector
of osp.1j2n/ positive energy UIR 
 and the highest weight vector of the gauge
group UIR �, when such vector exists. It follows that there can be at most one such
vector. Therefore, the multiplicity N.
;�/ can be either 1 or 0. The relation between

 and � is given by (28) and it defines bijection N . ut
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Green-Clifford ansatz realization of Parabose
representations∗

Igor Salom†

Institute of Physics, University of Belgrade,

Pregrevica 118, Belgrade, SERBIA

Abstract

Green’s ansatz is a well known method for construction of ”unique vacuum” rep-
resentations of parabose (parafermi) algebra. Exploiting a Clifford algebra variant
of the Green’s ansatz we construct unitary representations with vacuum state car-
rying arbitrary SU(n) representation (n being the number of parabose operator
pairs).

1. Introduction

Parabose algebra was introduced by H.S. Green [1] long ago, as a gen-
eralization of the common bose algebra relations. Following the Green’s
definition, parabose algebra is algebra of n pairs of mutually hermitian

conjugate operators aα, a
†
α, satisfying trilinear relations:

[{aα, a†β}, aγ ] = −2δβγaα, (1)

[{aα, aβ}, aγ ] = 0, (2)

together with relations (additional four) that follow from these by hermitian
conjugation and by use of Jacobi identities.1

In the same paper [1], Green offered a solution for the above relations, in
the terms of sum of operators satisfying ”mixed” commutation and anti-
commutation relations:

aα =
∑p

a=1 a
a
α, (3)

where aaα and aa†α anticommute for different values of Green’s indices a and
b:

a ̸= b ⇒ {aa†α , ab†α } = {aaα, abα} = {aaα, ab†α } = 0 (4)

∗ Work supported by MPNTR, Project OI-171031.
† e-mail address: isalom@ipb.ac.rs
1We note that, in a Hilbert space equipped with positive definite metrics (with respect

to which one defines the adjoint a†
α), all algebra relations actually follow from the single

relation (1).
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and behave as usual bose creation and annihilation operators otherwise:

a = b ⇒ [aaα, a
b†
β ] = δβα, [a

a
α, a

b
β] = 0. (5)

This construction is nowadays known as the ”Green’s ansatz” while the
integer p is called the ”order of parastatistics”. Obviously, the case p = 1
corresponds to usual bose algebra.

Parabose algebra was originally introduced as an alternative, i.e. general-
ized method for field quantization, that would correspond to hypothetical
particles obeying neither the usual Fermi nor the Bose statistics, but a
generalization called parastatistics. In [3] Greenberg and Messiah have
concluded that, in this particular context of parastatistics, Green’s ansatz
suffices for construction of all relevant unitary representations. However,
his considerations included two elements special to the parastatistics con-
text: 1) assumption of infinite many degrees of freedom n (i.e. infinite num-
ber parabose pairs) that effectively precluded solutions with non-integer p
values, and 2) assumption that only ”unique vacuum” Fock space represen-
tations are of physical interest.

On the other hand, parabose algebra has importance as an algebraic struc-
ture in its own right, irrespectively of the parastatistical context. Math-
ematically, it was realised by Ganchev and Palev [2] that this algebra is
equivalent to the orthosymplectic osp(1|2n) superalgebra.2 In the light
of this connection, parabose algebra, or, in other words, osp(1|2n) super-
algebra, has its importance in many physical areas/models. Of particu-
lar interest are the models where parabose algebra (osp(1|2n) superalge-
bra) represents the space-time supersymmetry algebra (eg. [4, 5]). In this
context number of parabose pairs n depends on the dimensionality of the
space-time and ranges usually from n = 4 (in the four dimensional case)
to n = 32 or n = 64 (string theory). The assumptions taken by Greenberg
and Messiah in [3] here have no longer physical sense: 1) due to finite n,
the order of parastatistics p can also take noninteger values from a cer-
tain continuum range (p0,∞), where p0 is related to the, so called, first
reduction point (Verma module terminology) [6], and 2) Fock vacuum has
no more interpretation of ”no particle state” but merely represents lowest
conformal energy state and thus representations other than ”unique vac-
uum” ones must also be considered. Being not applicable to both of these
classes of representations, the basic form of the Green’s ansatz construc-
tion is therefore no longer sufficient. Of the two, the latter shortcoming is
far more serious. Namely, in the context of space-time symmetry, unitary
irreducible representations (UIR’s) of parabose algebra should be directly
related to particle content of the model. Whereas it could be argued that
non integer values of order of parastatistics p could be nonphysical, it is
not so for the ”unique vacuum” representations. On the contrary, in these

2This is exactly so if the parabose algebra is defined solely by structural relations,
without any mention of Hermitian conjugation. However, if the algebra is introduced as
in [1], then, strictly speaking, it is one concrete realization of the osp(1|2n) superalgebra
that has only positive energy unitary representations.
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representations lowest weight state (i.e. Fock vacuum state) carries nontriv-
ial representation of SU(n) compact subgroup of osp(1|2n) and thus they
carry additional quantum numbers – the fact that makes corresponding
particles physically highly interesting and important.

2. Unitary representations

In this section we recapitulate [7] classification of unitary irreducible rep-
resentations of parabose algebra, as defined by (1,2) (results correspond to
classification of positive energy UIR’s of osp(1|2n)). The results were ob-
tained by computer analysis of the lowest weight Verma module structure
for cases n ≤ 4, followed by a straightforward conjecture for the classifica-
tion for case of arbitrary n.

First we will fix the notation and definitions, which basically follow that of
[6].

We consider lowest weight Verma modules V Λ ∼= U(G+) ⊗ |v0⟩. Here,
G+ denotes subalgebra of positive roots in standard algebra decomposition
GC = G+ ⊕ H ⊕ G− (G denotes superalgebra osp(1|2n) and GC its com-
plexification; H is Cartan subalgebra) and |v0⟩ is a lowest weight vector of
weight Λ:

X ∈ G− ⇒ X|v0⟩ = 0, H ∈ H ⇒ H|v0⟩ = Λ(H)|v0⟩. (6)

Roots, expressed using elementary functionals, are:

∆ = {±δα, 1 ≤ α ≤ n;±δα ± δβ, 1 ≤ α < β ≤ n;

±2δα, 1 ≤ α ≤ n} (7)

(the two signs in ±δα±δβ not being correlated) and the corresponding root
vectors we will denote as (in the same order):

G+ ⊕ G− = {a†±α, 1 ≤ α ≤ n; a†±α,±β, 1 ≤ α < β ≤ n;

a†±α,±α, 1 ≤ α ≤ n}. (8)

Here we introduced a compact notation for superalgebra elements, that
emphasises the parabose connection:

a†−α ≡ aα, a†α,β ≡ {a†α, a
†
β}. (9)

Simple root vectors are:

{a†−2,1, a
†
−3,2, . . . , a

†
−n,n−1, a

†
n}. (10)

We will label representations by the signature

χ = {s1, s2, . . . , sn−1, d}, (11)
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that is connected to the lowest weight Λ in the following way:

(Λ, δα) = d+
1

2
(a1 + a2 + · · ·+ aα−1 − aα − · · · − an−1). (12)

Notice that parameters s1, s2, . . . , sn−1 define behaviour of the lowest weight

state |v0⟩ under action of the SU(n) subgroup generated by elements {aα, a†β}.
The case s1 = s2 = · · · = sn−1 = 0 corresponds to the ”unique vacuum”
representations.

We introduce a (Shapovalov) norm on the Verma module via natural in-

volutive antiautomorphism: ω : ω(aα) = a†α (compatible with the assumed
Hilbert space metric). Right away we note that simple unitarity consider-

ations – calculating norms of vectors a†−(α+1),α|v0⟩ and a†1|v0⟩ – result in

constraints: sα ≥ 0, d ≥ (s1+s2+· · ·+sn−1)/2. Parameters s1, s2, . . . , sn−1
must be integers, labelling an SU(n) Young tableau with s1+s2+· · ·+sn−1
boxes in the first row, s1 + s2 + · · · + sn−2 boxes in the second and so on,
ending with s1 boxes in the row n− 1.

For certain values of Λ, submodules appear in the structure of the Verma
module V Λ and the module becomes reducible. Basic case is when this
happens due to existence of a singular vector |vs⟩ ∈ V Λ:

X|vs⟩ = 0, ∀X ∈ G−. (13)

This singular vector, in turn, generates a submodule V Λ′ ∼= U(G+)|vs⟩
within V Λ.

To ensure irreducibility, all submodules corresponding to singular vectors
must be factored out. However, after factoring out these submodules, new
singular vectors may appear in the remaining space – called subsingular
vectors. Namely, if the union of all submodules of singular vectors is de-
noted by ĨΛ then a vector |vss⟩ ∈ V Λ is called a subsingular vector [9] if

|vss⟩ /∈ ĨΛ and:

X|vss⟩ ∈ ĨΛ, ∀X ∈ G−. (14)

Just as singular vectors, subsingular vectors also generate submodules that
have to be factored out when looking for irreducible representations.

In the particular case of osp(1|2n) there are always, irrespectively of d value,
singular vectors of the form:

|vαs ⟩ ≡ (a†−(α+1),α)
sα+1|v0⟩, α = 1, 2, . . . n− 1, (15)

(when considering cases of unitary and therefore finite dimensional SU(n)
representations µ, related to integer values of sα). Of special interest thus
are additional d-dependant singular vectors.

Our analysis of the Verma module structure heavily relied on the computer
analysis and was carried out in the following general manner (that we just
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briefly describe). First, Kac determinant of a sufficiently high level was
considered as a function of parameter d (for each given class of SU(4)
representation µ). In this way it was possible to locate the highest value
of d for which the determinant vanishes and the Verma module becomes
reducible. The singular or subsingular vector responsible for the singularity
of the Kac matrix was then calculated, effectively by solving an (optimized)
system of linear equations. Next we would find the norm of this vector and
look for possible additional discrete reduction points at (lower) values of
d for which the norm also vanishes. If new reduction points with new
(sub)singular vectors were found it was also necessary to check that, upon
removal of the corresponding submodules, no vectors with zero or negative
norm remained. For this, it was enough to check that previously found
(sub)singular vectors (i.e. those occurring for higher d values) belonged to
the factored-out submodules. Optimized Wolfram Mathematica code was
written to perform all these calculations. The analysis was carried out for
n ≤ 4 cases and the results turned out to be readily generalizable to the
case arbitrary n. Classification of parabose UIR’s is given in the following
list, where the allowed values of the parameter d are given for different
possible cases of parameters s1, s2, . . . , sn−1 values:

• s1 = s2 = · · · = sn−1 = 0, i.e. ”unique vacuum” UIR’s:

d > (n− 1)/2;

d = (n− 1)/2, |v(1,1,1,...,1,1,1,1)ss ⟩;
d = (n− 2)/2, |v(0,1,1,...,1,1,1,1)ss ⟩;

. . .

d = 2/2, |v(0,0,0,...,0,1,1,1)ss ⟩;
d = 1/2, |v(0,0,0,...,0,0,1,1)s ⟩;
d = 0/2, |v(0,0,0,...,0,0,0,1)s ⟩;

(16)

• s1 = s2 = · · · = sn−2 = 0, sn−1 > 0, i.e. single row tableaux UIR’s:

d > sn−1/2 + (n− 1 + 1)/2;

d = sn−1/2 + (n− 1)/2, |v(1,1,1,...,1,1,0)ss ⟩;
d = sn−1/2 + (n− 1− 1)/2, |v(0,1,1,...,1,1,0)ss ⟩;

. . .

d = sn−1/2 + 4/2, |v(0,0,...,1,1,1,0)ss ⟩;
d = sn−1/2 + 3/2, |v(0,0,...,0,1,1,0)s ⟩;
d = sn−1/2 + 2/2, |v(0,0,...,0,0,1,0)s ⟩;

(17)

• . . .

• s1 = 0, s2 > 0, i.e. (n− 2) rows tableaux UIR’s:

d > (s2 + · · ·+ sn−1)/2 + n− 3/2;

d = (s2 + · · ·+ sn−1)/2 + n− 3/2, |v(1,1,0,...,0,0,0)s ⟩;
d = (s2 + · · ·+ sn−1)/2 + n− 4/2, |v(0,1,0,...,0,0,0)s ⟩;

(18)
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• s1 > 0, i.e. (n− 1) rows tableaux UIR’s:

d > (s1 + · · ·+ sn−1)/2 + n− 1;

d = (s1 + · · ·+ sn−1)/2 + n− 1, |v(1,0,0,...,0,0,0)s ⟩. (19)

For each allowed value of d, existence of a corresponding singular or subsin-
gular vector is indicated, using the following notation: ss in the lower index
stands for ”subsingular” whereas s means ”singular” vector; in the upper
index we give ”relative weight” of the vector – if the (sub)singular vector
generates Verma submodule of weight Λ′ the the relative weight is Λ′ − Λ.
For UIR’s from continuous d range, no (sub)singular vectors appear.

3. Construction of parabose UIR’s

In this section we will use a Clifford algebra variant of Green’s ansatz,
first proposed by Greenberg and Macrae [8], to explicitly construct the
listed parabose UIR’s. Note, that, whereas Greenberg and Messieah have
discussed use of Green’s ansatz only for construction of ”unique vacuum”
UIR’s [3], we will demonstrate that Green’s ansatz suffices for construction
of all discrete UIR’s.

The method cannot be applied to UIR’s from the continuous spectre, i.e.
those UIR’s that occur for non (half)integer values of parameter d. How-
ever, from the physical viewpoint, representations from the discrete spectre
(d taking discrete (half)integer values less or equal to the first reduction
point) are of greater significance since only in these cases singular or sub-
singular vectors appear. It is well known that these vectors turn into im-
portant equations of motion (e.g. see [9]). In the particular case of the
parabose generalization of supersymmetry, these vectors, for example, turn
into Klein-Gordon, Dirac and Maxwell equations [5].

In the same paper where he first introduced parabose (and parafermi) alge-
bra [1], H.S.Green has also offered a way to construct some of the unitary
representations using what is nowadays known as the Green’s ansatz (3).
Greenberg and Macrea in [8] introduced a ”gauge-invariant” variant of the
Green’s ansatz, representing the annihilation parabose operators as the fol-
lowing sum:

aα =
∑p

a=1 a
a
α ea. (20)

In this expression integer p is the order of the parastatistics, ea are elements
of a real Clifford algebra3:

{ea, eb} = 2δab (21)

and operators aaα together with adjoint aa†α satisfy ordinary bosonic algebra
relations. There are total of n ·p mutually commuting pairs of annihilation-

creation operators (aaα, a
a†
α ):

[aaα, a
b†
β ] = δβαδ

ab; [aaα, a
b
β] = 0, (22)

3Greenberg has also considered using complex Clifford algebra instead of real one, but
that case requires altering of parabose algebra relations.
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where a, b = 1, 2, . . . p and α, β = 1, 2, . . . n.

The overall Green’s ansatz representation space of order p can be seen
as tensor product of p multiples of Hilbert spaces Ha of ordinary linear
harmonic oscillator in n-dimensions multiplied by the representation space
of matrix representation of the Clifford algebra:

H = H1 ⊗H2 ⊗ · · · ⊗ Hp ⊗ C2[p/2] . (23)

A single factor Hilbert space Ha is the space of unitary representation of

n dimensional bose algebra of operators (aaα, a
a†
α ), α = 1, 2, . . . n: Ha

∼=
U(aa†α )|0⟩a, where |0⟩a is the usual Fock vacuum of factor space Ha.

It is clear that no negative or zero norm states appear in this space. There-
fore, if we can find, in this framework, a lowest weight vector |v0⟩ of a proper
weight (corresponding to UIR’s classified in the previous section) then the
vectors of the form P(X)|v0⟩,P(X) ∈ U(G+) will span that representation
space.

The unique vacuum representations of order p are constructed upon lowest

weight vector |v{0,...,0,d}0 ⟩ of the form:

|0p, w0⟩ ≡ |0⟩1 ⊗ |0⟩2 ⊗ · · · ⊗ |0⟩p ⊗ w0, (24)

where w0 is an arbitrary (column) vector from C2[p/2] of unit norm (scalar

product in C2[p/2] is defined in usual way). All representations with (half)
integer d from the class (17) of the UIR’s classification can be constructed
in this manner. The order of parastatistics has, for this class, the following
connection with the UIR signature: p = 2d.

However, construction of the ”unique vacuum”, i.e. s1 = s2 = · · · = sn−1 =
0 representations within Green’s ansatz was known already to Green and
Greenberg [1, 3]. The nontrivial part is construction of other representa-
tions, in which the lowest weight state carries nontrivial representation of
the SU(n) subgroup. A key step toward this end is a specific ”pairing” of
factor spaces. We define operators:

A
(k)†
α± ≡ 1√

2
(a2k−1†

α ± ie(k)a
2k†
α ), (25)

where e(k) ≡ −ie2k−1e2k are mutually commuting ([e(k), e(l)] = 0) and
hermitian, and, by a convention, Green’s index put in brackets enumerates
”pairs” of factors spaces.

We note the following important relations satisfied by the operators (25):

[A
(k)
α±, A

(l)†
β± ] = δklδαβ , [A

(k)
α±, A

(l)†
β∓ ] = 0, (26)

where A
(k)
α± = (A

(k)†
α± )† = 1√

2
(a2k−1

α ∓ ie(k)a
2k
α ). In other words, operators

(A
(k)†
α+ , A

(k)
α+) and (A

(k)†
α− , A

(k)
α−) are two independent sets of bose creation-

annihilation operators.
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Expressed using these operators, the parabose operator aα has the following
form:

aα =

[p/2]∑
k=1

√
2e2k−1A

(k)
α− + ϵ epa

p
α, (27)

where ϵ ≡ (p mod 2). This form directly follows from the definitions (20,

25) and relation e2k−1A
(k)
α±e2k−1 = A

(k)
α∓. The last term is simply a remain-

der left after the pairing, that exists when p is odd.

From (27) it immediately follows that parabose operators aα will annihilate

any state built by acting of A
(l)†
β+ operators upon the Fock vacuum of order

p:

aαP(A
(k)†
β+ )|0p, w0⟩ = 0, (28)

with P(A
(k)†
β+ ) denoting arbitrary polynomial of the operators (25).

On the other hand, such states transform nontrivially under action of SU(n)
subgroup, which is readily seen from:

{a†α, aβ} = pδαβ + 2

[p/2]∑
k=1

(A
(k)†
α+ A

(k)
β+ +A

(k)†
α− A

(k)
β−) + ϵ 2ap†α apβ. (29)

It is this combination of properties that allows us to easily construct lowest
weight states of non-unique vacuum representations by using operators (25).

The discrete UIR’s that correspond to single row Young tableaux (17) are
constructed upon the lowest weight state of the form (up to normalization):

|v{0,...,0,sn−1,d}
0 ⟩ ∼ (A

(1)†
n+ )sn−1 |0p, w0⟩, (30)

where p = 2d− sn−1. Note that such UIR’s are obtainable for p ≥ 2.

Those discrete UIR’s corresponding to double rows Young tableaux are

constructed by using antisymmetrized products of two A
(k)†
α+ operators:

|v{0,...,0,sn−2,sn−1,d}
0 ⟩ ∼ (A

(1)†
n+ A

(2)†
n−1+ −A

(1)†
n−1+A

(2)†
n+ )sn−2(A

(1)†
n+ )sn−1 |0p, w0⟩,

(31)
where p = 2d− sn−2 − sn−1. Such UIR’s are obtainable for p ≥ 4, that is,
at least two pairs of factor spaces are needed.

Construction of UIR’s that correspond to Young tableaux with more rows
follows the same obvious pattern.

By inspecting the classification of parabose UIR’s (16-19) it is evident that
all representations for which 2d ∈ N can be constructed in this manner,
in particular all representations corresponding to appearance of additional
(sub)singular vectors.
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4. On a symmetry of the ansatz

We note that this Clifford variant of the Green’s ansatz possesses an in-
trinsic SO(p) symmetry generated by the following hermitian operators:

Gab ≡
n∑

α=1

i(aa†α abα − ab†α aaα) +
i

4
[ea, eb], (32)

where ea = ea. Note that two terms in (32) resemble orbital and spin parts
of rotation generators and that all vectors from the space (23) of Green’s
ansatz belong to spinorial representations of this symmetry group. These
generators commute with entire parabose algebra:

[Gab, aα] = 0, (33)

and this fact can help to solve problem of the reducibility of the Green’s
ansatz space (23) for a given p. Namely, due to this commutativity, all
states from (23) are, apart from osp(1|2n) quantum numbers, also labelled
by quantum numbers of some (spinorial) UIR of SO(p). Besides, behaviour
of the vectors from (23) under action of SO(p) group (32) is determined
solely by transformation properties of the corresponding lowest weight vec-
tor |v0⟩. This is easily seen as all vectors belonging to a parabose UIR
determined by the lowest weight vector |v0⟩ can be written as

P(X)|v0⟩,P(X) ∈ U(G+), (34)

while
GabP(X)|v0⟩ = P(X)Gab|v0⟩. (35)

With a suitable choice of positive root system of the so(p) algebra, it can
be shown that osp(1|2n) lowest weight vectors of the form (30-31) are, at
the same time, the highest (lowest) weight vectors of certain SO(p) UIR’s.
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Generalization of the Gell–Mann Decontraction
Formula for sl(n,R) and Its Applications
in Affine Gravity

Igor Salom and Djordje Šijački

Abstract The Gell–Mann Lie algebra decontraction formula was proposed as
an inverse to the Inonu–Wigner contraction formula. We considered recently this
formula in the content of the special linear algebras sl(n), of an arbitrary dimension.
In the case of these algebras, the Gell–Mann formula is not valid generally, and holds
only for some particular algebra representations. We constructed a generalization
of the formula that is valid for an arbitrary irreducible representation of the sl(n)
algebra. The generalization allows us to explicitly write down, in a closed form, all
matrix elements of the algebra operators for an arbitrary irreducible representation,
irrespectively whether it is tensorial or spinorial, finite or infinite dimensional, with
or without multiplicity, unitary or nonunitary. The matrix elements are given in
the basis of the Spin(n) subgroup of the corresponding SL(n,R) covering group,
thus covering the most often cases of physical interest. The generalized Gell–Mann
formula is presented, and as an illustration some details of its applications in the
Gauge Affine theory of gravity with spinorial and tensorial matter manifields are
given.

1 Introduction

The Inönü–Wigner contraction [7] is a well known transformation of algebras
(groups) with numerous applications in various fields of physics. Just to mention
a few: contractions from the Poincaré algebra to the Galilean one; from the
Heisenberg algebras to the Abelian ones of the same dimensions (a symmetry
background of a transition processes from relativistic and quantum mechanics to
classical mechanics); contractions in the Kaluza–Klein gauge theories framework;
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from (Anti-)de Sitter to the Poincaré algebra; various cases involving the Virasoro
and Kac–Moody algebras; relation of strong to weak coupling regimes of the
corresponding theories; relation of geometrically curved to “less curved” and/or flat
spaces. . ..

However, existence of a transformation (i.e. algebra deformation) inverse to the
Inönü–Wigner contraction, so called the “Gell–Mann formula” [1,3,5,6], is far less
known. The aim of the formula is to express the elements of the starting algebra
as explicitly given expressions containing elements of the contracted algebra.
In this way, a relation between certain representations of the two algebras is also
established. This, in turn, can be very useful since, by a rule, various properties of the
contracted algebras are much easier to explore (e.g. construction of representations
[8], decompositions of a direct product of representations [5], etc.).

Before we write down the Gell–Mann formula in the general case, some notation
is in order. Let A be a symmetric Lie algebra A = M + T with a subalgebra M
such that:

[M ,M ]⊂ M , [M ,T ]⊂ T , [T ,T ]⊂ M . (1)

Further, let A ′ be its Inönü–Wigner contraction algebra w.r.t its subalgebra M , i.e.
A ′ = M +U , where

[M ,M ]⊂ M , [M ,U ]⊂ U , [U ,U ] = {0}. (2)

The Gell–Mann formula states that the elements T ∈ T can be in certain cases
expressed in terms of the contracted algebra elements M ∈ M and U ∈ U by the
following rather simple expression:

T = i
α√

U ·U [C2(M ),U ]+σU. (3)

Here, C2(M ) and U ·U denote the second order Casimir operators of the M and
A ′ algebras respectively, while α is a normalization constant and σ is an arbitrary
parameter. For a mathematically more strict definition, cf. [3].

Probably the main reason why this formula is not widely known—in spite of its
potential versatility—is the lack of its general validity. Namely, there is a number of
references dealing with the question when this formula is applicable [1, 5, 6, 14].
Apart form the case of (pseudo) orthogonal algebras where, loosely speaking,
the Gell–Mann formula works very well [17], there are only some subclasses of
representations when the formula can be applied [5, 6]. To make the things worse,
the question of its applicability is not completely resolved.

Recently, we studied the SL(n,R) group cases, contracted w.r.t the maximal
compact Spin(n) subgroups. By SL(n,R) we denote the double cover of SL(n,R).
Note that there faithful spinorial representations are always infinite dimensional and
physically correspond to fermionic matter. In these cases the Gel–Mann formula
does not hold as a general operator expression and its validity depends heavily on the
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sl(n,R) algebra representation space. An exhaustive list of the cases for which the
Gell–Mann formula for sl(n,R) algebras hold was obtained [14]. In particular, we
have shown that the Gell–Mann formula is not valid for any spinorial representation,
nor for any representation with nontrivial Spin(n) multiplicity, rendering the Gell–
Mann formula here useless for most of physical applications.

There were some attempts to generalize the Gell–Mann formula for the
“decontracted” algebra operators of the complex simple Lie algebras g with respect
to decomposition g = k + ik = kc [9, 19], that resulted in a form of relatively
complicated polynomial expressions. Recently we have managed to obtain a
generalized form of this formula, first in the concrete case of sl(5,R) algebra,
and then also in the case of sl(n,R) algebra, for any n.

In this paper we shall consider the obtained generalized expressions and illustrate
applicability of the formula in the context of affine theory of gravity. In particular,
we analyze the five dimensional affine gravity models.

2 Generalized Formula

The sl(n,R) algebra operators, i.e. the SL(n,R), SL(n,R) group generators, can
be split into two subsets: Mab, a,b = 1,2, . . . ,n operators of the maximal compact
subalgebra so(n) (corresponding to the antisymmetric real n× n matrices, Mab =
−Mba), and the, so called, sheer operators Tab, a,b = 1,2, . . . ,n (corresponding to
the symmetric traceless real n× n matrices, Tab = Tba). The sl(n,R) commutation
relations, in this basis, read:

[Mab,Mcd ] = i(δacMbd + δadMcb − δbcMad − δbdMca), (4)

[Mab,Tcd ] = i(δacTbd + δadTcb − δbcTad − δbdTca), (5)

[Tab,Tcd ] = i(δacMdb + δadMcb + δbcMda + δbdMca). (6)

The Inönü–Wigner contraction of sl(n,R) with respect to its maximal compact
subalgebra so(n) is given by the limiting procedure:

Uab ≡ lim
ε→0

(εTab), (7)

which leads to the following commutation relations:

[Mab,Mcd ] = i(δacMbd + δadMcb − δbcMad − δbdMca) (8)

[Mab,Ucd ] = i(δacUbd + δadUcb − δbcUad − δbdUca) (9)

[Uab,Ucd ] = 0. (10)
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Therefore, the Inönü–Wigner contraction of sl(n,R) gives a semidirect sum
r n(n+1)

2 −1

⊎
so(n) algebra, where r n(n+1)

2 −1
is an Abelian subalgebra (ideal) of

“translations” in n(n+1)
2 − 1 dimensions.

The generalized Gell–Mann formula for sl(n,R), obtained in [15], reads:

T σ2...σn
ab = i

n

∑
c=2

1
2
[C2(so(c)K),U

(cc)
ab ]+σcU

(cc)
ab . (11)

Operators Tab live in the space L 2(Spin(n)) of square integrable functions over
the Spin(n) manifold and it is known that this space is rich enough to contain all
representatives from equivalence classes of the SL(n,R) group, i.e. sl(n,R) algebra
representations [2]. A natural discrete orthonormal basis in this space is given by
properly normalized functions of the Spin(n) representation matrix elements:

{∣
∣
∣
∣
{J}
{k}{m}

〉

≡
∫ √

dim({J})D{J}
{k}{m}(g

−1)dg |g〉
}

,

〈 {J′} {J}
{k′}{m′} {k}{m}

〉

= δ{J′}{J}δ{k′}{k}δ{m′}{m}, (12)

where dg is an (normalized) invariant Haar measure and D{J}
{k}{m} are the Spin(n)

irreducible representation matrix elements:

D{J}
{k}{m}(g)≡

〈 {J}
{k}

∣
∣
∣
∣R(g)

∣
∣
∣
∣
{J}
{m}

〉

. (13)

Here, {J} stands for a set of the Spin(n) irreducible representation labels, while {k}
and {m} labels enumerate the dim(D{J}) representation basis vectors.

In the basis (12) sets of labels {J} and {m} determine transformation properties
of a basis vector under the Spin(n) subgroup: {J} label irreducible representation
of Spin(n), while numbers {m} label particular vector within that representation.
The set of parameters {k} serve to enumerate Spin(n) multiplicity of representation
{J} within the given representation of SL(n,R). These parameters {k} are math-
ematically related to the left action of Spin(n) subgroup in representation space
L 2(Spin(n)).

Operators U (cc)
ab appearing in (11) are concrete (normalized) representations

(in L 2(Spin(n)) space) of the Inönü–Wigner contractions of shear generators Tab.
In basis (12) these operators act in the following way:

〈 {J′}
{k′}{m′}

∣
∣
∣
∣U

(cd)
ab

∣
∣
∣
∣
{J}
{k}{m}

〉

=
√

dim({J})
dim({J′})C

{J} {J′}
{k}(cd){k′}C{J} {J′}

{m}(ab){m′} , (14)

where denotes Spin(n) representation that corresponds to second order symmet-
ric tensors (shear generators, as well as their Inönü–Wigner contractions, transform
in this way w.r.t. Spin(n) subgroup) and C stands for Clebsch–Gordan coefficients
of Spin(n).
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In (11) we also used notation C2(so(c)K) ≡ 1
2 ∑c

a,b=1(Kab)
2, where Kab are

generators of Spin(n) group left action in basis (12). These operators behave exactly
as the rotation generators Mab, but, instead of acting on right-hand {m} indices, they
act on the lower left-hand side indices {k} that label multiplicity:

〈
{J′}
{k′}{m′}

∣
∣
∣
∣Kab

∣
∣
∣
∣
{J}
{k}{m}

〉

= δ{J′}{J}δ{m′}{m}
√

C2({J}) C{J} {J′}
{k}(ab){k′}

. (15)

Finally, the set of n − 1 indices σ2,σ3, . . .σn in (11) label the particular
representation of the SL(n,R). The formula (11) covers all cases: infinite and finite
dimensional representations, spinorial and tensorial, with and without multiplicity,
unitary and non unitary.

We note that the term c = n in (11) is, essentially, the original Gell–Mann
formula, since C2(so(n)K) = C2(so(n)M). The rest of the terms can be seen as
necessary corrections securing the formula validity in the entire representation
space. The additional terms vanish for some particular representations thus yielding
the original formula.

An immediate mathematical benefit of the generalized formula is the expression
for matrix elements of shear generators in basis (12) [15]:

〈 {J′}
{k′}{m′}

∣
∣
∣
∣Tab

∣
∣
∣
∣
{J}
{k}{m}

〉

= i
2

√
dim({J})
dim({J′}) C {J} {J′}

{m} ab {m′}

×∑n
c=2

√
c−1

c

(
C2(so(c){k′})−C2(so(c){k})+ σ̃c

)
C {J}( )n−c+1{J′}

{k} (0)c−2 {k′} .
(16)

In order to demonstrate application of this result in the context of five dimen-
sional affine gravity models, we introduce a concrete n = 5 adapted notation (for
all n = 5 notation we adhere to that of our paper [13]). As a basis for Spin(5)
representations we pick vectors:

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

J1 J2

J1 J2

m1 m2

〉

,Ji = 0,
1
2
, . . . ;J1 ≥ J2;mi =−Ji, . . .Ji

⎫
⎬

⎭
. (17)

with respect to decomposition so(5) ⊃ so(4) = so(3)⊕ so(3). Basis of SL(5,R)
representation space, corresponding to (12) is then given by vectors:

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

J1 J2

K1 K2 J1 J2

k1 k2 m1 m2

〉⎫
⎬

⎭
. (18)

The reduced matrix elements of the sl(5,R) shear (noncompact) operators, derived
from an alternative form of Gell–Mann formula that we have given in the paper [13],
read:
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〈
J
′
1 J

′
2

K ′
1K ′

2
k′1 k′2

∣
∣
∣
∣

∣
∣
∣
∣T

∣
∣
∣
∣

∣
∣
∣
∣

J1 J2
K1K2
k1 k2

〉

=
√

dim(J1,J2)

dim(J′1,J′2)

×
(
(

σ1+i
√

4
5 (J

′
1(J

′
1+2)+J′2(J

′
2+1)−J1(J1+2)−J2(J2+1))

)

C
J1 J2 11 J′1 J′2
K1K2 00 K′

1K′
2

k1 k2 00 k′1 k′2

+ i(σ2+K′
1(K

′
1+1)+K′

2(K
′
2+1)−K1(K1+1)−K2(K2+1))C

J1 J2 11 J′1 J′2
K1K2 11 K′

1K′
2

k1 k2 00 k′1 k′2

− i(δ1+k1−k2)C
J1 J2 11 J′1 J′2
K1K2 11 K′

1K′
2

k1 k2 1−1 k′1 k′2
− i(δ1−k1+k2)C

J1 J2 1 1 J′1 J′2
K1K2 1 1 K′

1K′
2

k1 k2 −11 k′1 k′2

+ i(δ2+k1+k2)C
J1 J2 11 J′1 J′2
K1K2 11 K′

1K′
2

k1 k2 11 k′1 k′2
+ i(δ2−k1−k2)C

J1 J2 1 1 J′1 J′2
K1K2 1 1 K′

1K′
2

k1 k2 −1−1 k′1 k′2

)

,

(19)

where dim(J1,J2) = (2J1 − 2J2 + 1)(2J1 + 2J2 + 3)(2J1 + 2)(2J2 + 1)/6 is the
dimension of the so(5) irreducible representation characterized by (J1,J2). In this
notation, SL(5,R) irreducible representations are labelled by parameters σ1,σ2,δ1

and δ2, that appear in the formula (19).

3 Gauge Affine Action

The space-time symmetry of the affine models of gravity (prior to any symme-
try breaking) is given by the General Affine Group GA(n,R) = T n ∧ GL(n,R)
(or, sometimes, by the Special Affine Group SA(n,R) = T n ∧ SL(n,R)). In the
quantum case, the General Affine Group is replaced by its double cover counterpart
GA(n,R) = T n ∧GL(n,R), which contains double cover of GL(n,R) as a subgroup.
This subgroup here plays the role that Lorentz group has in the Poincaré symmetry
case. Thus it is clear that knowledge of GL(n,R) representations is a must-know
for any serious analysis of affine gravity models. On the other hand, the essential
nontrivial representation determining part of the GL(n,R) = R+ ⊗ SL(n,R) group
is its SL(n,R) subgroup (R+ is subgroup of dilatations). We will make use of the
SL(n,R) matrix elements expression in order to obtain coefficients for some of the
gauge field–matter interaction vertices.

A standard way to introduce interactions into affine gravity models is by
localization of the global affine symmetry GA(n,R) = T n ∧GL(n,R). Thus, quite
generally, affine Lagrangian consists of a gravitational part (i.e. kinetic terms for
gauge potentials) and Lagrangian of the matter fields: L = Lg + Lm. Gravitational
part Lg is a function of gravitational gauge potentials and their derivatives, and
also of the dilaton field ϕ (that ensures action invariance under local dilatations).
In the case of the standard Metric Affine [4], i.e. Gauge Affine Gravity [10], the
gravitational potentials are tetrads ea

μ , metrics gab and affine connection Γ a
bμ , so

that we can write: Lg = Lg(e,∂e,g,∂g,Γ ,∂Γ ,ϕ). More precisely, due to action
invariance under local affine transformations, gravitational part of Lagrangian must
be a function of the form Lg = Lg(e,g,T,R,N,ϕ), where T a

μν = ∂μea
ν +Γ a

bμeb
ν −

(μ ↔ ν), Ra
bμν = ∂μΓ a

bν +Γ c
bμΓ a

cν − (μ ↔ ν), Nμab = Dμgab are, respectively,
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torsion, curvature and nonmetricity. Assuming, as usual, that equations of motion
are linear in second derivatives of gauge fields, we are confined to no higher than
quadratic powers of the torsion, curvature and nonmetricity. Covariant derivative is
of the form Dμ = ∂μ − iΓ b

a μQ a
b , where Q a

b denote generators of GL(n,R) group.
The matter Lagrangian (assuming minimal coupling for all fields except the dilaton
one) is a function of some number of affine fields φ I and their covariant derivatives,
together with metrics and tetrads (affine connection enters only through covariant
derivative): Lm = Lm(φ I ,Dφ I ,e,g).

With all these general remarks, we will consider a class of affine Lagrangians, in
arbitrary number of dimensions n, of the form:

L(e a
μ ,∂ν e a

μ ,Γ
a

bμ ,∂νΓ a
bμ ,gab,ΨA,∂νΨA,ΦA,∂νΦA,ϕ ,∂ν ϕ) =

e
[
ϕ2R−ϕ2T 2 −ϕ2N2 +

Ψ̄ igabγae μ
b DμΨ + 1

2 gabe μ
a e ν

b (DμΦ)+(DνΦ)+ 1
2 gabe μ

a e ν
b DμϕDν ϕ

]
. (20)

The terms in the first row represent general gravitational part of the Lagrangian,
that is invariant w.r.t. affine transformations (dilatational invariance is obtained with
the aid of field ϕ , of mass dimension n/2− 1). Here T 2 and N2 stand for linear
combination of terms quadratic in torsion and nonmetricity, respectively, formed
by irreducible components of these fields. For the scope of this paper, we need not
fix these terms any further. This is a general form of gravitational kinetic terms,
invariant for an arbitrary space-time dimension n ≥ 3.

The Lagrangian matter terms, invariant w.r.t. the local GA(n,R), n≥3,
transformations, are written in the second row. The field Ψ denotes a spinorial
GL(n,R) field—components of that field transform under some appropriate spino-
rial GL(n,R) irreducible representations. All spinorial GL(n,R) representations
are necessarily infinite dimensional [11], and thus the field Ψ will have infinite
number of components. The concrete spinorial irreducible representation of field Ψ
is given by a set of n− 1 SL(n,R) labels {σΨ

c } together with the dilatation charge
dΨ . The field Φ is a representative of a tensorial GL(n,R) field, transforming
under a tensorial GL(n,R) representation (i.e. one transforming w.r.t. single-valued
representation of the SO(n) subgroup) labelled by parameters {σΦ

c } and dΦ . Since,
as it is briefly argued later, the noncompact SL(n− 1,R) affine subgroup is to be
represented unitarily, the tensorial field Φ is also to transform under an infinite-
dimensional representation and to have an infinite number of components. The
remaining dilaton field ϕ is scalar with respect to SL(n,R) subgroup, and thus has
only one component.

Interaction of affine connection with matter fields is determined by terms
containing covariant derivatives. We write these terms in a component notation,
where the component labelling is done with respect to the physically important
Lorenz Spin(1,n−1) subgroup of GL(n,R). Such a labelling allows, in principle, to
identify affine field components with Lorentz fields of models based on the Poincaré
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symmetry. Namely, the affine models of gravity necessarily imply existence of
some symmetry breaking mechanism that reduces the global symmetry to the
Poincaré one, reflecting the subgroup structure T n ∧SO(1,n− 1)⊂ T n ∧GL(n,R).
Therefore, we consider the field Ψ (and similarly for Φ field) as a sum of its Lorentz
components:

∑
{J}

{k}{m}

Ψ {J}
{k}{m}

∣
∣{J}
{k}{m}

〉
.

The interaction term connecting fields gcd , e μ
d , Γ ab

μ , Ψ̄{J}
{k}{m}, Ψ{J′}

{k′}{m′} is now:

gcde μ
d Γ ab

μ Ψ̄{J}
{k}{m}Ψ

{J′}
{k′}{m′} ∑

{J′′}
{k′′}{m′′}

〈{J}
{k}{m}

∣
∣γc
∣
∣{J′′}
{k′′}{m′′}

〉〈{J′′}
{k′′}{m′′}

∣
∣Qab

∣
∣{J′}
{k′}{m′}

〉
, (21)

while the interaction of tensorial field with connection is given by:

− i
2 gcde μ

c e ν
d Γ ab

ν ∂μΦ†{J}
{k}{m}Φ{J′}

{k′}{m′}
〈{J}
{k}{m}

∣
∣Qab

∣
∣{J′}
{k′}{m′}

〉
+ (22)

i
2 gcde μ

c e ν
d Γ ab

ν Φ†{J}
{k}{m}∂μΦ{J′}

{k′}{m′}
〈{J′}
{k′}{m′}

∣
∣Qab

∣
∣{J}
{k}{m}

〉∗
+ (23)

1
2 gcde μ

c e ν
d Γ ab

μ Γ a′b′
ν Φ†{J}

{k}{m}∂μΦ{J′}
{k′}{m′}·

∑ {J′′}
{k′′}{m′′}

〈{J}
{k}{m}

∣
∣Qab

∣
∣{J′′}
{k′′}{m′′}

〉〈{J′′}
{k′′}{m′′}

∣
∣Qa′b′

∣
∣{J′}
{k′}{m′}

〉
. (24)

The scalar dilaton field interact only with the trace of affine connection:

1
2 gabe μ

a e ν
b (∂μ − iΓ a

a μdϕ)ϕ(∂ν − iΓ a
a νdϕ)ϕ , (25)

where dϕ denotes dilatation charge of ϕ field.
In the above interaction terms we note an appearance of matrix elements of

GL(n,R) generators, written in a basis of the Lorenz subgroup Spin(1,n − 1).
The dilatation generator (that is, the trace Qa

a) acts merely as multiplication by
dilatation charge, so it is really the SL(n,R) matrix elements that should be
calculated. (An infinite dimensional generalization of Dirac’s gamma matrices also
appear in the term (21); more on these matrices can be found in papers of Šijački
[18].) However, before presenting examples of the matrix elements evaluations, and
thus calculations of the vertex coefficients, it is due to note that the correct physical
interpretation of the SL(n,R) representations requires these representations to be
unitary w.r.t. its SL(n− 1,R) subgroup and to be nonunitary w.r.t. its lorentz-like
Spin(1,n−1) subgroup. It turns out that these requirements can be properly satisfied
by making use of the so called deunitarizing automorphism [11].
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4 Gauge Affine Symmetry Vertex Coefficients Evaluation

Now we return to evaluation of vertex coefficients for interaction between various
Lorentz components of the GL(n,R) fields. The nontrivial part is to find matrix
elements of SL(n,R) shear generators in expressions (21)–(24), and, to do that in
n = 5 case we will use expression (19). However, this formula is given in the basis
of the compact Spin(n) subgroup, and not in the basis of the physically important
Lorentz group Spin(1,n−1). On the other hand, it turns out that taking into account
deunitarizing automorphism exactly amounts to keeping reduced matrix element
from (16) and replacing the remaining Clebsch–Gordan coefficient of the Spin(n)
group by the corresponding coefficient of the Lorenz group Spin(1,n− 1) [12].

As the first example, let the field Φ correspond to an unitary multiplicity free
SL(5,R) representation, defined by labels σ2 = −4,δ1 = δ2 = 0, with σ1 arbitrary
real. The representation space is spanned by vectors (18) satisfying J1 = J2 = J ∈
N0 +

1
2 ;K1 = K2 = 0;J1 = J2 = J ≤ J. This is a simplest class of multiplicity free

representations that is unitary assuming usual scalar product. If we denote Φa,a =
1 . . .5 the five Φ components with J1 = J2 = 1

2 (in this sense Φa corresponds to a
Lorenz 5-vector) then the interaction vertex (22) connecting fields Φa†, ∂μΦd and
affine shear connection Γ bc

ν is:

i
2

ge f e μ
e e ν

f Φa†Γ bc
ν ∂μΦd

√
5

14
σ1(ηabηdc +ηacηdb − 2

n
ηadηbc). (26)

To obtain this result we used an easily derivable formula for Clebsch–Gordan
coefficient connecting Lorentz vector and symmetric second order Lorenz tensor
representations:

CL
a (bc) d =

√
n

2(n+2)(n−1)(ηabηdc +ηacηdb − 2
n

ηadηbc), (27)

where we labelled Spin(1,n−1) irreducible representations by Young diagrams, as
in [15]. More importantly, we also used value of the reduced matrix element:

〈
1
2

1
2

0 0
0 0

∣
∣
∣
∣

∣
∣
∣
∣Q

∣
∣
∣
∣

∣
∣
∣
∣

1
2

1
2

0 0
0 0

〉

=

√
2
7

σ1, (28)

that we obtained by using formula (19) (based on this formula, a Mathematica
program was generated that directly calculates sl(5,R) matrix elements [12], taking
into account Spin(5) Clebsch–Gordan coefficients found in [16]).

It is no more difficult to obtain coefficients of the vertices of the form (24).
Lagrangian term (24) connecting Lorenz 5-vector Φ components Φ5, Φ†

5 and affine
connection component Γ(55)μ is:

1
15

(
σ2

1 − 25
)

gcde μ
c e ν

d Γ 55
μ Γ 55

ν Φ†
5 ∂μΦ5. (29)
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Next we will consider an example where Φ field corresponds to a representation
with multiplicity. Let us, again, consider 5-vector component J1 = J2 = 1

2 of Φ ,
only this time without any restriction to the values of σ1,σ2,δ1,δ2. In general, this
will correspond to a representation with non trivial multiplicity. Quantum numbers
{k} = (K1,K2,k1,k2), that label multiplicity, now can take values: ( 1

2 ,
1
2 ,

1
2 ,

1
2 ),

( 1
2 ,

1
2 ,

1
2 ,− 1

2 ), (
1
2 ,

1
2 ,− 1

2 ,
1
2 ), (

1
2 ,

1
2 ,− 1

2 ,− 1
2) and (0,0,0,0). Therefore, this a priori

corresponds to 5 observable 5-vector fields, differentiated by the {k} values, and
these five vector fields mutually interact by gravitational interaction. Part of the
Lagrangian term (22), responsible for this interaction, has the form:

i
2

ge f e μ
e e ν

f Φa†
{k′}Γ

bc
ν ∂μΦd

{k}

〈
1
2

1
2

K ′
1K ′

2

k′1 k′2

∣
∣
∣
∣

∣
∣
∣
∣Q

∣
∣
∣
∣

∣
∣
∣
∣

1
2

1
2

K1K2

k1 k2

〉
√

5√
56
(ηabηdc +ηacηdb − 2

5
ηadηbc).

(30)
The reduced matrix element is obtained from the generalized Gell–Mann formula:

〈
1
2

1
2

1
2

1
2

k′1k′2

∣
∣
∣
∣

∣
∣
∣
∣Q

∣
∣
∣
∣

∣
∣
∣
∣

1
2

1
2

1
2

1
2

k1k2

〉

=

1
4
√

14

(

− 2σ1C3

1
2 0 1

2
k1 0 k′1

C3

1
2 0 1

2
k2 0 k′2

+ 15σ2C3

1
2 1 1

2
k1 0 k′1

C3

1
2 1 1

2
k2 0 k′2

−

−15C3

1
2 1 1

2
k1 −1 k′1

(
(k1 + k2 − δ2)C3

1
2 1 1

2
k2 −1 k′2

+(−k1 + k2 + δ1)C3

1
2 1 1

2
k2 1 k′2

)

−15C3

1
2 1 1

2
k1 1 k′1

(
(k1 − k2 + δ1)C3

1
2 1 1

2
k2 −1 k′2

− (k1 + k2 + δ2)C3

1
2 1 1

2
k2 1 k′2

))

,

〈
1
2

1
2

0 0
0 0

∣
∣
∣
∣

∣
∣
∣
∣Q

∣
∣
∣
∣

∣
∣
∣
∣

1
2

1
2

K1K2

k1 k2

〉

= 0,

〈
1
2

1
2

0 0
0 0

∣
∣
∣
∣

∣
∣
∣
∣Q

∣
∣
∣
∣

∣
∣
∣
∣

1
2

1
2

0 0
0 0

〉

=
√

2
7 σ1, (31)

where C3 denotes an usual Spin(3) Clebsch–Gordan coefficient.
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7

We use O(4) ' O(3)×O(3) algebraic methods to calculate the energy-8

splitting pattern of the K = 2, 3 excited states of the Y-string in two9

dimensions. To this purpose we use the dynamical O(2) symmetry of the10

Y-string in the shape space of triangles and compare our results with known11

results in three dimensions and find qualitative agreement.12

DOI:10.5506/APhysPolBSupp.6.????
PACS numbers: 14.20.–c, 11.30.Rd, 11.40.Dw

13

1. Introduction14

QCD seems to demand a genuine three-quark confining potential: the
so-called Y-junction string three-quark potential, defined by

VY = σmin
x0

3∑
i=1

|xi − x0| , (1)

or, explicitly15

Vstring = VY = σ
√

3
2

(
ρ2 + λ2 + 2|ρ× λ|

)
. (2)

The complete Y-string potential contains “additional” two-body terms that16

are valid only in certain parts of the three-particle configuration space, and17

which we shall ignore here. The |ρ × λ| term is proportional to the area18

of the triangle subtended by the three quarks. The Y-string potential was19

proposed as early as 1975, see Refs. [1, 2] and the first schematic calculation20

(using perturbation theory) of the baryon spectrum for K ≤ 2 followed soon21

∗ Presented at the Workshop “Excited QCD 2013”, Bjelasnica Mountain, Sarajevo,
Bosnia–Herzegovina, February 3–9, 2013.
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thereafter, Ref. [3]. References [4–6] elaborated on this. The first non-per-22

turbative calculations (variational approximation) of the K = 3 band with23

the Y-string potential were published in the early 1990s, Ref. [7] and ex-24

tended to the K = 4 band later in that decade, Ref. [8]. Yet, some of the25

most basic properties, such as the ordering of the low-lying states in the26

spectrum of this potential, without the “QCD hyperfine interaction” and/or27

relativistic kinematics, remain unknown.28

The first systematic attempt to solve the Y-string spectrum, albeit only29

for the K ≤ 2 states, can be found in Ref. [9]. That paper used the hyper-30

spherical harmonics formalism, where the Y-string potential can be written31

as a function of hyper-angles32

VY = σ
√

3
2R

2 (1 + sin 2χ| sin θ|) . (3)

This led to the discovery, see Ref. [10], of a new dynamical O(2) symmetry33

in the Y-string potential, with the permutation group S3 ⊂ O(2) as the34

subgroup of the dynamical O(2) symmetry. That symmetry was further35

elaborated in Ref. [11]. The present report is a continuation of that line of36

work.37

The three-body sum of two-body potentials has only the three-body38

permutation group S3 as its symmetry. When one changes variables from the39

hyper-angles (χ, θ) to z′ = z = cos 2χ (vertical axis), and x′ = x
√

1− z2 =40

cos θ sin 2χ, one can see the full S3 symmetry, Fig. 1. The area of the triangle41 √
3
2 |ρ×λ| and the hyper-radius R are related to the Smith–Iwai variables α,42

φ as follows43

(cosα)2 =

(
2ρ× λ
R2

)2

, (4)

tanφ =

(
2ρ · λ
ρ2 − λ2

)
. (5)

The Y-string potential becomes44

VY = σ
√

3
2R

2 (1 + | cosα|) . (6)

Independence of the potential on the variable φ is equivalent to its invari-45

ance under (infinitesimal) “kinematic rotation” O(2) transformations δx′ =46

2εz
′
, δz

′
= −2εx

′ or, in terms of the original Jacobi variables, δρ = ελ, δλ =47

−ερ, in the six-dimensional hyper-space. This invariance leads to the new48

integral of motion G3 = 1
2

(
pρ · λ− pλ · ρ

)
, References [10, 11], associated49

with the dynamical symmetry (Lie) group O(2) that is a subgroup of the50

(full hyper-spherical) O(6) Lie group.51
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Fig. 1. Left: The equipotential contours for the central Y-string potential (black
solid), and the boundary between the central Y-string and two-string potentials
(blue dashes). Right: The equipotential contour plot of the ∆-string potential as
functions of z

′
= z = cos 2χ (vertical axis), and x

′
= x
√

1− z2 = cos θ sin 2χ

(horizontal axis). The three straight lines (red long dashes) of reflection symme-
try correspond to the three binary permutations, or “transpositions” S2 subgroups
of S3. The rotations through φ = ± 2π

3 correspond to two cyclic three-body per-
mutations. The rotation symmetry of the Y-string potential (left panel) about the
axis pointing out of the plane of the figure should be visible to the naked eye.

Of course, the sums of two-body potentials, such as the ∆-string poten-52

tial, are invariant only under the finite rotations through φ = ±2π
3 , that53

correspond to cyclic permutations, as well as under reflections about the54

three symmetry axes. In that case, this generalized hyper-angular momen-55

tum G3 is not an exact integral of motion, but an approximate one. The56

precise consequences in the energy spectra of systems with such a broken57

(approximate) symmetry will be shown below.58

2. The O(4) algebraic method59

The existence of an additional dynamical symmetry strongly suggests an60

algebraic approach, such as those used in Refs. [12–15]. A careful perusal61

of Ref. [12, 13] shows, however, that an O(2) group had been used as an62

enveloping structure for the (discrete) permutation group S3 ⊂ O(2), but63

was not interpreted as a (possible) dynamical symmetry. References [14, 15]64

did not use this symmetry, however. For the sake of technical simplicity,65

we confine ourselves to the two spatial dimensions here. In two dimensions66

(2D), the non-relativistic three-body kinetic energy is a quadratic form of67

the two Jacobi two-vector velocities, ρ̇, λ̇, so its “hyper-spherical symmetry”68
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is O(4), and the residual dynamical symmetry of the Y-string potential is69

O(2)⊗OL(2) ⊂ O(4), where OL(2) is the (orbital) angular momentum. As70

the O(4) Lie group can be “factored” in two mutually commuting O(3) Lie71

groups: O(4) ' O(3)⊗O(3), one may use for our purposes many of the O(3)72

group results, such as the Clebsch–Gordan coefficients. The 3D case is more73

complicated than the 2D one; for reasons of simplicity, we limit ourselves to74

the two-dimensional case in this report.75

We (re)formulate the problem in terms of O(4) symmetric variables and76

then bring the potential into a form that can be (exactly) solved, i.e. we77

expand it in O(4) hyperspherical harmonics YJJLM . The energy spectrum78

is a function of the O(4) hyperspherical expansion coefficients for the po-79

tential, and of the O(4) Clebsch–Gordan coefficients, that are products of80

the ordinary O(3) Clebsch–Gordan coefficients. As the potential is OL(2)81

“rotation-symmetric”, we have an additional constraint on the allowed hy-82

perspherical harmonics and one finds that for values of K ≤ 3 one needs83

only three terms: (1) the “hyper-spherical average”, i.e. the Y00
00 matrix el-84

ement, (2) the area-term containing the O(4) hyperspherical harmonic Y22
0085

(which is related to the O(3) spherical harmonic Y20(α, φ) of the shape space86

(hyper)spherical angles (α, φ), i.e., the V4 term in the notation of Richard87

and Taxil [17]) that is present in both the two-body and the Y-string poten-88

tials; and (3) the O(2) symmetry-breaking term containing Y33
0±3'Y3±3(α, φ),89

i.e., the V6 term in the notation of Richard and Taxil [17], that is important90

in the two-body potentials, and not at all in the Y-string potential Eq. (2).91

3. Results92

We have evaluated the K = 2, 3 bands’ splittings in 2D, Ref. [16] and93

compare them with the 3D case, Ref. [17]:94

(1) The only difference between the 2D and 3D K = 2 states’ splittings is95

that the [70, 0+] and [56, 2+] states are degenerate in 2D, whereas in96

3D they are split by one half of the energy difference between [70, 2+]97

and [70, 0+]. This shows that the 2D case does relate fairly closely to98

the 3D one.99

(2) We compare our 2D Y-string potential K=3 results with the 3D K=3100

two-body potential results of Ref. [17] and find certain similarities, and101

a few distinctions. There are six SU(6) multiplets in the K = 3 sector102

(other than the hyper-radial excitation [70, 1−]
′′ of the K = 1 state):103

[20, 1−], [56, 1−], [70, 3−], [56, 3−], [70, 2−], [20, 3−] in 3D. The main104

difference between the 2D and 3D is that the [70, 2−] state disappears105

in 2D.106
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In 3D two-body potential the energy splittings can be divided in two107

parts in Ref. [17]: (a) those due to the V4 perturbation; and (b) due to the108

V6 perturbation. This corresponds to our Y20 and Y3±3 terms, respectively.109

(a) In the V4 6= 0, V6 → 0 limit, the states can be (roughly) divided in110

two groups: the [20, 1−], [56, 1−], [70, 3−] which are pushed down, and111

the [56, 3−], [70, 2−], [20, 3−] which are pushed up by the V4 pertur-112

bation. Two pairs of states are left degenerate: ([20, 1−], [56, 1−]) in113

the lower set and ([56, 3−], [20, 3−]) in the upper set. In this limit,114

in 2D we find complete degeneracy of all three members of the lower-115

([20, 1−], [56, 1−], [70, 3−]) and upper levels ([56, 3−], [70, 2−], [20, 3−]),116

Fig. 2 (b).117

(b) In the V4 6= 0, V6 6= 0 case, the remaining degeneracy of states is118

removed in 3D: the [20, 1−] and the [56, 1−] are split in the “lower set”119

and the [56, 3−] and the [20, 3−] in the “upper set”. In 2D, we find the120

same pattern of splitting, and a similar ratio of strengths, Fig. 2 (b).121

2Δ

(K=3)

(70,2-)

(20,3-)

(56,3-)

(70,1-)

(20,1-)

(56,1-)

(70,3-)

(K=3)

(20,3-)

(56,3-)

(20,1-)

(56,1-)

(70,3-)

(70,1-)

a)

b)

2Δ

(K=3)

(70,2-)

(20,3-)

(56,3-)

(70,1-)

(20,1-)

(56,1-)

(70,3-)

(K=3)

(20,3-)

(56,3-)

(20,1-)

(56,1-)

(70,3-)

(70,1-)

a)

b)

Fig. 2. Schematic representation of the K = 3 band in the energy spectrum of
the ∆-string potential in (a) three dimensions, following Ref. [17]; and (b) two
dimensions (present calculation). The sizes of the two splittings (the v∆

20-induced
∆ and the subsequent v∆

3±3-induced splitting) are not on the same scale, the latter
having been increased, so as to be clearly visible. The ∆ here is the same as the
∆ in the K = 2 band.
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So, in the K = 2, 3 bands, one sees similarities of dynamical symmetry-122

breaking patterns in 2D and 3D. This lends credence to the belief that this123

similarity may persist at higher values of K, where there are not known 3D124

results, at present.125

This work was supported by the Serbian Ministry of Science and Tech-126
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M. Bračko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Meson electro-production in the region of the Delta(1700) D33 resonance

B. Golli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Scattering phase shifts and resonances from lattice QCD
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Preface

The activities and achievements of our encounter at Bled 2012 can be easily sum-
marized. We were caught in a resonance! However, there was also no shortage of
interesting “background”.

We learned many things about the development of analytical methods for the
search of resonances and for implementing the influence of nearby thresholds
and interferences in the determination of resonance parameters. In many cases,
the interplay between quark and mesonic degrees of freedom is particularly sig-
nificant, for example in the ∆(1700) resonance. Resonance parameters, especially
poles in the complex energy plane, can sometimes be better determined from the
calculation of the time delay instead of the shape of the resonance curve. It was a
great encouragement that nowadays Lattice QCD can be used as well to calculate
phase shifts for the pion-meson scattering, even in the resonance region.

New mesonic resonances deserved particular attention. One of our experimental
colleagues from Belle reported the results on the hypothetical excited states of
charmonium, dimesons and tetraquarks. We heard also the prediction that some
higly excited states of D and B mesons might be tetraquarks, as well as proposals
for its experimental verification. There is also some interesting progress in specu-
lations about “hadronic molecules” DN and BN.

New double polarizaton measurements in Jefferson Lab have clarified several
features of the spin structure of 3He and of resonance parameters in electropro-
duction of pions on nucleons.

The description of baryon spectra, their electroweak structure and decay widths
has been successfully extended to hyperons and charmed baryons. There has
been noticeable progress in the classification of high-lying baryonic multiplets
(N = 3) using the expansion in 1/Nc and the O(3) × SU(4) symmetry; in the
description of pionic and photonic reactions by using coupled channels; in the
scattering of a superheavy hadron which might be a candidate for dark matter.

As a surprise came the recently discovered magnetar which is too heavy to be
supported by quark gas or plasma in its core. This suggests that the three-quark
cluster should be stable also at five times the nuclear density, extending the nu-
clear equation of state into this region.

As you can see, there is no shortage of problems and surprises, but also the strat-
egy of a sequence of small steps can be fruitful! Therefore we hope that our tradi-
tional “Bled Workshops” will be continued.

Ljubljana, November 2012 M. Rosina
B. Golli
S. Širca





Predgovor

Aktivnosti in dosežke našega letošnjega blejskega druženja zlahka povzamemo.
Ujeli smo se v resonanco! Pa tudi zanimivega “ozadja” ni manjkalo.

Seznanili smo se z razvojem analitskih metod za iskanje resonanc in študijem
vpliva bližnjih pragov in interferenc na določitev resonančnih parametrov. Pone-
kod je izrazito pomembna povezava med kvarkovskimi in mezonskimi prostost-
nimi stopnjami, na primer pri resonanci ∆(1700). Resonančne parametre, zlasti
pole v kompleksni energijski ravnini, včasih boljše določimo z izračunom ča-
sovnega zamika kot z obliko resonančne krivulje. Prijetno nas je vzpodbudilo,
da lahko dandanes s kromodinamiko na mreži že računamo fazne premike za
sipanje piona na mezonih, celo v območju resonanc.

Posebno pozornost smo namenili novim mezonskim resonancam. Naš eksperi-
mentalni sodelavec v laboratoriju Belle je poročal o rezultatih, ki zadevajo dom-
nevna vzbujena stanja čarmonija, dimezonov in tetrakvarkov. Slišali pa smo tudi
napoved, da so nekatera visoka stanja mezonov D in B tetrakvarki ter predloge
za eksperimente, s katerimi bi lahko te trditve preverili. Zanimiv je tudi napredek
pri špekulacijah o “hadronskih molekulah” DN in BN.

Nove meritve z dvojno polarizacijo v laboratoriju Jefferson Lab so razjasnile ne-
katere značilnosti spinske strukture jeder 3He ter resonančnih parametrov pri
elektroprodukciji pionov na nukleonih.

Opis spektrov barionov, njihove elektro-šibke strukture in razpadnih širin se je
uspešno razširil na hiperone in čarobne barione. Napredek je opazen tudi pri
razvrščanju visokih barionskih multipletov (N = 3) z razvojem po recipročnem
številu barv in s simetrijo O(3) × SU(4); pri obravnavanju pionskih in fotonskih
reakcij s sklopljenimi kanali; pri sipanju supertežkega hadrona, ki je morda tudi
kandidat za temno snov.

Presenečenje predstavlja nedavno odkriti magnetar, ki je pretežak, da bi njegovo
jedro pojasnili s kvarkovskim plinom oziroma plazmo. Zdi se, da so trikvarkovske
gruče obstojne tudi pri petkratni jedrski gostoti in tudi velja kar jedrska enačba
stanja.

Problemov in presenečenj torej ne zmanjka, in tudi zaporedje majhnih korakov
očitno tvori plodno pot! Upamo torej, da se bodo naše tradicionalne “Blejske
delavnice” še nadaljevale.

Ljubljana, novembra 2012 M. Rosina
B. Golli
S. Širca
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Abstract. By separating data points close to a resonance into intervals, and fitting all pos-

sible intervals to a simple pole with constant coherently added background, we obtained

a substantial number of convergent fits. After a chosen set of statistical constraints was

imposed, we calculated the average of a resonance pole position from the statistically ac-

ceptable results. We used this method to find pole positions of Z boson.

Breit-Wigner (BW) parameters are often used for the description of unstable par-
ticles (see e.g., Review of Particle Physics [1]), although shortcomings of such choice
have been pointed out on numerous occasions. For example, Sirlin showed that
the BWparameters of the Z boson were gauge dependent [2]. To resolve this issue
he redefined BWparameters, but also suggested usage of the S-matrix poles as an
alternative, since poles are fundamental properties of the S-matrix and therefore
gauge independent by definition. In a somewhat different study, Höhler advo-
cated using S-matrix poles for characterization of nucleon resonances [3] in order
to reduce confusion that arises when different definitions of BW parameters are
used [4]. However, loosely defined [5] BW parameters of mesons and baryons are
still being extracted from experimental analyses, compared among themselves
[1], and used as input to QCD-inspired quark models [6] and as experiment-to-
theory matching points for lattice QCD [7].

Our group has been very interested in reducing human and model depen-
dence from resonance parameters’ extraction procedures (from scattering matri-
ces). We developed the regularization method for pole extraction from S-matrix
elements [8]. Its main disadvantage is that it needs very dense data, one that is at-
tainable only after an energy dependent partial-wave analysis. The other method
was the K-matrix pole extraction method [9] which needed the whole unitary S-
matrix to begin with, making it impossible to use on any single reaction. Both
of those methods were purely mathematical, and the only assumption were that
there is a pole in the complex energy plane of an S-matrix. We had no physical
input into our procedures. Therefore, we proclaimed these procedures model-
independent. The only thing missing, was a method which could be applied di-
rectly to the experimental data, e.g., total cross sections.

In this proceeding, we illustrate a method for model-independent extraction
of S-matrix pole positions directly from the data.

⋆ Talk delivered by S. Ceci
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The first step in devising a method for extraction of the pole parameters from
the experimental data is to set up an appropriate parameterization. The parame-
terization presented here is based on the assumption that close to a resonance, the
T matrix will be well described with a simple pole and a constant background.
The similar assumption was used in Höhler’s speed plot technique [3]. The speed
plot is a method used for the pole parameter extraction from the known scat-
tering amplitudes. It is based on calculating the first order energy derivative of
the scattering amplitude, with the key assumption that the first derivative of the
background is negligible.

The T matrix with a single pole and constant background term is given by

T(W) = rp
Γp/2

Mp −W − i Γp/2
+ bp, (1)

whereW is center-of-mass energy, rb and bb are complex, whileMp and Γp are
real numbers. Total cross section is then proportional to |T |2/q2, where q is the
initial center-of-mass momentum. Equation (1), as well as other similar forms
(see e.g. [1]), are standardly called Breit-Wigner parameterizations, which can be
somewhat misleading since Mp and Γp are generally not Breit-Wigner, but pole
parameters (hence the index p). The square of the T matrix defined in Eq. (1) is
given by

|T(W)|2 = T2
∞

(W −Mz)
2 + Γ2z /4

(W −Mp)2 + Γ2p/4
, (2)

where, for convenience, we simplified the numerator by combining the old pa-
rameters into three new real-valued ones: T∞, Mz, and Γz. Pole parametersMp

and Γp are retained in the denominator.

With such a simple parameterization, it is crucial to use only data points
close to the resonance peak. To avoid picking and choosing the appropriate data
points by ourselves, we analyzed the data from a wider range around the reso-
nance peak, and fitted localy the parameterization (2) to each set of seven succes-
sive data points (seven data points is minimum for our five-parameter fit). Then
we increased the number of data points in the sets to eight and fitted again. We
continued increasing the number of data points in sets until we fitted the whole
chosen range. Such procedure allowed different background term for each fit,
which is much closer to reality than assuming a single constant background term
for the whole chosen data set (see e.g. discussion on the problems with speed plot
in Ref. [8]). In the end, we imposed a series of statistical constraints to all fits to
distinguish the good ones. The whole analysis was done in Wolfram Mathemat-
ica 8 using NonlinearModelFit routine [11].

Having defined the fitting strategy, we tested the method by applying it to
the case of the Z boson. The data set we used is from the PDG compilation [1],
and shown in Fig. 1. Extracted pole masses are shown in the same figure: filled
histogram bins show pole masses from the good fits, while the empty histogram
bins are stacked to the solid ones to show masses obtained in the discarded fits.
Height of the pole-mass histogram in Fig. 1 is scaled for convenience.

Extracted S-matrix pole mass and width of Z boson are given in Table 1. The
polemasses are in excelent agreement, while the pole widths are reasonably close.
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Fig. 1. [Upper figure] PDG compilation of Z data [1] and histogram of obtained pole

masses. Line is the fit result with the lowest reduced χ2 (just for illustration). Dark (red

online) colored histogram bins are filled with statistically preferred results. [Lower figure]

Pole masses vs. pole widths. Dark (red online) circles show statistically preferred results

we use for averages.

It is important to stress that the difference between the pole and BWmass of the Z
boson is fundamental and statistically significant. Distribution of discarded and
good results is shown in the lower part of Fig. 1.

Table 1. Pole parameters of Z obtained in this work. PDG values of pole and BW parame-

ters are given for comparison.

Pole Pole PDG [1] BW PDG [1]

M/MeV 91159 ± 8 91162 ± 2 91188 ± 2

Γ/MeV 2484 ± 10 2494 ± 2 2495 ± 2
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In conclusion, we have illustrated here a model-independent method for ex-
traction of resonance pole parameters from total cross sections and partial waves.
Very good estimates for Z boson pole position were obtained.

We are today witnessing the dawn of ab-initio calculations in low-energy
QCD. In order to compare theoretical predictionswith experimentally determined
resonance states, we need first to establish proper point of comparison. We hope
that our method, once it becomes fully operational, will help connecting experi-
ment and theory.
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Abstract. We report on the construction of a relativistic constituent-quark model capable

of describing the spectroscopy of baryons with all flavors u, d, s, c, and b. Some selective

spectra are presented, where comparisons to experimental data are yet possible.

1 Introduction

Over the decades the constituent-quark model (CQM) has ripened into a stage
where its formulation and solution are well based on a relativistic (i.e. Poincaré-
invariant) quantum theory (for a thorough review of relativistic Hamiltonian dy-
namics see ref. [1]). In such an approach one relies on an invariant mass opera-
tor M̂, where the interactions are introduced according the so-called Bakamjian-
Thomas construction [2]. If the conditions of the Poincaré algebra are fulfilled by
M̂, this leads to relativistically invariant mass spectra.

Relativistic constituent-quark models (RCQM) have been developed by sev-
eral groups, however, with limited domains of validity. Of course, it is desirable
to have a framework as universal as possible for the description of all kinds of
hadron processes in the low- and intermediate-energy regions. This is especially
true in view of the advent of ever more data on heavy-baryon spectroscopy from
present and future experimental facilities.

We have developed a RCQM that comprises all known baryons with flavors
u, d, s, c, and bwithin a single framework [3]. There have been only a few efforts
so far to extend a CQM from light- to heavy-flavor baryons. We may mention,
for example, the approach by the Bonn group who have developed a RCQM,
based on the ’t Hooft instanton interaction, along a microscopic theory solving
the Salpeter equation [4] and extended their model to charmed baryons [5], still
not yet covering bottom baryons. A further quark-model attempt has been under-
taken by the Mons-Liège group relying on the large-Nc expansion [6,7], partially
extended to heavy-flavor baryons [8]. Similarly, efforts are invested to expand
other approaches to heavy baryons, such as the employment of Dyson-Schwinger
equations together with either quark-diquark or three-quark calculations [9, 10].

⋆ Talk delivered by J. P. Day
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Also an increased amount of more refined lattice-QCD results has by now become
available on heavy-baryon spectra (see, e.g., the recent work by Liu et al. [11] and
references cited therein).

2 The Model

Our RCQM is based on the invariant mass operator

M̂ = M̂free + M̂int , (1)

where the free part corresponds to the total kinetic energy of the three-quark sys-
tem and the interaction part contains the dynamics of the constituent quarks Q.

In the rest frame of the baryon, where its three-momentum P =
∑3
i k
2
i = 0, we

may express the terms as

M̂free =

3∑

i=1

√
m̂2i + k̂

2

i , (2)

M̂int =

3∑

i<j

V̂ij =

3∑

i<j

(V̂conf
ij + V̂hf

ij ) . (3)

Here, the k̂i correspond to the three-momentum operators of the individual quarks
with rest masses mi and the Q-Q potentials V̂ij are composed of confinement
and hyperfine interactions. By employing such a mass operator M̂2 = P̂µP̂µ ,
with baryon four-momentum P̂µ = (Ĥ, P̂1, P̂2, P̂3), the Poincaré algebra involv-
ing all ten generators {Ĥ, P̂i, Ĵi, K̂i}, (i = 1, 2, 3), or equivalently {P̂µ, Ĵµν}, (µ, ν =

0, 1, 2, 3), of time and space translations, spatial rotations aswell as Lorentz boosts,
can be guaranteed. The solution of the eigenvalue problem of the mass operator
M̂ yields the relativistically invariant mass spectra as well as the baryon eigen-
states (the latter, of course, initially in the standard rest frame).

We adopt the confinement depending linearly on the Q-Q distance rij

Vconf
ij (rij) = V0 + Crij (4)

with the strengthC = 2.33 fm−2, corresponding to the string tension of QCD. The
parameter V0 = −402MeV is only necessary to set the ground state of the whole
baryon spectrum, i.e., the proton mass; it is irrelevant for level spacings.

The hyperfine interaction is most essential to describe all of the baryon ex-
citation spectra. In a unified model the hyperfine potential must be explicitly
flavor-dependent. Otherwise, e.g., the N and Λ spectra with their distinct level
orderings could not be reproduced simultaneously. Therefore we have advocated
for the hyperfine interaction of our universal RCQM the SU(5)F GBE potential

Vhf(rij) =

[
V24(rij)

24∑

a=1

λai λ
a
j + V0(rij)λ

0
i λ
0
j

]
σi · σj . (5)
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Here, we take into account only its spin-spin component, which produces the
most important hyperfine forces for the baryon spectra; the other possible force
components together play only aminor role for the excitation energies [16].While
σi represent the Pauli spin matrices of SU(2)S, the λai are the generalized Gell-
Mann flavor matrices of SU(5)F for quark i. In addition to the exchange of the
pseudoscalar 24-plet also the flavor-singlet is included because of theU(1) anomaly.
The radial form of the GBE potential resembles the one of the pseudoscalarmeson
exchange

Vβ(rij) =
g2β

4π

1

12mimj

[
µ2β
e−µβrij

rij
− 4πδ(rij)

]
(6)

for β = 24 and β = 0. Herein the δ-function must be smeared out leading to [13,
14]

Vβ(rij) =
g2β

4π

1

12mimj

[
µ2β
e−µβrij

rij
−Λ2β

e−Λβrij

rij

]
. (7)

Contrary to the earlier GBE RCQM [13], which uses several different exchange
masses µγ and different cut-offsΛγ, corresponding to γ = π,K, and η=η8mesons,
we here managed to get along with a universal GBE mass µ24 and a single cut-off
Λ24 for the 24-plet of SU(5)F. Only the singlet exchange comes with another mass
µ0 and another cut-offΛ0 with a separate coupling constant g0. Consequently the
number of open parameters in the hyperfine interaction could be kept as low as
only three (see Tab. 1).

Table 1. Free parameters of the present GBE RCQM determined by a best fit to the baryon

spectra.

Free Parameters

(g0/g24)
2 Λ24 [fm

−1] Λ0 [fm
−1]

1.5 3.55 7.52

Table 2. Fixed parameters of the present GBE RCQMpredetermined fromphenomenology

and not varied in the fitting procedure.

Fixed Parameters

Quark masses [MeV] Exchange masses [MeV] Coupling

mu = md ms mc mb µ24 µ0 g224/4π

340 480 1675 5055 139 958 0.7

All other parameters entering the model have judiciously been predeter-
mined by existing phenomenological insights. In this way the constituent quark
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masses have been set to the values as given in Tab. 2. The 24-plet Goldstone-boson
(GB) mass has been assumed as the value of the π mass and similarly the singlet
mass as the one of the η ′. The universal coupling constant of the 24-plet has been
chosen according to the value derived from the π-N coupling constant via the
Goldberger-Treiman relation.

3 Results for Baryon Spectra

We have calculated the baryon spectra of the relativistically invariant mass op-
erator M̂ to a high accuracy both by the stochastic variational method [17] as
well as the modified Faddeev integral equations [18, 19]. The present universal
GBE RCQM produces the spectra in the light and strange sectors with similar or
even better quality than the previous GBE RCQM [13]. In Figs. 1 and 2 we show
the ground states and the first two excitations of SU(3)F singlet, octet, and decu-
plet baryons up to J = 7

2
, for which experimental data of at least three stars are

quoted by the PDG [15] and JP is known. Evidently a good overall description is
achieved. Most importantly, the right level orderings specifically in theN, ∆, and
Λ spectra as well as all other SU(3)F ground and excited states are reproduced
in accordance with phenomenology. The reasons are exactly the same as for the
previous GBE RCQM, what has already been extensively discussed in the liter-
ature [12–14]. Unfortunately, the case of the Λ(1405) excitation could still not be
resolved. It remains as an intriguing problem that can possibly not be solved by
RCQMs relying on {QQQ} configurations only; an explicit coupling to the K-N
decay channel whose threshold lies nearby might be needed.
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Fig. 1. Nucleon and ∆ excitation spectra (solid/red levels) as produced by the universal

GBE RCQM in comparison to phenomenological data [15] (the gray/blue lines and shad-

owed/blue boxes show the masses and their uncertainties).
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Fig. 2. Same as Fig. 1 but for the strange baryons.

What is most interesting in the context of the present work are the very prop-
erties of the light-heavy and heavy-heavy Q-Q hyperfine interactions. Can the
GBE dynamics reasonably account for them? In Figs. 3 and 4 we show the spectra
of all charm and bottom baryons that experimental data with at least three- or
four-star status by the PDG exist for [15]. As is clearly seen, our universal GBE
RCQM can reproduce all levels with respectable accuracy. In the Λc and Σc spec-
tra some experimental levels are not known with regard to their spin and parity
JP . They are shown in the right-most columns of Fig. 3. Obviously they could eas-
ily be accommodated in accordance with the theoretical spectra, once their JP’s
are determined. Furthermore the model predicts some additional excited states
for charm and bottom baryons that are presently missing in the phenomenologi-
cal data base.
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Fig. 3. Same as Fig. 1 but for charm baryons.
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Fig. 4. Same as Fig. 1 but for bottom baryons.

Of course, the presently available data base on charm and bottom baryon
states is not yet very rich and thus not particularly selective for tests of effec-
tive Q-Q hyperfine forces. The situation will certainly improve with the advent
of further data from ongoing and planned experiments. Beyond the compari-
son to experimental data, we note that the theoretical spectra produced by our
present GBE RCQM are also in good agreement with existing lattice-QCD results
for heavy-flavor baryons. This is especially true for the charm baryons vis-à-vis
the recent work by Liu et al. [11].
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4 Discussion and Conclusion

We emphasize that the most important ingredients into the present RCQM are
relativity, specifically Poincaré invariance, and a hyperfine interaction that is de-
rived from an interaction Lagrangian built from effective fermion (constituent
quark) and boson (Goldstone boson) fields connected by a pseudoscalar cou-
pling [12]. It appears that such kind of dynamics is quite appropriate for con-
stituent quarks of any flavor.

As a result we have demonstrated by the proposedGBE RCQM that a univer-
sal description of all known baryons is possible in a single model. Here, we have
considered only the baryon masses (eigenvalues of the invariant mass operator
M̂). Beyond spectroscopy the present model will be subject to further tests with
regard to the baryon eigenstates, which are simultaneously obtained from the so-
lution of the eigenvalue problem of M̂. They must prove reasonable in order to
make the model a useful tool for the treatment of all kinds of baryons reactions
within a universal framework.
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1 Introduction

The three-quark confinement problem has been attacked inmanyways: 1) byway
of the harmonic oscillator models with some non-harmonic two-body potential
components [1–3]; 2) by way of Y-string three-body potentials, Refs. [4–15]; 3) by
way of the hyperspherical formalism applied to two-quark potentials, Refs. [16,
17] and 4) by way of dynamical symmetry Lie-algebraic methods, Refs. [18–23],
with some success for the low-lying bands of states (up to K ≤ 3). The higher-
lying bands (K≤ 4) have generally not been studied systematically (to our knowl-
edge), only individual states with highest values of the orbital angular momen-
tum, for purposes of Regge analyses, with one significant exception (K = 4), the
Ref. [11].

QCD seems to demand a genuine three-body confining potential: the so-
called Y-junction string three-quark potential, defined by

VY = σmin
x0

3∑

i=1

|xi − x0|, (1)

or, explicitly

Vstring = VY = σ

√
3

2
(ρ2 + λ2 + 2|ρ× λ|). (2)

The |ρ× λ| term is proportional to the area of the triangle subtended by the three
quarks. The Y-string potential was proposed as early as 1975, see Refs. [4, 5] and
the first schematic calculation (using perturbation theory) of the baryon spectrum
up to K≤ 2 followed soon thereafter, Ref. [6]. Refs. [7–9], elaborated on this. The
first non-perturbative calculations (variational approximation) of the K=3 band
with the Y-string potential were published in the early 1990’s, Ref. [10] and ex-
tended to the K=4 band later in that decade, Ref. [11]. Yet, some of the most basic

⋆ Talk delivered by V. Dmitrašinović
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properties of this potential, such as the ordering of the low-lying states in the
spectrum, without the “QCD hyperfine interaction” and/or relativistic kinemat-
ics remain unknown.

The first systematic attempt to solve the Y-string spectrum, albeit only up
to the K=2 band, can be found in Ref. [12]. That paper used the hyperspherical
harmonics formalism, which led to the discovery of a new dynamical O(2) sym-
metry in the Y-string potential, with the permutation group S3 ⊂ O(2) as the
subgroup of the dynamical O(2) symmetry, see Ref. [13]. That symmetry was fur-
ther elaborated in Ref. [15]. The present work is a continuation of that line, which
has also been represented in this series of workshops [14]. The three-body sum of
two-body potentials has only the permutation group S3 as its symmetry.

2 O(4) algebraic method

The existence of an additional dynamical symmetry strongly suggests an alge-
braic approach, such as those used in Refs. [18–23]. A careful perusal of Ref.
[18,19] shows, however, that an O(2) group had been used as an enveloping struc-
ture for the (discrete) permutation group S3 ⊂ O(2), but was not interpreted as
a (possible) dynamical symmetry. Refs. [20–23] did not use this symmetry, how-
ever. We start an algebraic study of Y-string-like potentials with this in mind. For
the sake of technical simplicity we confine ourselves to the two-dimensional case
here. We say here “Y-string-like potentials”, rather than the Y-string potential, be-
cause the complete Y-string potential contains “additional” two-body terms that
are valid only in certain parts of the tree-particle configuration space (a.k.a. tri-
angle “shape space”) and that do not have the O(2) dynamical symmetry. This
wider class of three-body potentials has the same dynamical O(2) symmetry in
shape space as the Y-string potential, thus making them equivalent in the alge-
braic sense. Wemust therefore first establish the basic properties of the dynamical
symmetry of the Y-string potential.

In two dimensions (2D) the non-relativistic three-body kinetic energy is a
quadratic form of the two Jacobi two-vector velocities, ρ̇, λ̇, so its “hyper-spherical
symmetry” is O(4), and the residual dynamical symmetry of the Y-string poten-
tial is O(2) ⊗ OL(2) ⊂ O(4), where OL(2) is the (orbital) angular momentum.
As the O(4) Lie group can be “factored” in two mutually commuting O(3) Lie
groups: O(4) ≃ O(3) ⊗ O(3), one may use for our purposes many of the O(3)
group results, such as the Clebsch-Gordan coefficients. The 3D case is substan-
tially more complicated than the 2D one: the three-body “hyper-spherical sym-
metry” is O(6), and the residual dynamical symmetry of the Y-string potential is
O(2) ⊗ OL(3) ⊂ O(6). The O(6) Lie group cannot be “factored” in two mutually
commuting O(3) Lie groups and one cannot simply reduce this problem to one in
the O(3) group. For these reasons we limit ourselves to the two-dimensional case
in this paper.

Thus we are looking for the “chain” of symmetries O(2) ⊗ OL(2) ⊂ O(3) ⊗
OL(2) ⊂ O(4). Rather than parametrize the energy E as a function of corre-
sponding Casimir operators, and thus calculate the spectrum, as was done in
Refs. [20–23], we reformulate the problem in terms of O(4) variables and then
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bring the potential into a form that can be (exactly) solved, i.e. we expand it in
O(4) hyperspherical harmonics. As the potential must be spherically symmetrical,
this imposes and additional constraint on the allowed hyperspherical harmonics
and one ends up with only a few (leading) terms: 1) the area-term containing the
O(4) hyperspherical harmonic Y2200 , which, in turn is related to the O(3) spher-
ical harmonic Y20(α,φ) of the shape space (hyper)spherical angles (α,φ), i.e.,
the V4 term in the notation of Richard and Taxil [16]), that is present in both the
two-body and the Y-string potentials; and 2) the O(2) symmetry-breaking term
containing Y330±3 ≃ Y3±3(α,φ), i.e., the V6 term in the notation of Richard and
Taxil [16], that is important in the two-body potential, and less so in the “com-
plete” Y-string potential and not at all in Eq. (2). The energy spectrum is a func-
tion of the O(4) hyperspherical expansion coefficients for the potential, and of the
O(4) Clebsch-Gordan coefficients, that are products of the ordinary O(3) Clebsch-
Gordan coefficients.

3 Results

Next we proceed to evaluate the K=2,3 bands’ splittings and compare them with
the 3D case:

1) At the K=2 level, there are four SU(6) multiplets (other than the hyper-
radial excitation [56, 0+]

′

of the K=0 state): [70, 0+], [56, 2+], [70, 2+], [20, 1+] in 3D.
The main difference between the 2D and 3D is that the [20, 0+] state has vanishing
orbital angular momentum in 2D, rather than unity, as in the 3D state [20, 1+].

The only difference between the 2D and 3D K=2 states’ splittings is that the
[70, 0+] and [56, 2+] states are degenerate in 2D, whereas in 3D they are split by
one half of the energy difference between [70, 2+] and [70, 0+]. This shows that
the 2D case does relate fairly closely to the 3D one.

2) The energy splittings in the K=3 band, for the Y-string potential in 3D
has not been worked out analytically, as yet, to our knowledge. Therefore, we
compare our 2D Y-string potential K=3 results with the 3D K=3 two-body poten-
tial results of Ref. [16] and find certain similarities, and a few distinctions. There
are six SU(6) multiplets in the K=3 sector (other than the hyper-radial excitation
[70, 1−]

′′

of the K=1 state): [20, 1−], [56, 1−], [70, 3−], [56, 3−], [70, 2−], [20, 3−] in 3D.
The main difference between the 2D and 3D is that the [70, 2−] state disappears
in 2D.

In 3D two-body potential the energy splittings have been divided in two
parts in Ref. [16]: a) those due to the V4 perturbation; and b) due to the V6 pertur-
bation. This corresponds to our Y20 and Y3±3 terms, respectively.

a) In the V4 6= 0, V6 → 0 limit, the states are roughly divided in two groups:
the [20, 1−], [56, 1−], [70, 3−] which are pushed down, and the [56, 3−], [70, 2−],
[20, 3−] which are pushed up by the V4 perturbation. Two pairs of states are left
degenerate: ([20, 1−], [56, 1−]) in the lower set and ([56, 3−], [20, 3−]) in the upper
set. In this limit in 2D we find complete degeneracy of all three members of the
lower- ([20, 1−], [56, 1−], [70, 3−]) and upper levels ([56, 3−], [70, 2−], [20, 3−]).

b) In the V4 6= 0, V6 6= 0 case, the remaining degeneracy of states is removed
in 3D: the [20, 1−] and the [56, 1−] are split in the “lower set” and the [56, 3−] and
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the [20, 3−] in the “upper set”. In 2D we find the same sort of splitting, and in
almost the same ratio of strengths.

So, in the K=2,3 bands, one sees similarities of dynamical symmetry-breaking
patterns in 2D and 3D. This lends credence to the belief that this similarity may
persist at higher values of K, where there are no known 3D results, at present.
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Abstract. We discuss hadronic molecules containing both heavy and light quarks. The

interactions are provided by meson exchanges between light quarks in the constituent

hadrons. The tensor force in the one-pion exchange potential mixes states of different spins

and angular momenta. This provides attraction and generates rich structure in exotic chan-

nels in the heavy quark sectors. The method has been applied to exotic baryons with a c̄

or b̄ quark, and exotic mesons containing bb̄ including the recently found Z ′

bs.

Recent interest in hadron physics has been largely motivated by the observations
of candidates for exotic multi-quark states which are not (easily) explained by the
conventional quark model [1–4]. Many of them appear near the threshold region
of their possible decay channels. The finding of the twin Zb’s is perhaps the most
striking in that they appear very close to the BB∗ and B∗B∗ thresholds [4–6].

Strictly, multiquarks does not make much sense for light flavors especially
for u and d quarks when the quark number is not a conserved quantity. In fact,
they interact strongly at the energy scale of ΛQCD, creating qq̄ pairs and gener-
ating massive constituent quarks. It is known that it is a consequence of sponta-
neous breaking of chiral symmetry. In the low energy region we expect that such
constituent quarks become active degrees of freedom as almost on-shell parti-
cles, forming exotic multi-quark states. Contrary to the light flavor sector heavy
quarks such as c and bwith massM≫ ΛQCD conserve their quark number. Thus
we can treat them as almost on shell particles with non-relativistic kinematics at
low energies of typical hadron resonances.

Starting from the conventional quarkmodel picture for orbitally excited states,
multiquark configurations can mix with them because the typical excitation en-
ergy of about 0.5-1 GeV is sufficient to create a (constituent) qq̄ pair. A color
singlet multiquark system of more than the minimal number (q̄q or qqq) may
form color singlet sub-systems (clusters) of hadrons. Clustering phenomena of
multiparticle systems have been extensively studied in nuclear physics for many
years [7]. Alpha particles saturate the dominant component of spin and isospin
dependent nuclear force. The spin-isospin neutral alpha particles interact rather
weakly and can form loosely bound states near the threshold regions of alpha
decay.

In QCD, the state corresponding to alpha particle is a hadron which satu-
rates the strong color dependent force. If these hadrons have sufficient amount of
attraction (but weak as compared to the color force), they may form a bound or
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resonant state, which is the hadronic molecule. it must be a rather loosely bound
state having an extending spatial structure to retain the identity of hadronic con-
stituents. We expect that the relevant energy scale of binding and resonant states
should be sufficiently small as compared to ΛQCD of some hundreds MeV.

To establish exotic states is interesting not only for its own sake, but also
because it is expected to reveal important aspects of non-perturbative dynam-
ics of QCD. In this respect, as experimental observations imply, hadrons of light
and heavy quarks are interesting, where more candidates of exotic states are ob-
served. There, heavy quark symmetry and chiral symmetry play simultaneously.
The former suppresses the spin dependent interactions, leading to degeneracy
of different spin states. On the other hand, the latter is responsible for the pion
coupling to the light quarks, which provides the source of the strong one pion
exchange potential between heavy flavor hadrons. When these two conditions
are satisfied, we expect the formation of exotic hadronic molecules. The spin and
isospin dependent nature of the pion exchange potential as well as its orientation
dependence of the tensor structure are the cause of the rich structure of hadron
spectrum.

Based on these ideas, we have studied hadronic molecular states for exotic
heavy baryons in Refs. [8–10], and for exotic heavy mesons in Ref. [11–13]. They
are exotic not only due to hadronicmolecular structure but also due to their exotic
quantum numbers which are not accessible by the minimal number of quarks. In
forming the hadronic molecular state, the following three points are important;
(1) heavy mass which suppresses kinetic energy of constituent hadrons, (2) one
pion exchange force of tensor nature which mixes the 0− and 1− states (DD∗ and
BB∗), and (3) degeneracy of 0− and 1− states which makes the wider space of
coupled channels more effective to gain more attraction.

Hadronicmolecules have been also studied forDN systems of ordinary quan-
tumnumbers [14,15]. These channels allow evenmore attraction leading to deeply
bound states of a binding energy of order a few hundred MeV with much spa-
tially compact configuration. Here qq̄ annihilation is also possible, the treatment
of which is more difficult than in the case of exotic channel without qq̄ annihila-
tion.

Turning to the exotic channels, employing an interactions between heavy
flavor hadrons in a boson exchangemodel including one pion exchange potential,
we find several bound and resonant states near the threshold regions. Many of
them with small binding energy of order ten MeV or less have a rather extended
size compatible to hadronic molecules. For baryons, we have found bound states
of JP = 1/2− states of exotic quark content c̄q-qqq and b̄q-qqq just below the
threshold of D̄N and BN, respectively. Other resonant sates are also found for
JP = 3/2−, 1/2+, 3/2+, 5/2+ with similar structure of mass spectrum for c and b
quark sectors [9, 10].

For mesons, in the hidden bottom sector, we have found ten BB̄, BB̄∗, B∗B̄∗

molecules for low lying spin J ≤ 2. In particular, the hidden bottom exotic mesons
Zb’s are well predicted [11]. Further exotic states of double heavy flavor (charm
and bottom) mesons are also found [12]. In Ref. [13], we have estimated the decay
and production rates of various states in the limit of heavy quarks which are



Exotic molecules of heavy quark hadrons 19

characteristic to the hadronic molecular structure. These theoretical predictions
for rich structure of hadronic molecules can be studied in the facilities such as
Belle, JPARC and LHC.
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Abstract. The ongoing progress in our group of treating hadron resonances within a rela-

tivistic coupled-channels quark model is shortly discussed. Following earlier calculations

along a simplified toy model for mesons, now all spin and flavor degrees of freedom are

being included. Furthermore the approach is now extended also to baryons considered as

genuine three-quark states.

Covariant calculations of properties of hadron resonances, such as hadronic de-
cay widths, with relativistic constituent quark models (RCQM) have so far been
limited to treating the resonant states as excited bound states rather than true
resonances with finite widths. Corresponding predictions in general have been
found to underestimate existing experimental data for hadronic decay widths [1–
5]. The shortcomings are probably due to the usage of inadequate wave functions
for the hadron resonances within single-channel models, such as the Goldstone-
boson-exchange (GBE) RCQM [6,7]. Explicit couplings tomesonic channels might
be needed.

We have started a project towards setting up a coupled-channels (CC) RCQM.
A corresponding toy model applied to meson-like systems of scalar particles has
already produced promising results, hinting to a broadening of the decaywidths,
when the coupling to the decay channels is included [8, 9]. We are now aiming
at more realistic calculations both for meson and baryon resonances including
all spin and flavor degrees of freedom. The corresponding formalism has been
worked out and the implementation into the computer programs is under way.

For a CC RCQMwe start out from an invariant mass operator in matrix form
that includes beyond the channel of i particles in addition a channel i+1 with a
further degree of freedom, say, the meson produced in a decay process. By elimi-
nating the decay channel according to the Feshbach method one arrives at a com-
plex mass operator, whose eigenvalue equation reads

[
Mi + K (m −Mi+1 + i0)

−1
K†
]
|ψi >= m |ψi > . (1)

Here,Mi andMi+1 are the invariant mass operators of the i-particle and (i+1)-
particle systems and K† describes the transition dynamics (emission of the de-
cay product). It should be noted that the mass eigenvalue m appears both in the

⋆ Talk delivered by R. Kleinhappel
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optical-potential term and also on the right-hand side of the eigenvalue equation.
It assumes real values for bound states and complex values above the resonance
thresholds. In the latter case its imaginary part is the half-width of the decaying
resonance.

We exemplify the introduction of spin and flavor degrees of freedom in a CC
RCQM along the ω-meson decaying into a ρ and a π. Here, the ω- and ρ-mesons
are assumed to be built up by a constituent quark and a constituent antiquark,
while the π is considered as a fundamental particle (namely, a Goldstone boson,
much in analogy to the RCQM proposed in Refs. [6, 7]). The dynamics is thus
mediated by GBE according to the interaction Lagrangian density in SU(3)F

LI = igPSψ̄γ5λFψφ, (2)

where ψ̄ and ψ represent the (anti)quark fields and φ the boson (pseudoscalar
meson) fields; λF are the Gell-Mann flavor matrices.

In the construction of the optical potential in Eq.(1), the first channel thus
consists of confined quark-antiquark bound states, whereas the second channel
adds the π. The spin and flavor degrees of freedom of the process in question are
introduced as follows.

Spin states:

ρ,ω:






|1, 1〉 = | ↑↑〉
|1, 0〉 = 1√

2
(| ↑↓〉+ | ↓↑〉)

|1,−1〉 = | ↓↓〉

Flavor states:

χ =

(
u

d

)
, χ̄ =

(
d̄

−ū

)

ω = − 1√
2
(uū + dd̄),

ρ+ = ud̄

ρ0 = 1√
2

(
dd̄ − uū

)

ρ− = −dū

In the optical potential, the spin degrees of freedom undergo Wigner rotations
according to Lorentz boosts, and the flavor degrees of freedom specify the various
possible decay modes.

The same process can also be treated at a hadronic level. The decay dynamics
is then described by the coupling of the fundamental meson fields ρβ, π, andων

following the Lagrangian density [10]

Lωρπ =
gωπρ√
mρmω

ǫαβµν
(
∂αρβ

)
· (∂µπ)ων . (3)

Here, the vector notation in the ρ and π cases is related to the isospin degrees
of freedom, and ǫaβµν denotes the Levi-Civita antisymmetric tensor. The macro-
scopic approach at the hadronic level relies on the assumption of vertex form
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factors. By comparing with the calculation at the quark level, a microscopic ex-
planation of these form factors can be obtained.

The same approach can also be applied to baryons as three-quark systems.
Here we will first consider the couplings of the N and the ∆ to the π. Again the
GBE dynamics is furnished by the Lagrangian in Eq. (2).

At the hadronic level the following Lagrangian densities are suggested [11]

LNNπ = −
fNNπ

mπ
Ψ̄γ5γ

µΨ∂µφ , (4)

L∆Nπ = −
f∆Nπ

mπ
Ψ̄Ψµ∂µφ+ h.c. , (5)

where the Ψ and Ψµ now representN and ∆ fields, respectively. The phenomeno-
logical vertex form factors needed here, can again be deduced with the help of
the microscopic calculation along the CC RCQM, just by comparing the two ap-
proaches.
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Abstract. The extraction of baryon resonance parameters from experimental data and

their interpretationwithin QCD are central issues in hadron physics. To achieve these goals

it is an essential prerequisite to have a sufficient amount of precision data which allows an

unambiguous reconstruction of partial wave amplitudes for different reactions. Over the

last years an intense effort has started to study photon-induced meson production. Many

single and double spin-observables have beenmeasured for the first time. This experimen-

tal progress will be illustrated by means of single and double π0 photo-production. The

focus will be on the impact of the new data for the unambiguous reconstruction of partial

wave amplitudes.

1 Introduction

Meson scattering and meson production reactions below 3 GeV distinctively ex-
hibit resonances, clearly organized in terms of flavor content, spin and parity,
sitting on top of a non resonant ”background. In lack of stringent predictions
from strong QCD these resonances are usually interpreted in constituent quark
models as excitations of massive quasi-particles bound by a confining potential.
However, also the strong meson-baryon andmeson-meson interaction could give
rise to dynamically generated resonances. Chiral unitary methods and coupled
channel calculations provide a theoretical framework to study the importance
of resonances without including them explicitly in a model. Furthermore, lat-
tice QCD simulations started to become predictive for dynamical quantities like
strong decaywidths of resonances and scattering phase shifts [1]. In the past, only
calculations of approximate mass spectra in the heavy pion limit, where excited
baryons are stable particles, were possible.

Empirically, N∗ and ∆∗ baryon resonance parameters like mass, width or
pole position have been extracted for many years by partial-wave analyses of
elastic and charge-exchange pion-nucleon scattering experiments. The most re-
cent analysis of existing πN data has been performed by the George Washington
Group [2]. Today there is no running experiment dedicated to study πN scatter-
ing anymore. However, options for a new generation of experiments with pion
beams at Hades/GSI [3], ITEP [4] and J-PARC [5] are presently under discussion.

Instead of πN scattering, an immense effort started during the last decade
to study baryon resonances with electromagnetic probes at various laboratories,
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mainly ELSA, Graal, JLAB, LEPS, LNS and MAMI. The motivation for this on-
going effort is 2-fold. The initial idea was to substantiate or to disprove the exis-
tence of questionable resonances or even to discover new states that couple only
weakly to πN. Especially, above 2 GeV an abundance of states is predicted by
quark models which are not identified in πN partial wave analyses. This fact
is often called the ”missing resonance” problem. As historically all information
about resonances came from pionic reaction, the hope was to discover new states
in e.g. KΛ, KΣ, ηN orωN final states. The PDG lists in their latest edition a couple
of new states which have been seen in some analyses of recent data [6]. However,
there are still many ambiguities and the discussion is ongoing.

The second objective are high precision measurements of the excitation of
established resonances with real and virtual photons in order to relax the model
constraints in the analyses and understand the influence of background on the
extraction and interpretation of resonance properties. Single and double spin ob-
servables turned out to be an indispensable prerequisite to address both issues.
Such measurements with sufficient acceptance and statistics became technically
feasibly only recently. A brief overview of the facilities is given in section 2.

A completely different approaches to baryon spectroscopy are presently be-
ing developed at the BES-III e+e− collider , where decays like J/ψ → N̄N∗ →
N̄Nπ have been observed, or at the COMPASS experiment at CERN,where diffrac-
tive processes like pp → ppππ clearly show resonant structures. One important
milestone in future experimental baryon spectroscopy will be the combination
of all empirical information from very different experiments in order to identify
universal, i.e. process independent, properties of genuine nucleon excitations and
to quantify the impact of coupled channel dynamics.

2 Photon beam facilities

During the last ten years we noticed an enormous increase in high precision mea-
surements of many single and double spin observables in photo-induced meson
production. The experiments are still ongoing and many results are still prelim-
inary. The reason for this unprecedented development was the combination of
high-intensity polarized beams, polarized targets and hermetic detector systems
which was technically realized at the CLAS spectrometer in Hall B at Jefferson
Lab [7], the Crystal-Barrel experiment at the ELSA stretcher ring [8] and the Crys-
tal Ball experiment at the Mainz MicrotronMAMI [9]. CLAS is a large acceptance
spectrometer based on a toroidal magnetic field configuration. Tracking cham-
bers and time-of-flight detectors provide charge particle identification and mo-
mentum resolution. At CLAS, energy tagged, polarized photon beams with up to
6 GeV can be used. The Crystal Barrel calorimeter consisting of 1230 CsI(Tl) crys-
tals is the core of the experimental setup at ELSA and provides excellent accep-
tance and resolution for multi-photon final states. The Crystal Ball at MAMI (see
Fig. 2) consists of 672 NaI(Tl) crystals covering 93% of the full solid angle with
an energy resolution of 1.7% for electromagnetic showers at 1 GeV. For charged
particle tracking and identification two layers of coaxial multi-wire proportional
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chambers and a barrel of 24 scintillation counters surrounding the target are in-
stalled. The forward angular range is covered by the TAPS calorimeter consisting
of BaF2 detectors and a Cerenkov detector.

The polarized target technique at all labs is based on Dynamic Nucleon Po-
larization (DNP) of solid-state target materials such as butanol, deuterated bu-
tanol, NH3 or 6LiD. The material is spin polarized by microwave pumping in
an external magnetic field of 2.5T at temperatures of about 100mK. During the
measurements, the spin orientation is frozen at temperatures of down to 20mK
by a moderate longitudinal or transverse magnetic holding field of about 0.5T.
The main technical challenge was the construction of a horizontal cryostat that
fits into the detector geometry and keeps a temperature of about 20mK without
adding too much material that would limit the particle detection. The underlying
concept of the targets presently used at ELSA, JLAB andMAMIwas developed in
Bonn [10] and was successfully used for the first time in 1998 for measurements
of the GDH sum rule in Mainz [11].

Fig. 1. Crystal-Ball detector at MAMI and the horizontal cryostat of the frozen spin target,

which keeps temperatures of about 20mK.

3 γN → πN

The photo-production of pseudoscalar mesons has four spin degrees of freedom
which define four complex scattering amplitudes for each isospin. These ampli-
tudes manifest themselves in 16 different single and double spin observables, in-
cluding experiments with polarized target, beam and nucleon recoil polarimetry.
It is well known for a long time that the full knowledge of 8 selected observables
at each energy and scattering angle completely determines all amplitudes in a
mathematical sense. Such a procedure is called a ”Complete Experiment” [12]. It
would then allow us to predict all remaining observables. However, in a real sit-
uation with statistical and systematic uncertainties this procedure is much more
difficult. Furthermore, the goal is not a ”Complete Experiment” and the recon-
struction of the 4 helicity amplitudes but an understanding of the underlying
dynamics. For this, the knowledge of all relevant partial wave or multipole am-
plitudes is much more important.
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Up to a certain maximum orbital angular momentum lmax, all 4lmax com-
plex multipole amplitudes have to be determined from experiment (see Table 1).
It can be shown that even a ”Complete Experiment” is only of limited value to
reach this goal because of the freedom to choose an angular and energy depen-
dent overall phase [13]. Therefore, one has to determine the relevant multipoles
directly from experimental data. Each observable, Oi(W,θ), can be expanded in
term on Legendre polynomials:

Oi(W,θ) = sinαi θ

kmax∑

k=0

aik(W)Pk(cos(θ)), αi = {0, 1, 2} . (1)

Here kmax is given by the truncation to a certain maximum angular momentum.
The coefficients aik(W) are bilinear combinations of the 4lmax complexmultipole
amplitudes which can be reconstructed from the coefficients. For a detailed dis-
cussion of the concepts of a “Complete Experiment” and such a truncated partial
wave analysis see [13].

Table 1. Multipole decomposition of the pion photo-production amplitude for lπ ≤
lmax = 2. For each isospin, 4lmax complex multipoles have to be determined from ex-

periment.

lπ 0 1 2

Jp 1
2

− 1
2

+ 3
2

+ 3
2

− 5
2

−

multiplole E0+ M1− M1+ E1+ M2− E2− M2+ E2+

A direct reconstruction of the relevant partial wave amplitudes was achieved
for the first time in the energy region of the ∆(1232) resonance using a truncation
to s- and p-waves (lmax < 2) and additional theoretical constraints [14].

At higher enegies this procedure requires precision measurements of sev-
eral spin observables with a sufficiently fine energy binning, e.g. 10 MeV, and a
full angular coverage. Below ECM ∼ 2 GeV, where a truncation to F- or G-wave
(lmax < 3 or 4) is possible, already the measurement of 4-6 spin and double-spin
observables could provide sufficient constraints for such a direct reconstruction.
This has been shown in [15] using generated pseudo-datawith realistic uncertain-
ties that will be achieved with the Crystal-Ball experiment at MAMI within the
next years. Preliminary results formany new target and beam-target asymmetries
from ELSA, JLAB and MAMI have been presented e.g. at the last NSTAR con-
ference [16]. However, the direct reconstruction of multiploles has not yet been
achived above the ∆(1232) resonance region and one has to rely on fits using
models for the energy-dependent amplitudes. Figure 3 summarizes the current
status of suchmodel dependent analyses in the case of the important lowest order
multipole amplitudes, Jp = 1/2+(M1−) and Jp = 1/2−(E0+). Even at relatively
low energies in the second resonance region there are significant deviations be-
tween different models. A summary of our current knowledge of multipole am-
plitudes for different flavor states can be found in [21].
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Fig. 2. Lowest order multipole amplitudes of the γp → π0p reaction in units of 10−3/Mπ.

The curves are derived from fits of different models to existing data. The black solid and

dashed lines represent the SAID 2011 and the SAID Chew-Mandelstam fits [17, 18], the

MAID analysis gives the red dotted line [19]. Finally, the blue dashed-dotted curve is de-

rived from the Bonn-Gatchina analysis [20].

In the case of the γp → π0p reaction close to threshold a direct reconstruc-
tion of the amplitudes is more simple as the dynamics is dominated only by one
s-wave, E0+ and 3 p-waves,M1−,M1+ and E1+. Furthermore, these multipoles
are real between the π0p and π+n production thresholds. Above the π+n thresh-
old the E0+ amplitude becomes complex and shows a strong energy dependence
due to the unitary cusp [22]. The imaginary parts of the p-waves remain negligi-
ble below ∼ 180MeV. With this truncation, the real parts of the multipoles can be
reconstructed from measurements of two observables only, namely the differen-
tial cross section and the photon beam asymmetry

Σ =
σ⊥ − σ||

σ⊥ + σ||
. (2)

Here σ⊥ and σ|| denote the differential cross sections with the photon polariza-
tion vector perpendicular and parallel to the pπ0 reaction plane. Both observables
have recently been measured from threshold up to the ∆ resonance region with
unprecedented accuracy at the Crystal-Ball experiment at MAMI [23]. Fig. 3 show
as an example the results of these measurements at the CM angle of 90o as func-
tion of the incoming photon energy. The new data are compared to existing data
and ChPT calculations with updated low-energy parameters [25] as well as the
2001 version of the DMT dynamical model [26]. The reconstruction of the multi-
poles is almost final and will be published soon [24].

With all relevant multipoles fixed by experiment the additional measure-
ment of target (T) and beam-target (F) spin asymmetries will provide sensitivity
to the charge exchange π+n→ π0p scattering length from the unitary cuspwhich
enters directly in the imaginary part of the E0+ amplitude. Therefore, threshold
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Fig. 3. Preliminary results fromCrystal Ball at MAMI (solid circles) of the differential cross

section and photon asymmetry for the γp → πop reaction at pion CM angle of 90o com-

pared to the older data from MAMI ( [22], open squares) as well as some theory calcula-

tions. The solid lines are preliminary ChPT fits to the new data [25] and the dashed lines

are a dynamical model [26].

π0photo-production will enable us to study strong and electromagnetic isospin
breaking in πN scattering by comparing the charge exchange scattering lengths
for π+n → π0p and π−p → π0n [23]. The ladder has recently been measured in
pionic hydrogen [27].

4 γN → ππN

When looking at the production of meson pairs like ππ of πη it is obvious that the
dynamics can be much more complex and an analysis will be even more model
dependent than in the case of single meson photo-production. Nevertheless, ππN
and πηN finals states have attracted a lot of interest during the last years. These
processes allow us to study resonances which have no significant branching ratio
for a direct decay into the nucleon ground state. This is possible via sequential de-
cays which involve intermediate excited states like R→ R ′π→ Nππ. Here R and
R ′ denote nucleon resonances. Such decay chains are a phenomenon that can be
observed in other quantum systems like atoms or nuclei as well. The theoretical
interpretation is usually based on isobar models or effective field theories [28–32].
Typically, the reaction amplitude is constructed as a sum of background and res-
onance contributions. The background part contains nucleon Born terms as well
as meson exchange in the t channel. The resonance part is a coherent sum of
s-channel resonances decaying into ππN via intermediate formation of meson-
nucleon and meson-meson states (“isobars”). Despite significant differences be-
tween the models, all of them provide an acceptable description of the existing
data. This observation clearly demonstrates, that further experimental and theory
studies are necessary.

With the Crystal-Ball at MAMI we have recently studied the γN → π0π0N

reactions by measurements of cross sections [33] and beam helicity asymmetries
[34, 35].
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Fig. 4 shows the existing data for the total cross section. It is widely ac-
cepted that the D13(1520) resonance decaying to π∆ channel is responsible for
the first peak at Eγ ≈ 730 MeV. However, the underlying dynamics down to
threshold as well as the behavior at higher energies have not been well under-
stood so far. E.g., the minimum at W = 1.6 GeV and the second maximum at
W = 1.7 GeV are described in Ref. [32] by the destructive interference between
D13 andD33 partial wave amplitudes. In other models this behavior is explained
by different resonance contributions, e.g. in the F15 partial wave. The high ac-
curacy of the MAMI new data allowed us to make first steps towards a model
independent partial wave analysis for the first time. In case of meson pair pro-
duction the helicity amplitudes depend on the incoming photon energy, Eγ, the
meson energies,ω1 andω2 (Dalitz-Plot) and two angles, Θ andΦ, which are ex-
plained in Fig. 5. The angular distributions normalized to the total cross section,
W(Eγ,ω1,ω2, Θ,Φ) = 1

σ
· dσ
dΩ

can now be expanded in terms of spherical har-
monics YLM(Θ,Φ). In a first step, we average the distributions over the meson
energies,ω1,ω2:

W(Eγ, Θ,Φ) ≡ 1

σ

∫
dω1dω2

dσ

dΩ
=

∑

L≥0

L∑

M=−L

√
2J+ 1

4π
WLM(Eγ) · YLM(Θ,Φ)

(3)
This expansion determines the general structure of an angular distribution anal-
ogous to the expansion of the cross section for single-meson photo-production
in terms of the Legendre polynomials (see Eq. 1). The moments WLM(Eγ) are
bilinear combinations of the partial wave amplitudes. The exact relations have
been worked out explicitly by Fix and Arenhoevel in ref. [36]. With the high pre-
cision data from MAMI it was possible to determine the moments WLM(Eγ) for
the first time. The results are shown in Fig. 6. In case of the production of two
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identical particles, e.g. γp → π0π0p, it can be shown, that the imaginary parts
vanish exactly (Im( WLM) = 0). Already at low energies, the quantities W20
and W22, which are given by an incoherent sum JP = 3/2− and 3/2+ partial
wave amplitudes, achieve relatively large values. This observation indicates an
additional strong 3/2− contribution, interfering with the D13(1520) resonance.
This could support the dynamics found in Ref. [32] where a strong contribution
from theD33(1700) resonance was found. Of course, the analysis of the moments
WLM(Eγ) is only a very first step towards a full partial wave analysis of meson
pair production processes. Nevertheless, it shows that data with very high preci-
sion, which will be available also for other observables in the future, will allow us
to reduce the model dependence in the analysis procedures even for more com-
plex final states significantly.

5 Conclusion

During the last decade an immense effort started to study baryon resonances in
photo-induced meson production at various laboratories, mainly ELSA, Graal,
JLAB, LEPS, LNS and MAMI. New high precision data for many spin observ-
ables are expected in the near future. A prerequisite for an unambiguous, model-
independent extraction of resonance parameters is the reconstruction of partial
wave or multipole amplitudes from experimental data. Resonances as well as ef-
fects from coupled channel dynamics manifest themselves in the analytic proper-
ties of these amplitudes. The upcoming data will allow us to minimze the model
dependence in the determination of partial wave amplitudes in a systematic way.
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This goal has already been achieved in π0 photo-production close to threshold.
The methods will be extended to higher photon energies and other final states
(ηN, KΛ, ππN, etc.).
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Abstract. We report of our ongoing studies of the electroweak structures of baryon ground

and resonant states with flavors u, d, and s. Particular emphasis is laid on the compari-

son of the theoretical predictions of our relativistic constituent-quark model with recent

experimental data for individual flavor contributions to the nucleon electromagnetic form

factors.

The original results of covariant predictions by the Goldstone-boson-exchange
relativistic constituent-quark model (GBE RCQM) [1,2] for the elastic electromag-
netic and axial form factors of the nucleons were published in [3–5]. They were
followed by detailed studies of the electric radii as well as magnetic moments
of all light and strange baryons [6]. Comparisons to corresponding predictions
by other RCQM, such as the relativized one-gluon-exchange (OGE) RCQM of
Bhaduri, Cohler, and Nogami, as parameterized in ref. [7], were given in [8]. In
the latter paper also comparative studies of point-form and instant-form calcu-
lations of the nucleon electromagnetic form factors were made, in order to find
out the essential differences between the spectator-model constructions in either
the instant and point forms of Poincaré-invariant quantum mechanics [9]. More
recently we have performed detailed investigations of the axial charges of the
nucleon and N∗ resonances [10]; this kind of studies have then also been ex-
tended to the axial charges of the whole octet and decuplet of light and strange
baryons [11]. The axial charges are connected with the πNN coupling constant via
the Goldberger-Treiman relation. Therefore it has been very interesting to study
also the πNN as well as πN∆ interaction vertices [12]. With these investigations
we have reached a microscopic description of the Q2 dependences of the πNN
and πN∆ form factors together with predictions for the corresponding coupling
constants fπNN and fπN∆, which were found in agreement with phenomenology.

Especially the point form results obtained from the GBE RCQM have been
found to be everywhere in quite good an agreement with existing experimental
data. Further fine-tuning of the description is probably only needed for such sen-
sitive observables like the N electric radii, some baryon magnetic moments, and
the N axial charge [5, 6, 10, 11]. The studies have recently been extended to the ∆

⋆ Talk delivered by W. Plessas
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and the lowest hyperon states [13], for which, of course, no experimental data ex-
ist. In some instances, however, comparisons to data from lattice QCD have been
possible, showing again a reasonable agreement in most cases.

With regard to theN elastic electromagnetic form factors an interesting issue
has come about by the recent publication of phenomenological data for the flavor
contributions to these form factors [14]. We were immediately interested in the
performance of the GBE RCQM with regard to the u- and d-flavor contributions
to the proton and neutron electromagnetic form factors as well as the electric radii
and magnetic moments. First results were already reported at the BledWorkshop
in 2011 (see [15]) and subsequently published in [16]. For the flavor contribu-
tions to the Sachs electric and magnetic form factors of both the proton and the
neutron surprisingly good agreement with experimental data published in [14]
is achieved. Slight deviations occur close to zero momentum transfer, since the
electric radii and magnetic moments are not perfectly reproduced by the GBE
RCQM [6].

Driven by these successes we have extended the flavor analyses to all the
other octet and decuplet baryons [17]. Again, no experimental data exist. How-
ever, in some cases we can compare to calculations of flavor components to elec-
tromagnetic baryon form factors from lattice QCD [18]. This applies specifically
to Σ−, Σ0, Σ+, Ξ−, and Ξ0 baryons. In all cases a remarkably good agreement is
found. In Figs. 1 and 2 we show as typical examples the electric and magnetic
form factors of Σ+, for which also other lattice-QCD data exist.
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Fig. 1. Predictions of the GBE RCQM for the elastic electric form factor of Σ+ (total: solid

line, u-component: dashed line, s-component: dotted line) in comparison to data from

lattice QCD for the total form factor [19] and for the u and s flavor contributions [18].

It should be emphasized that the covariant predictions of the GBE RCQM
are parameter-free. No further parametrizations, such as meson-dressing effects
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nor constituent quark anomalous magnetic moments etc., have been included for
the calculation of the electromagnetic current matrix elements. Still, a remarkably
good agreement with the whole existing experimental data base and also with
lattice-QCD data is generally achieved. It means that the RCQM is a reliable tool
to treat at least the lowest-lying baryon states on reasonable grounds. Of course,
refined wave functions such as the ones produced by the GBE RCQM must be
employed and the framework must be fully relativistic.
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Fig. 2. Same as in Fig. 1 but for the elastic magnetic form factor of Σ+.
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1 Introduction and Formalism

To gain insight into the non-perturbative sector of Quantum Chromodynam-
ics the knowledge of the excited hadron spectrum is essential, providing the
connection between experiment and QCD. Most resonances have been identi-
fied through elastic πN scattering in the past to present day. On the other hand,
combining different reactions for resonance extraction allows to determine those
states which couple only weakly to πN. The simultaneous analysis of different
final states of pion- and photon-induced reactions is especially interesting re-
garding the new experimental window that has opened through the recent high-
precision photon beam facilities, e.g., at ELSA, JLab and MAMI. Among other
approaches, dynamical coupled-channel (DCC) models provide a sophisticated
tool to analyze those data on excited baryons as they obey a maximum of the-
oretical requirements of the S-matrix such as analyticity to allow for a reliable
extraction of resonances.

The DCCmodel developed and employed in this study (Jülich model) is based
on an approach pursued over the years [1–9]. The scattering amplitude is ob-
tained as the solution of a Lippmann-Schwinger equation (Eq. (1)) which guaran-
tees two-body unitarity and approximates three-body unitarity,

〈L ′S ′k ′|T IJµν|LSk〉 = 〈L ′S ′k ′|VIJµν|LSk〉

+
∑

γL ′′ S ′′

∞∫

0

k ′′2 dk ′′〈L ′S ′k ′|VIJµγ|L
′′S ′′k ′′〉 1

z− Eγ(k ′′) + iǫ
〈L ′′S ′′k ′′|T IJγν|LSk〉 .(1)

In Eq. 1 z is the scattering energy, J (L) is the total angular (orbital angular) mo-
mentum, S (I) is the total spin (isospin), k(k ′, k ′′) are the incoming (outgoing,
intermediate) momenta, and µ, ν, γ are channel indices. Eγ is the on-mass shell
energy in channel γ [4]. The pseudo-potential V iterated in Eq. (1) is constructed
from an effective interaction based on the Lagrangians of Wess and Zumino, sup-
plemented by additional terms [2, 3] for including the ∆ isobar, the ω, η, a0
meson, and the σ. The channel space is given by Nπ,Nη,Nσ,∆π, Nρ, ΛK and
ΣK. The non-resonant interactions are constructed of t- and u-channel exchanges
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of known mesons and baryons, while bare resonances can be considered as s-
channel processes. The explicit treatment of the background in terms of t- and
u-channel diagrams introduces strong correlations between the different partial
waves and generates a non-trivial energy and angular dependence of the observ-
ables. Analyticity is respected in the sense that dispersive, real parts of interme-
diate states are included, as well as the correct structure of branch points, some
of them being in the complex plane, and the correct off-shell behavior as dictated
by the interaction Lagrangians. Thus, a reliable determination of resonance prop-
erties given in terms of pole positions and residues is possible. In the Jülich model

SU(3) flavor symmetry is exploited to link the different reaction channels, while
it is broken e.g. by physical masses and different cut-offs in the form factors of
the vertices.

The extension of themodel to photoproductionwithin a fully gauge-invariant
approach has been accomplished recently [9].

In the following, the results of a simultaneous analysis of elasticπN-scattering
and pion-induced K and η production within the framework of the Jülich model

will be presented. In the present study, we perform a resonance analysis of the
isospin I = 1/2 and I = 3/2 sector, considering the world data on the set of reac-
tions π−p → ηn, K0Λ, K0Σ0, K+Σ−, and π+p → K+Σ+, together with πN → πN

scattering. Within the framework of DCC approaches, this is the first analysis of
this type realized. The approach also includes the three effective ππN channels
π∆, σN and ρN. The considered energy range has been extended beyond 2 GeV
and resonances up to J = 9/2 are included in this study.

The present study is the first step towards a global analysis of pion- and
photon-induced production of πN, ηN, KΛ and KΣ.

2 Results

While for the reaction πN → πN the partial waves from the GWU/SAID analy-
sis [10] are used, for the inelastic channels, πN → ηN and πN → KY, we fit di-
rectly to total and differential cross sections as well as to polarization observables.
The bulk of the existing data for the inelastic channels was obtained in the 1960’s
and 70’s. Though many experiments have been carried out at different facilities,
unfortunately, there are still energy ranges where the data situation is not ideal.
All in all we include about 6000 data points in our analysis. The present solution
was obtained in a fit procedure using MINUIT on the JUROPA supercomputer at
the Forschungszentrum Jülich.

In the previous analysis [5], the reaction π+p → K+Σ+ and πN scattering
were considered and only resonance parameters, i.e. bare masses and couplings
of the resonances to the different channels, were fitted. In this study, in addition
the important TNP parameters are varied. Those are the cut-offs of the form factors
in t- and u-channel exchange diagrams.

Resonances with a total spin up to J = 9/2 are included, with the correspond-
ing new parameters. One bare s-channel state is included in each of the I = 1/2

partial waves D13, D15, F15, P13, F17, H19 and G19, while we have two in S11



38 Deborah Rönchen

and P11. In the I = 3/2 sector, one bare s-channel state is included in the S31,D33,
F35, P31,D35, F37, G37 andG39 partial waves and two are included in P33. These
states couple to all channels πN, ρN, ηN, π∆, KΛ and KΣ if allowed by isospin. In
total, we have 196 free parameters, of which 128 are resonance parameters and 68
belong to the TNP part (t- and u-channel exchanges). The values of the parameters
will be quoted elsewhere.

In Figs. 1, 2 and 3 we show a selection of our present results at typical ener-
gies.
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Fig. 1. Reaction πN → πN, real and imaginary part of the S11, P11, P33 and D33 partial

waves. (Red) solid lines: present solution. (Blue) dashed lines: only TNP. (Green) dash-

dotted lines: Jülich model, solution 2011 from Ref. [5]. Data points: GWU/SAID partial

wave analysis (single energy solution) from Ref. [10]. (Preliminary)

In summary, a first combined analysis of the reactions πN → πN, ηN, KΛ,
and the three measured KΣ final states K+Σ+, K0Σ0, and K+Σ− within a dynam-
ical coupled-channel framework has been performed. In the Lagrangian-based
calculation, the full off-shell solution of the Lippman-Schwinger equation pro-
vides the correct analytic structure allowing for a reliable extrapolation into the
complex plane to extract resonance pole positions and residues up to JP = 9/2±.
The amplitude features also effective ππN channels with branch points in the
complex plane and a dispersive treatment of σ and ρ t-channel exchanges.

A publication of the full results together with a resonance analysis in terms
of poles and residues is in progress.

The present results, in combination with the recent extension to pion pho-
toproduction [9], will be used as input into a global study of pion- and photon-
induced production of πN, ηN, KΛ and KΣ. This means a major step towards
the analysis of high-precision photoproduction data of ηN, KΛ, and KΣ data pro-
duced, e.g., at ELSA, JLab, and MAMI.
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(middle) and π−p → K0Σ0 (lower). (Red) solid lines: present solution. Selected results
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Abstract. The existence of a star with such a large mass means that the equation of state

is stiff enough to provide a high enough pressure up to a fairly large density , about four

times the nuclear density.

1 Introduction

Equations of state (EOS) that involve nonrelativistic constituents counteract grav-
itational infall of matter through a fermi pressure that is proportional to the den-
sity to the (5/3) power, unlike fermi pressures of relativistic constituents that go
as density to the (4/3) power. Clearly the nonrelativistic nucleons are favoured
over quarks for stiffer EOS’s that can lead to larger mass for the stars.

However, a pure nonrelativistic fermi gas of neutrons is not sufficient to give
large masses for neutron stars. Such a non interacting gas can give stars of max-
imum mass 0.7 solar mass - this a general relativistic effect coming from the Op-
penheimer – Volkoff equation where the pressure needs to be proportional to
density to a power greater than (5/3) . On the other hand, for white dwarfs fermi
pressure of a nonrelativistic electron gas is all that is needed to counteract gravity
and have stable stars. This enhanced pressure is provided by nuclear interactions
like the hard core.

It is known that stars with soft, relativistic quark matter cores surrounded by
a nonrelativistic n+p+e plasma in beta equilibrium can give maximum mass for
neutron stars ∼ 1.6 solar mass [1, 2].

It is also known that there are many nucleon based neutron stars models
that have neutron stars with maximum mass above 2 solar masses, eg. the APR
98 EOS of Akmal, Pandharipande and Ravenhall [3].

If we can show that matter in neutron stars is entirely composed of nucleon
degrees of freedom then we can have a simple resolution of this problem. Can we?

⋆ Talk delivered by V. Soni
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2 The Maxwell construction between nuclear matter and quark
matter

A simple way to look at whether nucleons can dissolve into quark matter is to
plot EB, the energy per baryon in the ground state of both phases versus 1/nB,
where nB is the baryon density. The slope of the common tangent between the
two phases then gives the pressure and the intercept the common baryon chemi-
cal potential. For the quark matter equation of state see Fig.1.

Fig. 1. The Maxwell construction: Energy per baryon plotted against the reciprocal of the

baryon number density for APR98 equation of state (dashed line) and the 3-flavour pion-

condensed phase (PC) for three different values of mσ (solid lines). A common tangent

between the PC phase and the APR98 phase in this diagram gives the phase transition

between them. The slope of a tangent gives the negative of the pressure at that point, and

its intercept gives the chemical potential. As this figure indicates, the transition pressure

moves up with increasing mσ, and at mσ below ∼750 MeV a common tangent between

these two phases cannot be obtained. (From Fig. 2 of Soni and Bhattacharya [2] or Fig. 3 of

the preprint [4])

This is based on an effective chiral symmetric theory that is QCD coupled
to a chiral sigma model. The theory thus preserves the symmetries of QCD. In
this effective theory chiral symmetry is spontaneously broken and the degrees of
freedom are constituent quarks which couple to colour singlet, sigma and pion
fields as well as gluons. The nucleon in such a theory is a colour singlet quark
soliton with three valence quark bound states [5]. The quark meson couplings are
set by matching mass of the nucleon to its experimental value and the meson self
coupling which sets the tree level sigma particle mass is set from pi-pi scattering
to be of order 800 MeV. Such an effective theory has a range of validity up to
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centre of mass energies ( or quark chemical potentials) of ∼ 800 MeV. For details
we refer the reader to ref. [2].

This is the simplest effective chiral symmetric theory for the strong inter-
actions at intermediate scale and we use this consistently to describe, both, the
composite nucleon of quark boundstates and quark matter. We expect it to be
valid till the intermediate scales quoted above. Of course inclusion of the higher
mesonic degrees of freedom like the rho and A1 would make for a more complete
description. We work at the mean field level the gluon interactions are subsumed
in the colour singlet sigma and pion fields they generate. We could further add
perturbative gluon mediated corrections but they do not make an appreciable
difference.

As can be seen from Fig.1, it is the tree level value of the sigma mass that
determines the intersection of the two phases; the higher the mass the higher the
density at which the transition to quark matter will take place. In [2] it was found
that above,mσ ∼ 850MeV, stars with quark matter cores become unstable as their
mass goes up beyond the allowed maximummass. So, if we want purely nuclear
stars we should, in this model, work at,mσ ≥ 850 MeV [2].

From Fig. 1, for the tree level value of the sigma mass ∼850MeV, the common
tangent in the two phases starts at 1/nB ∼ 1.75 fm3 ( nB ∼ 0, 57/fm3) in the
nuclear phase of APR [A18 + dv +UIX] and ends up at 1/nB ∼ 1.25 fm3 (nB ∼

0.8/ fm3) in the quark matter phase.

At the above densities between the two phases there is a mixed phase at the
pressure given by the slope of the common tangent and the at a baryon chemical
potential given by the intercept of the common tangent on the vertical axis. If we
are to stay in the nuclear phase the best way is to look at the central density of
the nuclear (APR) stars and if it so happens that they are at lower density than
that at which the above phase transition begins the we can safely say that the star
remains in the nuclear phase.

Going Back to the APR phase in in fig 11 of APR [3] we find that for the APR
[A18 + dv +UIX] the central density of a star of 1.8 solar mass is nB ∼ 0.62 /fm3,
very close to the initial density at which the phase transition begins.

The reason we are taking a static star mass of 1.8 solar mass from APR [3] is
that for PSR-1614, the star is rotating fast at a period of 3 millisec and we expect a
∼ 15% diminution of the central density from the rotation [6]. Equivalently, since
the above paper reports results for static stars, the central density of a fast rotating
1.97 solar mass star ∼ the central density of a static 1.8 solar mass star.

Now we have found that in above scenario the central density is of the same
order as the density at which the above phase transition begins in the nuclear
phase. Ideally we would like the central density to be a little less than the initial
density at which the above phase transition begins in the nuclear phase.

3 Beyond the Maxwell tangent construction for the phase
transition

How dowe change the crossover andMaxwell tangent construction for the phase
transition? There are 2 ways of moving the crossover between the 2 phases and
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also the initial density at which the above phase transition begins in the nuclear
phase to higher density.

(i) By increasing the tree level mass of the sigma we can move the quark
matter curve up (Fig. 1), thus moving the initial density at which the above phase
transition begins in the nuclear phase to higher density. However we have to be
careful. There is not much freedom here, as this is what also determines the π−π
scattering.

(ii) By softening the nuclear EOS at high density, e.g. by including hyperons
or pi condensates. But this will increase the central density of the star and also
reduce its maximum mass.

Of these the option (i) is a safer option as it does not disturb the central den-
sity or maximum mass of the nuclear star. However, the Maxwell construction is
not the final word on the phase transition. The exact nature of the transition is
not just given by the energy /baryon in the quark matter phase ( which depends
mainly onmσ) but will depend on the quark binding inside the nucleon ( which
depends mainly o the quark meson coupling ) and the nucleon nucleon repulsion
as we squeeze them. This is not captured by the Maxwell construction.

The nucleon binding in this model is very high (Fig. 2) [5]

Fig. 2. Dependence of the quark energy on the soliton size X in the quark soliton model

(From Fig. 2 of Kahana, Ripka and Soni [5])

The quark eigenfunctions are smaller than the radius of the nucleon; they
spread over about 0.5 fermi. This yields a quark wave function size of ∼1 fermi
or kinetic energy of about 200 MeV. The unbound mass of the quark is given by
gfπ ∼ 500 MeV and effectively they must contribute 313 MeV to the mass of the
nucleon , giving the quark binding energy of ∼ 400 MeV.

We can see that the quarks will become unbound ( go to the continuum)
when the energy eigenvalue is larger than the unbound mass of the quark which
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is given bymfree = gfπ ∼ 500MeV. This happens when in the dimensionless units
used in Fig. 2 ǫ ≥ 1 at X= 3.12/1.94 = 1.6. This translates into R =(1.6/2.5) fm−1 ∼

0.6 fm−1 .This is the effective radius of the squeezed nucleon at which the bound
state quarks are liberated to the continuum. By inverting the volume occupied
by the nucleon and assuming hexagonal close packing, this translates to nucleon
density of 1/(6R3) ∼ 0.77 fm−3.

Thus the quark bound states in nucleon persist untill a much higher density
∼ 0.8/fm3. In other words, nucleons can survive well above the density at which
the Maxwell phase transition begins and appreciably above the central density of
the APR 2-solar-mass star.

Another feature is the the nucleon nucleon potential. It has been found for
skyrmions and such quark-quark solitons with skyrmion configurations that there
is a strong N-N repulsion that forces the lowest baryon number NB = 2 configu-
ration to become toroidal [7]. This is an indication that nucleon nucleon potential
becomes strongly repulsive.

It thus follows that the phase transition from nuclear to quark matter will
encounter a potential barrier before the quarks can go free. This effect cannot be
seen by the coarse Maxwell construction which does not track their transition.
This will modify the simple minded Maxwell construction which assumes only
the energy and pressure that exist independently in the 2 phases. Here is where
the internal structure of the nucleon will delay the transition.

All in all this produces a very plausible scenario of how the ∼2 solar mass
star can be achieved in a purely nuclear phase.

4 Consequences and discussion

A simple consequence of this unexpected scenario at high density is that the the
phase diagram of QCD which plots temperature versus baryon chemical poten-
tial, the quark matter transition for finite density ( in the range above) will be
lifted up along the temperature axis.
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Abstract. The masses of highly excited negative parity baryons belonging to the N = 3

band are calculated in the 1/Nc expansion method of QCD. We use a procedure which

allows to write the mass formula by using a small number of linearly independent oper-

ators. The numerical fit of the dynamical coefficients in the mass formula show that the

pure spin and pure flavor terms are dominant in the expansion, like for the N = 1 band.

We present the trend of some important dynamical coefficients as a function of the band

number N or alternatively of the excitation energy.

1 The status of the 1/Nc expansion method

The large Nc QCD, or alternatively the 1/Nc expansion method, proposed by
’t Hooft [1] in 1974 and implemented by Witten in 1979 [2] became a valuable
tool to study baryon properties in terms of the parameter 1/Nc where Nc is the
number of colors. According toWitten’s intuitive picture, a baryon containingNc
quarks is seen as a bound state in an average self-consistent potential of a Hartree
type and the corrections to the Hartree approximation are of order 1/Nc. These
corrections capture the key phenomenological features of the baryon structure.

Ten years after ’t Hooft’s work, Gervais and Sakita [3] and independently
Dashen and Manohar in 1993 [4] derived a set of consistency conditions for the
pion-baryon coupling constants which imply that the large Nc limit of QCD has
an exact contracted SU(2Nf)c symmetry when Nc → ∞,Nf being the number of
flavors. For ground state baryons the SU(2Nf) symmetry is broken by corrections
proportional to 1/Nc [5, 6].

Analogous to s-wave baryons, consistency conditions which constrain the
strong couplings of excited baryons to pions were derived in Ref. [7]. These con-
sistency conditions predict the equality between pion couplings to excited states
and pion couplings to s-wave baryons. These predictions are consistent with the
nonrelativistic quark model.

A few years later, in the spirit of the Hartree approximation a procedure for
constructing large Nc baryon wave functions with mixed symmetric spin-flavor
parts has been proposed [8] and an operator analysis was performed for ℓ = 1
baryons [9]. It was proven that, for such states, the SU(2Nf) breaking occurs at

⋆ Talk delivered by Fl. Stancu
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order N0c, instead of 1/Nc, as it is the case for ground and also for symmetric
excited states [56, ℓ+] (for the latter see Refs. [10,11]). This procedure has been ex-
tended to positive parity nonstrange baryons belonging to the [70, ℓ+] multiplets
with ℓ = 0 and 2 [12]. In addition, in Ref. [12], the dependence of the contribution
of the linear term in Nc, of the spin-orbit and of the spin-spin terms in the mass
formula was presented as a function of the excitation energy or alternatively in
terms of the band number N. Based on this analysis an impressive global com-
patibility between the 1/Nc expansion and the quark model results forN = 0, 1, 2
and 4 was found [13] (for a review see Ref. [14]). More recently the [70, 1−]multi-
plet was reanalyzed by using an exact wave function, instead of the Hartree-type
wave function, which allowed to keep control of the Pauli principle at any stage
of the calculations [21]. The novelty was that the isospin term, neglected previ-
ously [9] becomes as dominant in∆ resonances as the spin term inN∗ resonances.

The purpose of this work is mainly to complete the analysis of the excited
states by including theN = 3 band for which results were missing in the system-
atic analysis of Ref. [12]. An incentive for studying highly excited states with ℓ =
3 has been given by a recent paper [15] where the compatibility between the two
alternative pictures for baryon resonances namely the quark-shell picture and
the meson-nucleon scattering picture defined in the framework of chiral soliton
models [16,17] has been proven explicitly. This work was an extension of the anal-
ysis made independently by Cohen and Lebed [18, 19] and Pirjol and Schat [20]
for low excited states with ℓ = 1.

As explained below, we shall analyze the resonances thought to belong to the
N = 3 band by using the procedure we have proposed in Ref. [21] for the N = 1

band. Details can be found in Ref. [22].

2 Mixed symmetric baryon states

If an excited baryon belongs to a symmetric SU(6) multiplet the Nc-quark sys-
tem can be treated similarly to the ground state in the flavour-spin degrees of
freedom, but one has to take into account the presence of an orbital excitation
in the space part of the wave function [10, 11]. If the baryon state is described
by a mixed symmetric representation of SU(6) , the [70] at Nc = 3, the treatment
becomes more complicated. In particular, the resonances up to about 2 GeV are
thought to belong to [70, 1−], [70, 0+] or [70, 2+] multiplets and beyond to 2 GeV
to [70, 3−], [70, 5−], etc.

There are two ways of studying mixed symmetric multiplets. The standard
one is inspired by the Hartree approximation [8] where an excited baryon is
described by a symmetric core plus an excited quark coupled to this core, see
e.g. [9, 12, 23, 24]. The core is treated in a way similar to that of the ground state.
In this method each SU(2Nf) × O(3) generator is separated into two parts

Si = si + Sic; Ta = ta + Tac ; Gia = gia +Giac ; ℓi = ℓiq + ℓ
i
c, (1)

where si, ta, gia and ℓiq are the excited quark operators and Sic, T
a
c , G

ia
c and ℓic

the corresponding core operators.
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As an alternative, we have proposed a method where all identical quarks are
treated on the same footing and we have an exact wave function in the orbital-
flavor-spin space. The procedure has been successfully applied to theN = 1 band
[21, 25, 26]. In the following we shall adopt this procedure to analyze the N = 3

band.

3 The mass operator

When hyperons are included in the analysis, the SU(3) symmetry must be broken
and the mass operator takes the following general form [27]

M =
∑

i

ciOi +
∑

i

diBi. (2)

The formula contains two types of operators. The first type are the operators Oi,
which are invariant under SU(Nf) and are defined as

Oi =
1

Nn−1c

O
(k)
ℓ ·O(k)

SF , (3)

where O
(k)
ℓ is a k-rank tensor in SO(3) and O

(k)
SF a k-rank tensor in SU(2)-spin.

Thus Oi are rotational invariant. For the ground state one has k = 0. The excited
states also require k = 1 and k = 2 terms. The rank k = 2 tensor operator of SO(3)
is

L(2)ij =
1

2

{
Li, Lj

}
−
1

3
δi,−jL · L, (4)

which we choose to act on the orbital wave function |ℓmℓ〉 of the whole system
of Nc quarks (see Ref. [12] for the normalization of L(2)ij). The second type are
the operators Bi which are SU(3) breaking and are defined to have zero expec-
tation values for non-strange baryons. Due to the scarcity of data in the N = 3

band hyperons, here we consider only one four-star hyperon Λ(2100)7/2− and
accordingly include only one of these operators, namely B1 = −S where S is the
strangeness.

The values of the coefficients ci and di which encode the QCD dynamics are
determined from numerical fits to data. Table 1 gives the list of Oi and Bi opera-
tors together with their coefficients, which we believe to be the most relevant for
the present study. The choice is based on our previous experience with theN = 1

band [26]. In this table the first nontrivial operator is the spin-orbit operator O2.
In the spirit of the Hartree picture [2] we identify the spin-orbit operator with the
single-particle operator

ℓ · s =
Nc∑

i=1

ℓ(i) · s(i), (5)

the matrix elements of which are of order N0c. For simplicity we ignore the two-
body part of the spin-orbit operator, denoted by 1/Nc (ℓ · Sc) in Ref. [9], as being
of a lower order (we remind that the lower case operators ℓ(i) act on the excited
quark and Sc is the core spin operator).
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Table 1.Operators and their coefficients in the mass formula obtained from numerical fits.

The values of ci and di are indicated under the heading Fit n (n = 1, 2, 3, 4) from Ref. [22].

Operator Fit 1 (MeV) Fit 2 (MeV) Fit 3 (MeV) Fit 4 (MeV)

O1 = Nc l1 c1 = 672 ± 8 c1 = 673 ± 7 c1 = 672 ± 8 c1 = 673 ± 7

O2 = ℓisi c2 = 18 ± 19 c2 = 17 ± 18 c2 = 19 ± 9 c2 = 20 ± 9

O3 = 1
Nc
SiSi c3 = 121 ± 59 c3 = 115 ± 46 c3 = 120 ± 58 c3 = 112 ± 42

O4 = 1
Nc

[TaTa

− 1
12
Nc(Nc + 6)

]

c4 = 202 ± 41 c4 = 200 ± 40 c4 = 205 ± 27 c4 = 205 ± 27

O5 = 3
Nc
LiTaGia c5 = 1 ± 13 c5 = 2± 12

O6 = 15
Nc
L(2)ijGiaGja c6 = 1± 6 c6 = 1 ± 5

B1 = −S d1 = 108 ± 93 d1 = 108 ± 92 d1 = 109 ± 93 d1 = 108 ± 92

χ2
dof 1.23 0.93 0.93 0.75

The spin operator O3 and the flavor operator O4 are two-body and linearly
independent. The expectation values ofO3 are simply equal to 1

Nc
S(S+ 1)where

S is the spin of the whole system. For nonstrange baryons the eigenvalue of O4
is 1
Nc
I(I + 1) where I is the isospin. For the flavor singlet Λ the eigenvalue is

−(2Nc + 3)/4Nc, favourably negative, as shown in Ref. [22].

Note that the definition of the operator O4, indicated in Table 1, is such as
to recover the matrix elements of the usual 1/Nc(TaTa) in SU(4), by subtracting
Nc(Nc + 6)/12. This is understood by using Eq. (30) of Ref. [25] for the matrix
elements of 1/Nc(TaTa) extended to SU(6). Then, it turns out that the expectation
values of O4 are positive for octets and decuplets and of order N−1

c , as in SU(4),
and negative and of orderN0c for flavor singlets.

The operators O5 and O6 are also two-body, which means that they carry
a factor 1/Nc in the definition. However, as Gia sums coherently, it introduces
an extra factor Nc and makes all the matrix elements of O6 of order N0c [25].
These matrix elements are obtained from the formulas (B2) and (B4) of Ref. [26]
where the multiplet [70, 1−] has been discussed. Interestingly, when Nc = 3, the
contribution of O5 cancels out for flavor singlets, like for ℓ = 1 [26]. This property
follows from the analytic form of the isoscalar factors given in Ref. [26].

We remind that the SU(6) generators Si, Ta and Gia and the O(3) generators
Li of Eq. (4) act on the total wave function of theNc system of quarks as proposed
in Refs. [21], [25] and [26]. The advantage of this procedure over the standard
one, where the system is separated into a ground state core + an excited quark,
is that the number of relevant operators needed in the fit is usually smaller than
the number of data and it allows a better understanding of their role in the mass
formula, in particular the role of the isospin operator O4 which has always been
omitted in the symmetric core + excited quark procedure.We should alsomention
that in our approach the permutation symmetry is exact [21].
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Among the operators containing angular momentum components, besides
the spin-orbit, we have included the operators O5 and O6, to check whether or
not they bring feeble contributions, as it was the case in the N = 1 band. From
Table 1 one can see that their coefficients are indeed negligible either included
together as in Fit 1 or separately as in Fit 2 and 3. Thus in the expansion series,
besides O1, proportional to Nc, the most dominant operators are the pure spin
O3 and the pure isospin O4.
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Fig. 1. The coefficient c1 as a function of the band number N: N = 1 Ref. [26], N = 2

Ref. [10] for [56, 2+] and Ref. [12] for [70, ℓ+], N = 3 Ref. [22], N = 4 Ref. [11]. The straight

line is drawn to guide the eye.

4 Global results

The above analysis helps us to complete previous results for N = 1, 2 and 4 with
the values of ci obtained forN = 3. Thereforewe can drawnow a complete picture
of the dependence of the coefficients c1 and c2 onN in analogy to Ref. [12] where
results for N = 3 were missing. The new pictures are shown in Figs. 1 and 2. One
can see that the values of c1 follow nearly a straight line which can give rise to
a Regge trajectory. Remember that c1 describes the bulk content of the baryon
mass, c1Nc being the most dominant mass term. In a quark model language it
represents the kinetic plus the confinement energy. As as discussed in Refs. [13,
14] the band number N also emerges from the spin independent part of a semi-
relativistic quark model. If this part contributes to the total mass by a quantity
denoted byM0, then one can make the identification

c21 =M
2
0/9 (6)

when Nc = 3. In this way one can compare the Regge trajectory obtainable from
the above results with that of a standard constituent quark model. It turns out
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Fig. 2. Same as Figure 1 but for the coefficient c2.

that they are close to each other [13,14]. and the value obtained here for c1 atN =
3, missing in the previous work, is entirely compatible with the previous picture.

The behaviour of c2 shows that the spin-orbit operator contributes very little
to the mass, at all energies, in agreement to quark models, where it is usually
neglected. Note that the behaviour of c2 in Fig. 2 is slightly different from that
of [12], because we presently take the value of c2 at N = 1 from Ref. [26] (Fit
3 giving the lowest χ2dof) for consistency with our treatment, instead of that of
Ref. [9], based on the ground state core + excited quark, the only available at the
time the paper [12] was published.

We refrain ourselves from presenting the global picture of c3, the spin term
coefficient, because the results for positive parity mixed symmetric states are ob-
tained on the one hand in the core + excited quark approach, where the isospin
term is missing and on the other hand, for negative parity states where it is
present, our approach is used. This term competes with the spin term. We plan to
reanalyze the [70, ℓ+] multiplets before drawing a complete picture of c3.

5 Conclusions

We have used a procedure which allows to write the mass formula by using a
small number of linearly independent operators for spin-flavour mixed symmet-
ric states of SU(6). The numerical fits of the dynamical coefficients in the mass
formula forN = 3 band resonances show that the pure spin and pure flavor terms
are dominant in the 1/Nc expansion, like for N = 1 resonances. This proves that
the isospin term cannot be neglected, as it was the case in the ground state +
excited quark procedure. We have shown the dependence of the dynamical co-
efficients c1 and c2 as a function of the band number N or alternatively of the
excitation energy for N = 1, 2, 3 and 4 bands.
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An overview of existing knowledge about definition of a resonance, and quan-
tification of resonance signals have been given. A special attention has paid to
explaining why the definition of a resonance is in principle ill defined mathe-
matical problem [1], and how it is overcame in physics reality [2]. A notion of
scattering and resolvent resonances has been introduced, their interconnection
and differences have been discussed, and reasons were presented why a pole as
a resonance signal is the most acceptable solution [3]. The importance of multi-
channel analysis has been demonstrated for pole extraction giving the example
of N(1710) P11 resonance where single channel πN elastic data are insufficient to
establish its existence. Only inclusion of inelastic channels (η production and/or
KΛ channels) is needed [4]. The dangers when using Breit-Wigner parameters for
quantifying resonance properties have been discussed, and use of phase-shift as a
link between QCD and scattering theory has been mentioned by using Lüscher’s
theorem [5]. The present state of the art of baryon spectroscopy has been pre-
sented by showing the highlights form the Camogli Workshop [6].
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Abstract. The possibilities of a model-independent partial wave analysis for pion, eta or

kaon photoproduction are discussed in the context of ‘complete experiments’. It is shown

that the helicity amplitudes obtained from at least 8 polarization observables including

beam, target and recoil polarization can not be used to analyze nucleon resonances. How-

ever, a truncated partial wave analysis, which requires only 5 observables will be possible

with minimal model assumptions.

1 Introduction

Around the year 1970 people started to think about how to determine the four
complex helicity amplitudes for pseudoscalar meson photoproduction from a
complete set of experiments. In 1975 Barker, Donnachie and Storrow [1] pub-
lished their classical paper on ‘Complete Experiments’. After reconsiderations
and careful studies of discrete ambiguities [2–4], in the 90s it became clear that
such a model-independent amplitude analysis would require at least 8 polariza-
tion observables which have to be carefully chosen. There are plenty of possible
combinations, but all of them would require a polarized beam and target and in
addition also recoil polarization measurements. Technically this was not possi-
ble until very recently, when transverse polarized targets came into operation at
Mainz, Bonn and JLab and furthermore recoil polarization measurements by nu-
cleon rescattering has been shown to be doable. This was the start of new efforts
in different groups in order to achieve the complete experimental information
and a model-independent partial wave analysis [5–8].

2 Complete experiments

A complete experiment is a set of measurements which is sufficient to predict all
other possible experiments, provided that the measurements are free of uncer-
tainties. Therefore it is first of all an academic problem, which can be solved by
mathematical algorithms. In practise, however, it will not work in the same way
and either a very high statistical precision would be required, which is very un-
likely, or further measurements of other polarization observables are necessary.
Both problems, first themathematical problem but also the problem for a physical
experiment can be studied with the help of state-of-the-art models like MAID or
partial wave analyses (PWA) like SAID.With high precision calculations the com-
plete sets of observables can be checked and with pseudo-data, generated from
models and PWA, real experiments can be simulated under realistic conditions.
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2.1 Coordinate Frames

Experiments with three types of polarization can be performed in meson photo-
production: photon beam polarization, polarization of the target nucleon and po-
larization of the recoil nucleon. Target polarization will be described in the frame
{x, y, z}, see Fig. 1, with the z-axis pointing into the direction of the photon mo-
mentum k̂, the y-axis perpendicular to the reaction plane, ŷ = k̂ × q̂/ sinθ, and
the x-axis is given by x̂ = ŷ × ẑ. For recoil polarization, traditionally the frame
{x ′, y ′, z ′} is used, with the z ′-axis defined by the momentum vector of the out-
going meson q̂, the y ′-axis is the same as for target polarization and the x ′-axis
given by x̂ ′ = ŷ ′ × ẑ ′.

The photon polarization can be linear or circular. For a linear photon polar-
ization (PT = 1) in the reaction plane (x̂, ẑ), ϕ = 0. Perpendicular, in direction ŷ,
the polarization angle is ϕ = π/2. Finally, for right-handed circular polarization,
P⊙ = +1.

Fig. 1. Frames for polarization vectors in the CM.

The polarized differential cross section can be classified into three classes of
double polarization experiments:
polarized photons and polarized target (types (S,BT )

dσ

dΩ
= σ0{1− PTΣ cos 2ϕ+ Px(−PTH sin 2ϕ + P⊙F)

+Py(T − PTP cos 2ϕ) + Pz(PTG sin 2ϕ− P⊙E)} , (1)

polarized photons and recoil polarization (types (S,BR)

dσ

dΩ
= σ0{1− PTΣ cos 2ϕ+ Px ′(−PTOx ′ sin 2ϕ− P⊙Cx ′)

+Py ′(P − PTT cos 2ϕ) + Pz ′(−PTOz ′ sin 2ϕ− P⊙Cz ′)} , (2)

polarized target and recoil polarization (types (S, T R)

dσ

dΩ
= σ0{1+PyT+Py ′P+Px ′(PxTx ′−PzLx ′)+Py ′PyΣ+Pz ′(PxTz ′+PzLz ′ )} . (3)

In these equations σ0 denotes the unpolarized differential cross section, Σ, T, P
are single-spin asymmetries (S), E, F,G,H the beam-target asymmetries (BT ),
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Ox ′ , Oz ′ , Cx ′ , Cz ′ the beam-recoil asymmetries (BR) and Tx ′ , Tz ′ , Lx ′ , Lz ′ the
target-recoil asymmetries (T R). The polarization quantities are described in Fig. 1.
The signs of the 16 polarization observables of Eq. (1,2,3) are in principle arbitrary,
except for the cross section σ0, which is naturally positive. For the 15 asymmetries
we use the sign convention of Barker et al. [1], which is also used by the MAID
and SAID partial wave analysis groups. For other sign conventions, see Ref. [9].

2.2 Amplitude analysis

Pseudoscalar meson photoproduction has 8 spin degrees of freedom, and due to
parity conservation it can be described by 4 complex amplitudes of 2 kinemat-
ical variables. Possible sets of amplitudes are: Invariant amplitudes Ai, CGLN
amplitudes Fi, helicity amplitudes Hi or transversity amplitudes bi. All of them
are linearly related to each other and further combinations are possible. Most of-
ten in the literature the helicity basis was chosen and the 16 possible polarization
observables can be expressed in bilinear products

Oi(W,θ) =
q

k

4∑

k,ℓ=1

αk,ℓ Hk(W,θ)H
∗
l (W,θ) , (4)

whereO1 is the unpolarized differential cross section σ0 and all other observables
are products of asymmetries with σ0, for details see Table 1.

From a complete set of 8 measurements {Oi(W,θ)} one can determine the
moduli of the 4 amplitudes and 3 relative phases. But there is always an un-
known overall phase, e.g. φ1(W,θ), which can not be determined by additional
measurements. This is, however, not a principal problem as with the principally
undetermined phase of a quantum mechanical wave function. Already in 1963
Goldberger et al. [10] discussed a method using the idea of a Hanbury-Brown
and Twiss experiment, and very recently in 2012, Ivanov [11] discussed another
method using vortex beams to measure the phase of a scattering amplitude. Both
methods, however, are highly impractical for a meson photoproduction experi-
ment.

Therefore, the complete information is contained in a set of 4 reduced ampli-
tudes,

H̃i(W,θ) = Hi(W,θ) e
−i φ1(W,θ) (5)

of which H̃1 is a real function, the others are complex, resulting in a total of 7 real
values for any givenW and θ.

Figure 2 shows two of such amplitude analyses with a complete set of 8 ob-
servables and an overcomplete set of 10 observables. The data used for this anal-
ysis has been generated as pseudo-data from Monte-Carlo events according to
the Maid2007 solution, see Sect. 3. The figure shows the real parts of two out of
four reduced helicity amplitudes, ReH̃1 and ReH̃4. While the solution with the
complete set of 8 observables results in a rather bad description of the true am-
plitudes, the solution of the overcomplete set gives a satisfactory result.
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Table 1. Spin observables for pseudoscalar meson photoproduction involving beam, tar-

get and recoil polarization in 4 groups, S ,BT,BR, T R. A phase space factor q/k has been

omitted in all expressions and the asymmetries are given by A = Â/σ0. In column 2 the

observables are expressed in terms of the Walker helicity amplitudes [12] and in column 3

in sin θ and x = cosθwith the leading terms for an S, P wave truncation.

Spin Obs Helicity Representation Partial Wave Expansion

σ0
1
2
(|H1|

2 + |H2|
2 + |H3|

2 + |H4|
2) Aσ0 + A

σ
1x +A

σ
2x
2 + · · ·

Σ̂ Re(H1H
∗

4 −H2H
∗

3) sin2 θ(AΣ0 + · · · )
T̂ Im(H1H

∗

2 + H3H
∗

4) sinθ(AT0 +AT1x+ · · · )
P̂ −Im(H1H

∗

3 +H2H
∗

4) sinθ(AP0 +AP1x+ · · · )
Ĝ −Im(H1H

∗

4 +H2H
∗

3) sin2 θ(AG0 + · · · )
Ĥ −Im(H1H

∗

3 −H2H
∗

4) sinθ(AH0 +AH1 x+ · · · )
Ê 1

2
(−|H1|

2 + |H2|
2 − |H3|

2 + |H4|
2) AE0 + A

E
1x +A

E
2x
2 + · · ·

F̂ Re(H1H
∗

2 +H3H
∗

4) sinθ(AF0 +A
F
1x+ · · · )

Ôx ′ −Im(H1H
∗

2 −H3H
∗

4) sin θ(A
Ox ′

0 + A
Ox ′

1 x +A
Ox ′

2 x2 + · · · )
Ôz ′ Im(H1H

∗

4 −H2H
∗

3) sin2 θ(A
Oz ′

0 + A
Oz ′

1 x+ · · · )
Ĉx ′ −Re(H1H

∗

3 +H2H
∗

4) sin θ(A
Cx ′

0 +A
Cx ′

1 x+ A
Cx ′

2 x2 + · · · )
Ĉz ′

1
2
(−|H1|

2 − |H2|
2 + |H3|

2 + |H4|
2) A

Cz ′

0 + A
Cz ′

1 x +A
Cz ′

2 x2 +A
Cz ′

3 x3 + · · ·
^Tx ′ Re(H1H

∗

4 +H2H
∗

3) sin2 θ(A
Tx ′

0 + A
Tx ′

1 x+ · · · )
T̂z ′ Re(H1H

∗

2 −H3H
∗

4) sinθ(A
Tz ′

0 + A
Tz ′

1 x +A
Tz ′

1 x2 + · · · )
L̂x ′ −Re(H1H

∗

3 −H2H
∗

4) sin θ(A
Lx ′

0 + A
Lx ′

1 x +A
Lx ′

2 x2 + · · · )
L̂z ′

1
2
(|H1|

2 − |H2|
2 − |H3|

2 + |H4|
2) A

Lz ′

0 +A
Lz ′

1 x +A
Lz ′

2 x2 + A
Lz ′

3 x3 + · · ·

2.3 Truncated partial wave analysis

Evenwith the help of unitarity in form ofWatson’s theorem, the angle-dependent
phase φ1(W,θ) cannot be provided. This has very strong consequences, namely
a partial wave decomposition would lead to wrong partial waves, which would
be useless for nucleon resonance analysis. It becomes obvious in the following
schematic formula

fℓ(W) =
2

2ℓ+ 1

∫
H̃(W,θ)eiφ(W,θ)Pℓ(cosθ) d cosθ , (6)

where the desired partial wave fℓ(W) cannot be obtained from the reduced he-
licity amplitudes H̃(W,θ) alone, as long as the angle dependent phase φ(W,θ) is
unknown.

Our main goal in the data analysis of photoproduction is the search for nu-
cleon resonances and their properties. To better reach this goal, one can directly
perform a partial wave analysis from the observables without going through the
underlying helicity amplitudes. Such an analysis would be a truncated partial
wave analysis (TPWA) with a minimal model dependence (i) from the truncation
of the series at a maximal angular momentum ℓmax and (ii) from an overall un-
known phase as in the case of the amplitude analysis in the previous paragraph.
However, in the TPWA the overall phase would be only a function of energy and
with additional theoretical help it can be constrained without strong model as-
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Fig. 2. Comparison of the reduced helicity amplitudes ReH̃1 and ReH̃4 between a pseudo-

data analysis with a complete dataset of 8 observables: σ0, Σ, T, P, E, G,Ox ′ , Cx ′ (left 2 pan-

els) and with an overcomplete dataset of 10 observables with additional F, H (right 2 pan-

els) for γp → π0p at E = 320 MeV as a function of the c.m. angle θ. The solid red curves

show the MAID2007 solutions. Amplitudes are in units of 10−3/mπ+.

sumptions. Such a concept was already discussed and applied for γ, π in the 80s
by Grushin [13] for a PWA in the region of the ∆(1232) resonance.

Formally, the truncated partial wave analysis can be performed in the fol-
lowing way. All observables can be expanded either in a Legendre series or in a
cos θ series

Oi(W,θ) =
q

k
sinαiθ

2ℓmax+βi∑

k=0

Aik(W) coskθ , (7)

Aik(W) =

ℓmax∑

ℓ,ℓ ′=0

4∑

k,k ′=1

αk,k
′

ℓ,ℓ ′ Mℓ,k(W)M∗
ℓ ′,k ′(W) , (8)

where k, k ′ denote the 4 possible electric and magnetic multipoles for each πN
angular momentum ℓ ≥ 2, namely Mℓ,k = {Eℓ+, Eℓ−,Mℓ+,Mℓ−}. For an S, P
truncation (ℓmax = 1) there are 4 complex multipoles E0+, E1+,M1+,M1− lead-
ing to 7 free real parameters and an arbitrary phase, which can be put to zero for
the beginning. In Table 1 we list the expansion coefficients for all observables that
appear in an S, P wave expansion. Already from the 8 observables of the first two
groups (S,BT) one can measure a set of 16 coefficients, fromwhich we only need
8 well selected ones for a unique mathematical solution. This can be achieved by
a measurement of the angular distributions of only 5 observables, e.g. σ0, Σ, T, P, F
or σ0, Σ, T, F, G. In the first example one gets even 10 coefficients, from which e.g.
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AP1 and AF0 can be omitted. In the second case, there are 9 coefficients, of which
AF0 can be omitted. In practise one can select those coefficients, which have the
smallest statistical errors, and therefore, the biggest impact for the analysis by
keeping in mind that all discrete ambiguities are resolved.

As has been shown by Omelaenko [14] the same is true for any PWA with
truncation at ℓmax. For the determination of the 8ℓmax − 1 free parameters one
has the possibility to measure (8ℓmax, 8ℓmax, 8ℓmax + 4, 8ℓmax + 4) coefficients
for types (S,BT ,BR, T R), respectively.

3 Partial wave analysis with pseudo-data

In a first numerical attempt towards a model-independent partial wave analysis,
a procedure similar to the second method, the TPWA, described above, has been
applied [6], and pseudo-data, generated for γ, π0 and γ, π+ have been analyzed.

Events were generated over an energy range from Elab = 200 − 1200 MeV
and a full angular range of θ = 0 − 180◦ for beam energy bins of ∆Eγ = 10 MeV
and angular bins of ∆θ = 10◦, based on the MAID2007 model predictions [15].
For each observable, typically 5 · 106 events have been generated over the full en-
ergy range. For each energy bin a single-energy (SE) analysis has been performed
using the SAID PWA tools [16].

Fig. 3. Real and imaginary parts of (a) the S11 partial wave amplitude E
1/2

0+ and (b) the P11

partial wave amplitudeM
1/2

1− . The solid (dashed) line shows the real (imaginary) part of

the MAID2007 solution, used for the pseudo-data generation. Solid (open) circles display

real (imaginary) single-energy fits (SE6p) to the following 6 observables without any recoil

polarizationmeasurement:dσ/dΩ, two single-spin observablesΣ, T and three beam-target

double polarization observables E, F, G. Multipoles are in millifermi units.

A series of fits, SE4p, SE6p and SE8p have been performed [6] using 4, 6 and 8
observables, respectively. Here the example using 6 observables (σ0, Σ, T, E, F, G)
is demonstrated, where no recoil polarization has been used. As explained before,
such an experiment would be incomplete in the sense of an ‘amplitude analysis’,

but complete for a truncated partial wave analysis. In Fig. 3 two multipoles E
1/2
0+

andM
1/2
1− for the S11 and P11 channels are shown and the SE6p fits are compared

to the MAID2007 solution. The fitted SE solutions are very close to the MAID



Complete Experiments for Pion Photoproduction 61

solution with very small uncertainties for the S11 partial wave. For the P11 par-
tial wave we obtain a larger statistical spread of the SE solutions. This is typical

for the M
1/2
1− multipole, which is generally much more difficult to obtain with

good accuracy [15], because of the weaker sensitivity of the observables to this
magnetic multipole. But also this multipole can be considerably improved in an
analysis with 8 observables [6].

4 Summary and conclusions

It is shown that for an analysis of N∗ resonances, the amplitude analysis of a
complete experiment is not very useful, because of an unknown energy and an-
gle dependent phase that can not be determined by experiment and can not be
provided by theorywithout a strongmodel dependence.However, the samemea-
surements or even less will be very useful for a truncated partial wave analysis
with minimal model dependence due to truncations and extrapolations of Wat-
son’s theorem in the inelastic energy region. A further big advantage of such a
PWA is a different counting of the necessary polarization observables, resulting
in very different sets of observables. While it is certainly helpful to have polar-
ization observables from 3 or 4 different types, for a mathematical solution of the
bilinear equations one can find minimal sets of only 5 observables from only 2
types, where either a polarized target or recoil polarization measurements can be
completely avoided.

I would like to thank R. Workman, M. Ostrick and S. Schumann for their
contributions to this ongoing work. I want to thank the Deutsche Forschungsge-
meinschaft for the support by the Collaborative Research Center 1044.
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Abstract. This paper reports on some of the latest spectroscopicmeasurements performed

with the experimental data collected by the Belle spectrometer, which has been operating

at the KEKB asymmetric-energy e+e− collider in the KEK laboratory in Tsukuba, Japan.

1 Introduction

The Belle detector [1] at the asymmetric-energy e+e− collider KEKB [2] has accu-
mulated about 1 ab−1 of data by the end of its operation in June 2010. The KEKB
collider, called a B-factory, most of the time operated near the Υ(4S) resonance,
but it has accumulated substantial data samples also at other Υ resonances, like
Υ(1S), Υ(2S) and Υ(5S), as well as in the nearby continuum. In particular, the
data samples at the Υ(4S) and Υ(5S) resonances are by far the largest available
in the world, corresponding to integrated luminosities of 798 fb−1 and 123 fb−1,
respectively. Large amount of collected experimental data and excellent detector
performance enabled many interesting spectroscopic results, including discov-
eries of new hadronic states and studies of their properties. This report covers
most recent and interesting spectroscopic measurements—performedwith either
charmonium(-like) and bottomonium(-like) states.

2 Bottomonium and Bottomonium-like States

The Belle collaboration used a data sample at the CM energy around the Υ(5S)
mass 10.89 GeV, and found large signals for decays into π+π−Υ(1S), π+π−Υ(2S)
and π+π−Υ(3S) final states [3]. If these transitions are only from the Υ(5S) reso-
nance, then the corresponding partial widths are more than two orders of mag-
nitude larger than the corresponding partial widths for Υ(4S), Υ(3S) and Υ(2S)
decays to π+π−Υ(1S). These results motivate a search for the hb(mP) resonances
in theΥ(5S) data.hb(1P) andhb(2P) states are observed in themissingmass spec-
trum of π+π− pairs for the Υ(5S) decays, with significances of 5.5σ and 11.2σ, re-
spectively [4]. This is the first observation of the hb(1P) and hb(2P) spin-singlet
bottomonium states in the reaction e+e− → hb(mP)π

+π− at the Υ(5S) energy.
Later hb(1P) and hb(2P) were studied in the Υ(5S) → hbπ

+π− → γηb(1S)π
+π−

⋆ Representing the Belle Collaboration.
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Decay mode Branching fraction in %

hb(1P) → γηb(1S) 49.2±5.7+5.6−3.3

hb(2P) → γηb(1S) 22.3±3.8+3.1−3.3

hb(2P) → γηb(2S) 47.5±10.5+6.8−7.7

Table 1. The branching fractions for hb → γηb decays, as measured by Belle.

decay [5]. In the same final state, Belle observes [5] also the first evidence for a
ηb(2S) in Υ(5S) → hb(2P)π

+π− → γηb(2S)π
+π− decay. The width of ηb(2S) is

small, with Γ = (4±8)MeV. Branching fractions for observed radiative hb decays
are summarized in Table 1.

Comparable rates of hb(1P) and hb(2P) production indicate a possible exotic
process that violates heavy quark spin-flip and this motivates a further study of
the resonant structure in Υ(5S) → hb(mP)π

+π− and Υ(5S) → Υ(nS)π+π− de-
cays [6]. Due to the limited statistics, only the study ofM(hb(mP)π) distribution
is possible for hb(mP)π+π−, while in the case of Υ(nS)π+π− decay modes the
Dalitz plot analysis can be performed. As a result, two charged bottomonium-
like resonances, Zb(10610) and Zb(10650), are observed with signals in five dif-
ferent decay channels, Υ(nS)π± (n = 1, 2, 3) and hb(mP)π± (m = 1, 2). The av-
eraged values for the mass and widths of the two states are calculated to be:
M(Zb(10610)) = (10607.2 ± 2.0) MeV, Γ(Zb(10610)) = (18.4 ± 2.4) MeV and
M(Zb(10650)) = (10652.2 ± 1.5) MeV, Γ(Zb(10650)) = (11.5 ± 2.2) MeV. The
measured masses are only a few MeV above the thresholds for the open beauty
channels B∗B (10604.6 MeV) and B∗B

∗
(10650.2 MeV) [9], which could indicate

a molecular nature of the two observed states. Angular analysis of charged pion
distributions favours the JP = 1+ spin-parity assignment for both Zb(10610) and
Zb(10650).

3 Charmonium and Charmonium-like States

There has been a renewed interest in charmonium spectroscopy since 2002. The
attention to this field was drawn by the discovery of the two missing cc states
below the open-charm threshold, ηc(2S) and hc(1P) [7,8] with JPC=0−+ and 1+−,
respectively, but even with the discoveries of new new charmonium-like states
(so called “XYZ” states).

3.1 The X(3872) news

The storyabout the so called “XYZ” states began in 2003, when Belle reported
on B+ → K+J/ψπ+π− analysis, where a new state decaying to J/ψπ+π− was
discovered [10]. The new state, called X(3872), was soon confirmed and also in-
tensively studied by the CDF, DØ and BABAR collaborations [11–19]. So far it has
been established that this narrow state (Γ = (3.0+1.9−1.4 ± 0.9) MeV) has a mass of
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(3872.2± 0.8) MeV, which is very close to theD0D∗0 threshold [9]. The intensive
studies of several X(3872) production and decay modes suggest two possible JPC

assignments, 1++ and 2−+, and establish the X(3872) as a candidate for a loosely
bound D0D∗0 molecular state. However, results provided substantial evidence
that the X(3872) state must contain a significant cc component as well.

Recently, Belle performed a study of B→ (ccγ)K using the final data sample
with 772 million of BB pairs collected at the Υ(4S) resonance [20]. Pure D0D∗0

molecular model [21] predicts B(X(3872) → ψ′γ) to be less than B(X(3872) →
J/ψγ). Results by the BABAR collaboration [19] show that B(X(3872) → ψ′γ) is
almost three times that of B(X(3872) → J/ψγ), which is inconsistent with the
pure molecular model, and can be interpreted as a large cc −D0D∗0 admixture.
We observe X(3872) → J/ψγ together with an evidence for χc2 → J/ψγ in B± →
J/ψγK± decays, while in our search for X(3872) → ψ′γ no significant signal is
found. We also observe B → χc1K decays in both, charged as well as neutral
B decays. The obtained results suggest that the cc-D0D∗0 admixture in X(3872)
may not be as large as discussed above.

New results for the X(3872) →J/ψπ+π− decay modes in B+→K+X(3872)
and B0→K0 (→π+π−)X(3872) decays are obtained with the complete Belle data
set of 772 million BB pairs collected at the Υ(4S) resonance [22]. The results for
the X(3872) mass and width are obtained by a 3-dimensional fit to distributions
of the three variables: beam-constrained-mass Mbc=

√
(Ecms

beam)
2 − (pcms

B )2 (with
the beam energy Ecms

beam and the B-meson momentum pcms
B both measured in the

centre-of-mass system), the invariant mass Minv(J/ψπ+π−) and the energy dif-
ference ∆E=Ecms

B −Ecms
beam (where EcmsB is the B-meson energy in the centre-of-mass

system). As a first step, the fit is performed for the reference channel
ψ ′→J/ψπ+π−, and the resolution parameters are then fixed for the fit of the
X(3872). The mass, determined by the fit, is (3871.84±0.27±0.19) MeV. Including
the new Belle result, the updated world-average mass of the X(3872) is

mX=(3871.67±0.17) MeV. If the X(3872) is an S-wave D∗0D
0
molecular state, the

binding energy Eb would be given by the mass differencem(X)−m(D∗0)−m(D0).
With the current value ofm(D0)+m(D∗0)=(3871.79± 0.30) MeV [9], a binding en-
ergy of Eb=(−0.12±0.35)MeV can be calculated, which is surprisingly small and
would indicate a very large radius of the molecular state.

The best upper limit for the X(3872) width was 2.3 MeV (with 90% C.L.), ob-
tained by previous Belle measurement [10]. The 3-dimensional fits aremore sensi-
tive to the naturalwidth, which is smaller than the detector resolution (σ ∼4MeV).
Due to the fit sensitivity and the calibration performed on the reference channel
ψ ′→J/ψπ+π−, the updated upper limit for the X(3872) width is about 1/2 of the
previous value: Γ(X(3872)) < 1.2MeV at 90% C.L.

Previous studies performed by several experiments suggested two possible
JPC assignments for the X(3872), 1++ and 2−+. In the recent Belle analysis [20],
the X(3872) quantum numbers were also studied with the full available data sam-
ple collected at the Υ(4S) resonance. At the current level of statistical sensitivity
it is not possible to distinguish completely between the two possible quantum
number assignments, so both hypotheses are still allowed. Possible C-odd neu-
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tral partners of X(3872) are also searched, but no signal is found for this type of
states.

4 Summary and Conclusions

Many new particles have already been discovered during the operation of the
Belle experiment at the KEKB collider, and some of them are mentioned in this
report. Some recent Belle results also indicate that analogs to exotic charmonium-
like states can be found in bb systems. Although the operation of the experiment
has finished, data analyses are still ongoing and thereforemore interesting results
on charmonium(-like) and bottomonium(-like) spectroscopy can still be expected
from Belle in the near future.
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Institute, 1000 Ljubljana, Slovenia

Abstract. Weapply a coupled channel formalism incorporating quasi-bound quark-model

states to calculate the D13, D33 and D15 scattering and electro-production amplitudes. The

meson-baryon vertices for πN, π∆ (s- and d-waves), ρN, πN(1440), πN(1535), π∆(1600)

and σ∆(1600) channels are determined in the Cloudy Bag Model. We use the same values

for the model parameters as in the case of the P11, P33 and S11 partial waves except for

the strength of the coupling of the d-wave mesons to quarks which has to be increased in

order to reproduce the width of the observedD-wave resonances. The electro-production

amplitudes exhibit a consistent behavior in all channels but are too weak in the resonance

region.

1 Introduction

This work is a continuation of a joint project on the description of baryon res-
onances performed by the Coimbra group (Manuel Fiolhais and Pedro Alberto)
and the Ljubljana group (Simon Širca and B. G.) [1–9]. In our previous works [5–7]
we have successfully applied our method which incorporates excited baryons
represented as quasi-bound quark-model states into a coupled channel formal-
ism using the K-matrix approach [5] to calculate the scattering and the electro-
production amplitudes in the P11, P33 and S11 partial waves. In the present work
we extend of the approach to low lying negative parityD-wave resonances.

In the next section we give a short review of the method and in the following
sections we discuss in more detail scattering and electro-production in the D13
and D33 and D15 partial waves.

2 The method

We limit ourselves to a class of chiral quark models in which mesons couple lin-
early to the quark core. In such cases the elements of the K matrix in the basis
with good total angular momentum J and isospin T can be cast in the form [5]:

KJTM ′B ′MB = −πNM ′B ′〈ΨMBJT ||VM ′(k)||Ψ̃B ′〉 , NMB =

√
ωMEB

kMW
. (1)
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Here ωM and kM are the energy and momentum of the incoming (outgoing)

meson, |Ψ̃B〉 is properly normalized baryon state and EB is its energy, W is the
invariant energy of the meson-baryon system, and |ΨMB〉 is the principal value
state

|ΨMBJT 〉 = NMB
{
[a†(kM)|Ψ̃B〉]JT +

∑

R
cMBR |ΦR〉

+
∑

M ′B ′

∫
dk χM

′B ′MB(k, kM)

ωk + EB ′(k) −W
[a†(k)|Ψ̃B ′〉]JT

}
. (2)

The first term represents the free meson (π, η, ρ, K, . . . ) and the baryon (N, ∆,
Λ, . . .) and defines the channel, the next term is the sum over bare tree-quark states
ΦR involving different excitation of the quark core, the third term introduces me-
son clouds around different isobars, E(k) is the energy of the recoiled baryon. We
assume that the two pion decay proceeds either through an unstable meson (ρ-
meson, σ-meson, . . . ) or through a baryon resonance (∆(1232), N∗(1440) . . . ). The
meson amplitudes χM

′B ′MB(k, kM) are proportional to the (half) off-shell matrix
elements of the K-matrix and are determine by solving a Lippmann-Schwinger
type of equation. The resulting matrix elements of the K-matrix take the form

KM ′B ′MB(k, kM) = −
∑

R

VMBR(kM)VM ′

B ′R(k)

ZR(W)(W −WR)
+ K

bkg
M ′B ′MB(k, kM) , (3)

where the first term represents the contribution of various resonances while

K
bkg
M ′B ′MB(k, kM) originates in the non-resonant background processes. HereVMBR

is the dressed matrix element of the quark-meson interaction between the reso-
nant state and the baryon state in the channelMB, and ZR is the wave-function
normalization. The physical resonant state R is a superposition of the dressed
states built around the bare 3-quark states ΦR ′ . The T matrix is finally obtained
by solving the Heitler’s equation

TMBM ′B ′ = KMBM ′B ′ + i
∑

M ′′B ′′

TMBM ′′B ′′KM ′′B ′′M ′B ′ . (4)

Considering meson electro-production, the T matrix for γN→MB satisfies

TMBγN = KMBγN + i
∑

M ′B ′

TMBM ′B ′KM ′B ′ γN . (5)

In the vicinity of a chosen resonance (R) we write (see (3)):

KMBγN = −
VMBRVγNR

ZR(W)(W −WR)
−

∑

R ′ 6=R

VMBR ′VγNR ′

ZR ′(W)(W −WR ′)
+ B

bkg
MBγN . (6)

We manipulate the first term:

VMBRVγNR
ZR(W)(W −WR)

=
VMBR

2

ZR(W)(W −WR)

VγNR
VMBR

=
(
KMBMB − K

bkg
MBMB

) VγNR
VMBR
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so that (5) takes the form

TMBγN =

(
KMBMB + i

∑

M ′B ′

TMBM ′B ′KM ′B ′MB

)
VγNR
VMBR

+K
bkg
MBγN + i

∑

M ′B ′

TMBM ′B ′K
bkg
M ′B ′ γN

=
VγNR
VMBR

TMBMB + T
bkg
MBMB ≡ T resMBγN + T

bkg
MBγN , (7)

which means that the T matrix for elektro-production can be split into the reso-
nant part and the background part; the latter is the solution of the Heitler equa-
tion with the ”background” K-matrix defined as

K
bkg
MBγN = −K

bkg
MBMB

VγNR
VMBR

−
∑

R ′ 6=R

VMBR ′VγNR ′

ZR ′(W)(W −WR ′)
+ B

bkg
MBγN .

Note that VγNR(kγ) is proportional to the helicity amplitudes while the strong
amplitude VMBR(kM) to

√
ΓMB and to ζ, the sign of the phase of the meson decay.

3 The D-wave resonances in the Cloudy Bag Model

In the quark model, the negative parity D-wave resonances are described by a
single quark l = 1 orbital excitation. The two D13 (flavor octet, J = 3

2
) resonances

are the superposition of the S = 1
2
and S = 3

2
configurations, the D33 resonance

(flavour decouplet) has S = 1
2
, while the D15 resonance (octet, J = 5

2
) has S = 3

2
.

We use the j–j coupling scheme in which the resonances take the following forms:

N(1520)D13 = − sinϑd|
483/2〉+ cos ϑd|

283/2〉
= c1S|(1s)

21p3/2〉MS + c1A|(1s)21p3/2〉MA + c1P |(1s)
21p1/2〉 , (8)

N(1700)D13 = cos ϑd|
483/2〉+ sinϑd|

283/2〉
= c2S|(1s)

21p3/2〉MS + c2A|(1s)21p3/2〉MA + c2P |(1s)
21p1/2〉 , (9)

∆(1700)D33 = |2103/2〉 =
√
5

3
|(1s)21p3/2〉−

2

3
|(1s)21p1/2〉 , (10)

N(1675)D15 = |485/2〉 = |(1s)21p3/2〉 . (11)

Here MS and MA denote the mixed symmetric and the mixed antisymmetric
representation, and

c1S =
2

3
sinϑd+

√
5

18
cos ϑd, c1A = −

√
2

2
cos ϑd, c1P = −

√
5

3
sinϑd+

√
2

3
cos ϑd .

(12)

The l = 2 pions couple only to j = 3/2 quarks; the corresponding interaction
in the Cloudy Bag Model takes the form

Vπ2mt(k) =
1

2fπ

√
ωp3/2

ωs

(ωp3/2
− 2)(ωs − 1)

√
2

2π

k2√
ωk

j2(kR)

kR

3∑

i=1

τt(i)Σ
[1
2

3
2
]

2m (i) , (13)



Meson electro-production . . . 69

where

Σ
[1
2

3
2
]

1m =
∑

msmj

C
1
2
ms

3
2
mj1m

|sms〉〈p3/2mj| , ωs = 2.043 , ωp3/2
= 3.204 .

In the case of P11, P33 and S11 waves we have used the bag radius R =

0.83 fm which determines the range of quark-pion interaction corresponding to
the cut-off Λ ∼ 550 MeV/c, and the value for fπ = 76 MeV which reproduces
the experimental value of the πNN coupling constant. For the d-wave pions it
turns out that the range predicted by (13) is too large while the resulting coupling
strength is too weak. We have therefore modified the interaction in such a way as
to correspond to Λ ∼ 550MeV/c, while the coupling strength has been increased
by a factor 1.7 – 2.75 (depending on the considered resonance).

4 Scattering amplitudes

The effect of the form factor and the strength of quark-meson coupling discussed
in the previous section is most clearly seen in the case of the D15 where the back-
ground effects as well as the influence of other resonances are almost negligible.
Using our standard value for the cut-off parameter we have to increase the quark
model coupling constant by a factor of 2.75 in order to obtain an almost perfect
fit to the data in the region of the resonance.
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Fig. 1. The form factor for the D-wave pions (left panel), and the real and the imaginary

part of the D15 scattering amplitude (right). The data points are from [10].

The data for elastic scattering in the D13 partial wave show almost no sign of
the second resonance N(1700). Since the l = 2 pions most strongly couple to the
|(1s)21p3/2〉MA configuration, the absence of the second resonance can be most

easily explained by the vanishing of the c2A coefficient in (9), c2A = − sinθd/
√
2.

This suggests θd = 0. In our model the resonances are mixed through the pion
interaction which changes slightly the above conclusion leading to the choice
θd ≈ 10◦ for the optimal mixing. At this energy range the effect of the cut-off
is less pronounced; the quark-model prediction for the πNR coupling constant
has to be increased by a factor of 1.7, while that to the ∆ decreased by a factor of
one half.
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Fig. 2. The real and the imaginary part of the D13 wave scattering amplitude (left), and for

the D33 wave (right). The data points are from [10].

In the vicinity of the D33 resonance the elastic amplitude is dominated by
the coupling of the elastic channel to the π∆(1232) channel. The d-wave pion cou-
pling to the nucleon is increased by a factor of 2.5 with respect to the quark model
value, while the model value for s-wave coupling to the ∆(1232) is not modified.
Increasing the latter coupling brings the real part of the amplitude closer to the
data, however the behavior of the photo-production amplitudes, presented in the
next section, is deteriorated.

5 Electro-production

The electro-production amplitudes are obtained by evaluating the EM current
consisting of the quark and the pion part between the nucleon ground state and
the resonant state. The corresponding helicity amplitude VγNR in (7) reads

VγNR(kγ) =
e√
2ωγ

〈R|jEM(kγ)|N〉,

where the resonant state stemming from the second and the third term in (2)
consists of the bare-quark part and the meson cloud

|R〉 = 1√
ZR

{
|ΦR〉−

∑

MB

∫
dk VMBR(k)

ωk + EB −W
[a†(k)|Ψ̃B〉]JT

}
. (14)

The background term entering (7) is dominated by the pion-pole term and the
u-channel process which originate from the first term in (2).

In Figs. 3 – 6 the transverse photo-production amplitudes for the partial D13,
D33 and D15 partial waves calculated in our model are compared to the data as
well as to the analysis of the MAID group [11]. While our calculation correctly
reproduce the behavior of the amplitudes at the energies close to the threshold
where they are dominated by the pion-pole term, their strength in the resonance
region is typically a factor 0.5 to 0.7 weaker compared to the value of the elec-
tric transverse amplitude as deduced from the experiment, and even weaker in
the case of the magnetic amplitude. The pertinent multipoles are sensitive to the
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nucleon’s periphery which is apparently not adequately reproduced in the bag
model, as we have already noticed when analyzing the coupling of the resonance
to the d-wave pions. Here the pion cloud effect are relatively weak as a conse-
quence of cancellations of different terms, and contribute at the level of 10 % to
20 % to the amplitudes.
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Fig. 3. The real and the imaginary part of the proton and neutron multipoles E2− for the

D13 wave in units 10−3/mπ (preliminary). The data points are from [10], ”maid” corre-

sponds to the partial wave analysis from [11].

Nonetheless, we should stress that the amplitudes exhibit a consistent be-
havior in all considered partial waves. In particular, our model correctly predicts

that in the D13 partial wave the nE
1/2
2− multipole amplitude is weaker than the

corresponding nE
1/2
2− amplitude, and that the nM

1/2
2− amplitude almost vanishes.

Similarly, for the D15 partial wave the quark model predicts that the quark con-

tribution to the pM
1/2
2− multipole vanishes and only the pion cloud contributes to

the resonant part of the amplitude. The non-zero quark contribution in the case
of the neutron multipole is however too weak to reproduce the data.

6 Discussion

Comparing the present results with the results for other partial waves obtained
in chiral quark models we notice a general trend that the quark core alone does
not provide sufficient strength to reproduced the observed resonance excitation
amplitudes. The best known example is the P33 partial wave in which case the
quark contribution to the electric dipole excitation of the ∆(1232) is estimated
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Fig. 4. TheM2− multipole, notation as in Fig. 3.
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Fig. 5. E2− andM2− amplitudes for the D33 wave, notation as in Fig. 3.

by only 60 % while the rest is attributed to the pion cloud [1]. In the present
calculation the pion cloud effects turn out not to be that important. In fact, we
have noticed a considerable cancellation of different contributions of the meson
cloud, e.g. the vertex correction due to pion loops and the genuine contribution
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Fig. 6. TheM2+ amplitudes for the D15 wave, notation as in Fig. 3.

of the pion cloud to the EM current. It is therefore possible that a calculation in
a more elaborate chiral quark model could provide a better agreement with the
data. To conclude, the overall qualitative agreement with the multipole analysis
in the D13, D33 and D15 partial waves prove that the quark-model explanation of
the D-wave resonance as the p-wave excitation of the quark core supplemented
by the meson cloud is sensible and that no further degrees of freedom are needed.
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Most of hadrons are hadronic resonances - they decay quickly via the strong
interactions. Among all the resonances, only the ρmeson has been properly simu-
lated as a resonance within lattice QCD up to know. This involved the simulation
of the ππ scattering in p-wave, extraction of the scattering phase shift and deter-
mination ofmR and Γ via the Breit-Wigner like fit of the phase shift.

In the past year, we performed first exploratory simulations of Dπ,D∗π and
Kπ scattering in the resonant scattering channels [1, 2]. Our simulations are done
in lattice QCDwith two-dynamical light quarks at a mass corresponding tomπ ≃
266MeV and the lattice spacing a = 0.124 fm.
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Fig. 1. Energy differences∆E = E− 1
4
(MD+3MD∗) forDmeson states in our simulation [1]

and in experiment; the reference spin-averaged mass is 1
4
(MD + 3MD∗) ≈ 1971 MeV

in experiment. Magenta diamonds give resonance masses for states treated properly as

resonances, while those extracted naively assumingmn = En are displayed as blue crosses

[1].
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The masses and widths of the broad scalar D∗
0(2400) and the axial D1(2430)

charmed-light resonances are extracted by simulating the corresponding Dπ and
D∗π scattering on the lattice [1]. The resonance parameters are obtained using a
Breit-Wigner fit of the elastic phase shifts. The resulting D∗

0(2400) mass is 351 ±
21 MeV above the spin-average 1

4
(mD + 3mD∗), in agreement with the experi-

mental value of 347 ± 29 MeV above. The resulting D∗
0 → Dπ coupling glat =

2.55 ± 0.21 GeV is close to the experimental value gexp = 1.92± 0.14 GeV, where
g parametrizes the width Γ ≡ g2p⋆/s. The resonance parameters for the broad
D1(2430) are also found close to the experimental values; these are obtained by
appealing to the heavy quark limit, where the neighboring resonance D1(2420)
is narrow. The simulation of the scattering in these channels incorporates quark-
antiquark as well as D(∗)π interpolators, and we use distillation method for con-
tractions. The resulting D-meson spectrum is compared to the experimental one
in Fig. 1.

In addition, the ground and several excited charm-light and charmonium
states with various JP are calculated using standard quark-antiquark interpola-
tors. The lattice results for the charmonium are compared to the experimental
levels in Fig. 2.
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Fig. 2. Energy differences ∆E = E− 1
4
(Mηc + 3MJψ) for charmonium states in our simula-

tion [1] and in experiment; reference spin-averaged mass is 1
4
(Mηc + 3MJψ) ≈ 3068MeV

in experiment. The magenta lines on the right denote relevant lattice and continuum

D̄(∗)D(∗) thresholds.

We also simulated Kπ scattering in s-wave and p-wave for both isospins I =
1/2, 3/2 using quark-antiquark and meson-meson interpolating fields [2]. Fig. 3
shows the resulting energy levels of Kπ in a box. In all four channels we observe
the expectedK(n)π(−n) scattering states, which are shifted due to the interaction.
In both attractive I = 1/2 channels we observe additional states that are related
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Fig. 3. The energy levels E(t)a of the Kπ in the box for all four channels (multiply by

a−1 = 1.59 GeV to get the result in GeV). The horizontal broken lines show the ener-

gies E = EK + Eπ of the non-interacting scattering states K(n)π(−n) as measured on our

lattice; K(n)π(−n) corresponds to the scattering state with p∗ =
√
n 2π
L
. Note that there is

no K(0)π(0) scattering state for p-wave. Black and green circles correspond to the shifted

scattering states, while the red stars and pink crosses correspond to additional states re-

lated with resonances.

to resonances; we attribute them to K∗
0(1430) in s-wave and K∗(892), K∗(1410)

and K∗(1680) in p-wave. We extract the elastic phase shifts δ at several values of
the Kπ relativemomenta. The resulting phases exhibit qualitative agreementwith
the experimental phases in all four channels, as shown in Fig. 4. In addition to the
values of the phase shifts shown in Fig. 4, we also extract the values of the phase
shift close to the threshold, which are expressed in terms of the scattering lengths
in [2].
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Fig. 4. The extracted Kπ scattering phase shifts δIℓ in all four channels l = 0, 1 and I =

1/2, 3/2. The phase shifts are shown as a function of the Kπ invariant mass
√
s = MKπ =

√

(pπ + pK)2. Our results (red circles) apply for mπ ≃ 266 MeV and mK ≃ 552 MeV in

our lattice simulation. In addition to the phases provided in four plots, we also extract the

values of δ
1/2, 3/2

0 near threshold
√
s =mπ+mK, but these are provided in the form of the

scattering length in the main text (as they are particularly sensitive to mπ,K). Our lattice

results are compared to the experimental elastic phase shifts (both are determined up to

multiples of 180 degrees).

We believe that these simulations of the Dπ, D∗π and Kπ scattering in the
resonant channels represent encouraging step to simulate resonances properly
from first principle QCD. There are many other exciting resonances waiting to be
simulated along the similar lines.
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Abstract. The scattering cross section of a superheavy baryon on a nucleon is estimated.

The possibility that such a superheavy baryon (from a higher quark family) might be a

viable candidate for the dark matter, is discussed.

1 Introduction

The purpose of this talk is twofold.

(i) Scattering of a light cluster on a superheavy cluster is a challenging few-
body problem. The energy scales and consequently the sizes of both clusters differ
by 5-6 orders of magnitude. Due to colour neutrality of unperturbed clusters, the
strong interaction acts only at a very short distance via the virtual colour-octet
colour-octet Van der Waals excitation. The novel feature is the van der Waals in-
teraction at contact separation. Moreover, due to the small size of the superheavy
cluster the effective quark-quark interaction is expected to be coulomb-like and
this feature might be tested even in bottomium collisions.

(ii) We want to show that clusters of strongly interacting particles are viable
candidates for darkmatter provided their masses are large enough. Then both the
number density of dark matter particles is small and their cross section is small
due to their small size.

We require that the number of collisions of dark matter particles against
the detector is either consistent with the DAMA experiment [1] (if confirmed)
or lower (if DAMA is not confirmed). It turns out that superheavy quarks must
have a mass of about 100 TeV or more in order to have a low enough collision rate
by weak interaction. Surprisingly, at this mass the strong cross section is much
smaller than the weak cross section and can be neglected.

As an example we take the superheavy quarks from the unified Spin-Charge-

Family theory [2–6] which has been developed by one of the authors (SNMB)
in the recent two decades. For a short review, we invite the reader to read the
Bled 2010 Proceedings [7]. In this theory eight families of quarks and leptons
are predicted, with the fifth family decoupled from the lower ones and therefore
rather stable. The most promising candidates for dark matter are the superheavy
neutrons (the n5 = u5d5d5 clusters) of the fifth family.

⋆ Talk delivered by M. Rosina
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There is a danger in this proposal. Either the charged baryon u5u5u5 or the
charged baryon d5d5d5 could be the lightest, depending on whether u5 or d5 is
lighter. Charged clusters cannot, of course, constitute dark matter. Forming the
atoms with the first family electrons they would have far too large scattering am-
plitude to be consistent with the properties of dark matter. However, if one takes
into account also the electro-weak interaction between quarks, then the neutral
baryon n5 = u5d5d5 can be the lightest, provided the u-d mass difference is not
too large. We have put limits on the u-d quark mass differences in ref. [7] and we
briefly repeat the result (choosing αEM = 1/128, αW = 1/32, αZ = 1/24).

For superheavy quarks, the colour interaction is assumed to be coulombic
and we solve the Hamiltonian for the three-quark system

H = 3m5 +
∑

i

p2i
2m5

−
(
∑
i pi)

2

6m5
−
∑

i<j

2

3

αs

rij
.

For the choice of the average quark massm5 = 100 TeV and αs = 1/13 the binding
energy is E0 = −ηα2sm5 = −0.39 TeV and the average quark momentum p =√
2m5 Ekin/3 = 5.1 TeV . (The coefficient η has been obtained variationally).

The electroweak interaction prefers the neutral u5d5d5 and it cannot decay
into d5d5d5 or u5u5d5 provided

−0.026TeV < mu5 −md5 < 0.39TeV.

This limits are not very narrow, but they are narrow compared to the mass scale
ofm5 = 100 TeV.

2 The weak (u5d5d5) – (u1d1d1) cross section

It is easy to calculate the scattering amplitude since the superheavy neutron is a
point particle compared to the range of the weak interaction and its quark struc-
ture is not important. Only Z-exchange matters since there is not enough energy
to excite u5d5d5 into d5d5d5 or u5u5d5 via W-exchange. We consider only the
scattering on neutron (the “charge” of proton almost happens to cancel!). Also,
we consider only the Fermi (vector) matrix element, since it adds coherently in
heavy nuclei, while the Gamov-Teller (axial) has many cancellations in spin cou-
pling.

M = [
1

2
t0(1) − sin2 ϑWe(1)]

g2Z
m2Z

[
1

2
t0(5) − sin2 ϑWe(5)] =

GF

2
√
2

σn = 2π|M|2
4πp21

(2π)3v2
=
m2n1
π

|M|2 =
G2Fm

2
n1

8π
= 1.9× 10−13fm2 .

We should note that the cross section does not depend on the massmn5 provided
it is much larger thanmn1 of the first family. For a heavy target

σA = σn (A − Z)2A2



80 Norma Mankoč Borštnik and Mitja Rosina

The rate at a detector of 2311Na 12753 I per kilogram of detector is

R1kg = σANA
ρn5 × v
mn5

R1kg = σn [(ANa − ZNa)
2A2Na + (AI − ZI)

2A2I ]
Navogadro

ANa +AI

ρn5 × v
mn5

= 1.3/day

We used the data ρn5 = 0.3GeV cm−3, mn5 = 300TeV, v = 230km/s.

This can be compared to the rate claimed by the DAMA collaboration:

∆R1kg(DAMA) = 0.02/day, R1kg(DAMA) ∼ (0.1↔ 1)/day.

This comparison was used to decide about the choice ofm5 in our example.
If DAMA results are not confirmed,m5 should be even larger.

3 The strong MESON – meson cross section

This Section is a lesson for a future realistic calculation of the (u5d5d5) – (u1d1d1)
scattering .Wewant to show that for superheavy quarks the strong cross section is
much smaller than the weak cross section and can be neglected. For this purpose
we need only an estimate and not a detailed calculation. Meson-meson scattering
offers a good estimate since the baryon in a quark-diquark approximation resem-
bles a meson. However, this lesson is very relevant for botomium scattering and
for future heavy baryons in the 10-100 GeV region.

Here we present the trial functions of the light and heavy meson, together
with relevant quantities such as the chromomagnetic dipole moment D of the
heavy meson sitting in the dipole field G of the light meson. Note thatm andM
are quark masses and α = 4

3
αs .

r = rq − rq̄, b = 1/(1
2
m)α

ψ0 = (2/
√
4πb3) exp(−r/b)

ψz =
2−3/2√
4πf3

(r/f) cos ϑ exp(−r/f)

ǫ0 = −(1/2)(1
2
m)α2

ǫz,kin = +(1/8)(1
2
m)α2 (b/f)2

Gz = 〈ψz|z/(r/2)3|ψ0〉 = γ/
√
fb3

γ = 16
√
2/3 = 7.542

R = RQ − RQ̄, B = 1/(1
2
M)α≪ b

Ψ0 = (2/
√
4πB3) exp(−R/B)

Ψz =
2−3/2√
4πB3

(R/B) cosΘ exp(−R/B)

E0 = −(1/2)(1
2
M)α2

Ez = −(1/8)(1
2
M)α2

D = 〈Ψz |Z|Ψ0〉 = βB
β = 215/2/35 = 0.745

The meson wavefunctions get ”decorated” with colour factors

φ0 = ψ0
(r[gb] + g[br] + b[rg])√

3
, φz3 = ψz

(r[gb] − g[br])√
2
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Φ0 = Ψ0
(r[gb] + g[br] + b[rg])√

3
, Φz3 = Ψz

(r[gb] − g[br])√
2

We write explicitly only the spatial excitation in the z-direction and colour
excitation in the ”third colour” ω = 3. Others behave similarly.

We shall need the colour matrix element

〈
r[gb] − g[br]√

2

∣∣∣∣
λ3q

2
−
λ3q̄

2

∣∣∣∣
r[gb] + g[br] + b[rg]√

3

〉
=

√
2

3

For color neutral hadrons, the dominant term in the expansion yields the
effective dipole–dipole, colour-octet – colour-octet potential

V̂dipole = αs

(
RQ

−→
λQ

2
+ RQ̄

−→
λQ̄
2

) (
rq

r3q

−→
λq

2
+

rq̄

r3q̄

−→
λq̄

2

)
,

The perturbation term between the unperturbed ground state and the virtual ex-
citation is then

V ′
z,3 = αs〈Ψzψz|

{
Z

2

}√
2

3

{
z/2

(r/2)3

}√
2

3
|Ψ0ψ0〉 =

αsDzGz

6

V ′
x,ω = V ′

y,ω = V ′
z,ω ≡ V ′ equal for all ω .

The second order perturbation theory then gives the effective potential be-
tween the two clusters

Veff = −24
V ′2

(Ez − E0) + ǫz,kin

We have neglected ǫz,pot and ǫ0. The factor 24 comes from 3 spacial and 8
colour degrees of freedom.

Veff = −
2

3

(αsDzGz)
2

(3/8)(1
2
M)(4αs/3)2 + (1/8)(1

2
m)(4αs/3)2(b/f)2

Veff = −
2(βγB)2

fb3(M+ (1/3)m(b/f)2)

Note thatαs has canceled.Minimizationwith respect to f gives f/b =
√
m/3M <<

1. Finally, we get
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Veff = −

√
3β2γ2

b3

(m
M

)3/2 B
m

Here we took the distance between the two clusters U = 0. We assume

Veff(U) = Veff(U = 0) exp(−2U/b).

In Born approximation (with the mass of the lighter cluster mq +mq̄ = 2m) we
get

a =
(2m)

2π

∫
Veff(U)d

3U =
√
3β2γ2

(m
M

)3/2
B.

Let us give a numerical example with the choice

m = 300MeV, M = 1
2
mQ = 100TeV, m/M = 3 · 10−6, αs = 1/13

a =
√
3β2γ2(

m

M
)3/2 B = 1.1 · 10−11 fm

σ = 4πa2 = 1.5 · 10−21 fm2

4 Conclusion

Regarding the weak interaction, the scattering rate of superheavy clusters is in-
versely proportional to their mass because (i) their weak cross section is indepen-
dent of the heavy mass if it is large enough and (ii) because their number density
is inversely proportional to their mass for the known dark matter density. This
argument requires the superheavy quark mass to be about 100 TeV (if DAMA
experiment is confirmed) or more.

For such a heavy mass, the strong cross section is MUCH SMALLER than

the weak cross section. The reason is (i) the small size of the heavy hadron,
B = 3.8 · 10−5 fm and moreover, (ii) the suppression factor (m/M)3 which is a
consequence of colour neutrality of both clusters so that they interact only by
induced color dipoles (“van der Waals interaction”).

The lesson from the heavy hadron – light hadron scattering will be useful
also for not-so-exotic processes such as botomium and bbb scattering.
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Abstract. The E05-102 experiment at Jefferson Laboratory (TJNAF) was devised to study

the double-polarization asymmetries in electron-induced deuteron, proton, and neutron

knockout from polarized 3He at low momentum transfers, in a wide range of missing

momenta. With this advanced experimental technique, we strive to obtain a much clearer

insight into the ground-state structure of 3He, the cornerstone nucleus widely used as the

effective neutron target. An order of magnitude improvement in the statistical uncertain-

ties with respect to existing measurements is anticipated. We report on the status of the

ongoing data analysis.

1 Physics motivation

The primary motivation to study electron-induced processes involving the 3He
nucleus (see [1] and references therein) is to understand the ground-state struc-
ture of this nucleus. This structure is not only interesting by itself; it is also impor-
tant to study it in order to be able to interpret all data “on the neutron” for which
3He acts as an effective target to a very good approximation. Contrary to com-
mon belief, there is no widely adopted consensus about the exact level at which
this approximation can be treated as “good” or “good enough”.

A precise understanding of the transition between the experimental data
acquired on 3He targets and the observables corresponding to the neutron has
become a burning issue since the statistical precision of recently performed (or
future) experiments is so large that the systematical uncertainties of this compu-
tational transition procedure have become comparable to it. Some of the most
interesting observables fall into this category, like e.g. the neutron elastic form-
factors

Gn
E , Gn

M ,

and the polarized quark structure functions corresponding to the neutron,

Gn
E , Gn

M , An
1 , gn1 , gn2 ,

as well as the studies of the GDH sum rule.
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One of the main complications, of course, is that the protons in 3He partly
polarized due to the presence of S ′- and D-state components of the ground-state
wave-function. (The ground-state configuration of 3He is intimately connected
to another open question of differences in RMS-radii, 〈r2〉1/2, of 3H as opposed
to 3He, a matter largely unresolved due to an almost complete lack of measure-
ments on tritium.) The manifestations of the distribution of spin, orbital angular
momentum and isospin within 3He appear to be most prominent and unambigu-
ous in double-polarization asymmetries for electron-induced deuteron, proton,
and neutron knockout from polarized 3He. Numerous discrepancies among the
state-of-the-art theories persist for these observables.

In short, understanding the role of D and S ′ states as the two most relevant
sub-leading components of the 3He wave-function, and of the spin- and isospin-
dependence of reaction mechanisms on 3He is one of the key issues in the “Stan-
dard Model” of few-body theory.

2 The measurements

The exclusive cross-section for electron-induced deuteron knockout (with both
the beam and the target polarized) has the form

dσ(h,S)

dΩe dEe dΩd dpd
=

dσ0
dΩe dEe dΩd dpd

[
1+ S ·A0 + h(Ae + S ·A)

]
.

In the experiment described in this contribution, we measured two components
of A (or linear combinations thereof), which correspond to the transverse and
longitudinal double-polarization asymmetries

Ax,z =
[dσ++ + dσ−− ] − [dσ+− + dσ−+ ]

[dσ++ + dσ−− ] + [dσ+− + dσ−+ ]
,

where the subscript signs denote the helicities of the electron beam and the ori-
entation of the target spin. The target was polarized along the beam-line and per-
pendicular to it (in both sideways directions). Similarly, the asymmetries for ex-
clusive processes in which the proton and the neutron were knocked out (with
obvious modifications to the above formulas) have been measured.

Since the transverse and longitudinal asymmetries in each channel have very
distinct sensitivities to the dominant S and the sub-dominant D and S ′ compo-
nent of the 3He as functions of missing momentum, our experiment carries an im-
mense resolving power for testing theories mentioned below. The fact that several
exclusive channels were measured at the same time at approximately the same
four-momentum transfer of about 0.2 to 0.3 (GeV/c)2, in a large range of missing
momenta, and with excellent statistical and systematical uncertainties, is another
landmark feature of this experiment.

The resulting asymmetries will be compared to state-of-the-art theories of the
3He nucleus. We exploit the calculations of the Bochum/Krakow group [4] that
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apply a full Faddeev approach with the AV18 NN-potential and the Urbana IX
three-nucleon force, together with a complete treatment of final-state interactions
(FSI) and meson-exchange currents (MEC).

Also available to use are the calculations of the Hannover/Lisbon group [5]
that are also full Faddeev, but with a coupled-channel extension and refit of the
CD-Bonn NN-potential. They also incorporate FSI and MEC, while the effective
three-nucleon force and two-body currents are provided by inclusion of the ∆ as
an active degree-of-freedom. Coulomb interaction for outgoing charged baryons
is also included.

The group from Pisa has also provided us with their calculations based on
the AV18 potential and the Urbana IX force in which the FSI are included by
means of the variational pair-hyperspherical harmonics expansion, and MEC are
also accounted for. This is not a Faddeev-type calcuation, but its accuracy is as-
sumed to be completely equivalent to it [6]. All three predictions (full calculations
only) are presented in comparison to the anticipated experimental uncertainties
in Fig. 1.

Fig. 1. The predictions for the asymmetries Ax and Ay in the quasi-elastic 3He(e, e ′d)

process. The anticipated experimental uncertainties and three calculations by the

Bochum/Krakow, Hannover/Lisbon and Pisa groups are shown.

3 Status of data analysis

The polarizations of the electron beam and the target have been established, and
the beam and target monitoring apparatus have been calibrated. The magneto-
optical properties of the BigBite spectrometer that was used to detect the charged
hadrons have been determined [3], and the tracking and PID detectors have been
calibrated, along with the neutron detector and the spectrometer used to detect
the electrons. Presently the analysis work is focused on the correct averaging of
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the theoretical asymmetries over the relatively large experimental acceptance. To
this purpose, we have obtained the calculations of the asymmetries on a rather
dense grid of points in the (Ee, θe) plane that covers the majority of our accep-
tance, as shown in Fig. 2. The additional dimension in which averaging is per-
formed is the deuteron (or proton) emission angle with respect to the virtual
photon.
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Fig. 2. The grid in (Ee, θe) plane on which the theoretical calculations will be performed,

thus covering the most relevant parts of the experimental acceptance in the 3He(e, e ′d)

channel. The high density of points is needed for reliable acceptance averaging because

the asymmetries have a strong dependence on the energy transfer Ee − E
′

e (vertical axis).

The statistics of the data is sufficient to achieve a precision better than 2% on
the asymmetries in each 20MeV/c bin in missing momentum, ranging to about
200MeV/c in the deuteron channel and about 300MeV/c in the proton channels.
Similar accuracy will be achieved in the neutron channel, and an even better one
in the inclusive channels, which are a “bonus” of our experiment.
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4. J. Golak, R. Skibiński, H. Witała, W. Glöckle, A. Nogga, H. Kamada, Phys. Reports 415

(2005) 89.
5. A. Deltuva et al., Phys. Rev. C 70 (2004) 034004.
6. L. E. Marcucci, M. Viviani, R. Schiavilla, A. Kievsky, S. Rosati, Phys. Rev. C 72 (2005)

014001.







BLEJSKE DELAVNICE IZ FIZIKE, LETNIK 13, ŠT. 1, ISSN 1580-4992
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We will present our newly developed DREENA framework, which allows predicting energy loss of high p⊥
partons traversing quark gluon plasma (QGP). The framework is based on dynamical energy loss formalism,
and is applied to both the medium with constant temperature (DREENA-C) [1] and to evolving medium mod-
eled by Bjorken 1+1D expansion (DREENA-B) [2]. The formalism allows making numerical predictions for
a wide number of observables, centralities and collision energies, and for different experiments and collision
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became available, agree very well with these data, again explaining some of the experimentally observed, but
intuitively unexpected, suppression patterns. We will also propose a new observable [3], which allows clearly
distinguishing between different energy loss mechanisms, as well as numerical predictions and simple scaling
arguments that support this proposal. The first steps in our work towards the application of this model as a
novel high-precision tomographic tool of QGP medium, will also be discussed.
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