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Abstract

We study the so(3) Gaudin model with general boundary K-matrix in the
framework of the algebraic Bethe ansatz. The off-shell action of the generat-
ing function of the so(3) Gaudin Hamiltonians is determined. The proof
based on the mathematical induction is presented on the algebraic level
without any restriction whatsoever on the boundary parameters. The so(3)
Gaudin Hamiltonians with general boundary terms are given explicitly as
well as their off-shell action on the Bethe states. The correspondence be-
tween the Bethe states and the solutions to the generalized so(3) Knizhnik-
Zamolodchikov equations is established. In this context, the on-shell norm
of the Bethe states is determined as well as their off-shell scalar product.

1. Introduction

The systems obtained as the quasi-classical limit of the Heisenberg spin
chains [1] were first studied by Gaudin [2, 3, 4]. In the framework of the
coordinate as well as the algebraic Bethe ansatz Gaudin has found the spec-
trum of the generating function of the corresponding Hamiltonians [2, 3, 4].
This system has been recasted in the framework of the quantum inverse
scattering method [5, 6, 7] by exploring the so-called Sklyanin linear bracket
using an s`(2) invariant, unitary classical r-matrix [8]. This result enabled
further generalisations based on other unitary solutions to the classical Yang-
Baxter equation [9, 10], prompting the interest in the Gaudin systems based
on higher-rank simple Lie algebras [11, 12, 13] as well as Lie superalgebras
[14, 15, 16, 17, 18]. The relation with the Knizhnik-Zamolodchikov equations
of conformal field theory in two dimension [19] and the representation theory
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of the Kac-Moody algebras [20] was further strengthened when the connec-
tion between the Bethe states of the Gaudin model and the solution to the
Knizhnik-Zamolodchikov equations was established [21, 22, 15, 16, 17, 23].
It is also interesting to note that, in a somewhat more physical approach, the
long-range interaction of these systems was studied in [24, 25]. The Gaudin
system on an elliptic curve was studied in [26], while the s`(2) Gaudin with
the Jordanian twist was studied in [27, 28, 29]. On the classical level, the
Gaudin model corresponds to the so-called Schlesinger system in the theory
of isomonodromic deformation [30, 31, 32, 33, 34, 35, 36].

In our considerations of the quantum Heisenberg spin chains with non-
periodic boundary conditions we follow Sklyanin’s approach where the bound-
ary conditions are expressed in the form of the left and right reflection ma-
trices [37]. The so-called reflection equation and the dual reflection equation
represent the compatibility conditions between the bulk and the boundary of
the system at the left and, respectively, right site of the system. The commu-
tativity of the transfer matrix, in this case, is guaranteed on the one hand by
the fact that the matrix form of the exchange relations between the entries
of the Sklyanin monodromy matrix is analogous to the reflection equation
and on the other hand, by the dual reflection equation [37, 38, 39].

Renewed interest has emerged in the implementation of algebraic Bethe
ansatz on solvable Heisenberg chains with non-periodic boundary conditions
[40, 41, 42, 43, 44, 45, 46, 47? ]. As for alternative approaches, a review of the
coordinate Bethe ansatz in this case is given in [48], the Bethe ansatz based
on the functional relation between the eigenvalues of the transfer matrix
and the quantum determinant, as well as the associated T-Q relation are
studied in [49, 50, 51], functional relations for the eigenvalues of the transfer
matrix based on fusion hierarchy were discussed in [52] and the Vertex-IRF
correspondence in [53, 54], while the Jordanian deformation of the open XXX
chain is analysed in [55]. For the latest results, as well as an excellent review
on the application of the separation of variables method on the 6-vertex
model and the associate XXZ quantum chains see [56].

Our interest in open Heisenberg spin chains was twofold. On the one
hand, we were interested in the implementation of the algebraic Bethe ansatz,
and on the other hand, we wanted to consider the quasi-classical limit which
yields the corresponding Gaudin model [57, 58]. As it is well known [41,
42, 57], due to the symmetry of the R-matrix of the non-periodic XXX spin
chain, the accomplishment of the algebraic Bethe ansatz does not imply any
restriction on the boundary parameters. However, in the case of the open
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XXZ chain [59], the existence of the so-called vacuum vector requires the
triangular form of the boundary K-matrix [43, 44, 58]. As for the quasi-
classical limit, Hikami showed, in complete analogy with the periodic case
[24, 25], how the expansion of the XXZ transfer matrix, calculated at the
special values of the spectral parameter, yields the Gaudin Hamiltonians in
the case when both reflection matrices are diagonal [60]. Similar expansion
was done for the Jordanian deformation of the ration s`(2) Gaudin model
with generic boundaries [61]. The algebraic Bethe ansatz was applied to
open Gaudin model in the context of the Vertex-IRF correspondence [62,
63, 64]. Also, results were obtained for the open Gaudin models based on
Lie superalgebras [65]. Returning back to the quasi-classical limit, following
the Sklyanin proposal for the periodic boundary conditions [8, 66], we have
derived the generating function of the Gaudin Hamiltonians both for the
XXX [57] and the XXZ chain [58] as well as for the Jordanian deformation
of the XXX Heisenberg spin chain [67]. Moreover, we have shown [68] how,
in the context of the quasi-classical limit, the solutions to the classical Yang-
Baxter equation [9, 10] can be combined with the solutions to the classical
reflection equation [69, 70] to yield solutions to the so-called generalized
classical Yang-Baxter equation [71, 72, 73, 74]. These solutions are the non-
unitary classical r-matrices [75, 76, 77, 78, 79, 80, 81]. In particular, the
generic elliptic s`(2) non-unitary r-matrix was studied in [82]. Also, we
draw attention to the recent study of the generalized Gaudin and Richardson
models based on a class of non-unitary r-matrices [83].

An approach to the implementation of the algebraic Bethe ansatz for
the rational as well as the trigonometric s`(2) Gaudin model based on the
corresponding Maillet linear bracket was developed in [84, 85, 86? , 87].
Once a suitable set of generators of the relevant generalized Gaudin algebra
is found, the local realization of these generators becomes compact and it
naturally leads to the definition of the so-called creation operators. In both
the rational and trigonometric case [85, 87], these creation operators define
Bethe states in such a way that the off-shell action of the generating function
of the Gaudin Hamiltonians can be computed explicitly, and a completely
algebraic proof of this action given.

This paper is centred on the application of the algebraic Bethe ansatz to
the rational so(3) Gaudin model with generic classical boundary K-matrix.
We recall that this K-matrix can be obtained by the so-called fusion proce-
dure [6, 88, 89], starting from the s`(2) K-matrix [57, 90, 91, 92]. The outline
of this methods in the trigonometric so(3) case was given in [93]. Alterna-
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tively, one can use the so-called scaling limit [94], to obtain the K-matrix
from the trigonometric so(3) boundary K-matrix [93, 95]. The non-unitary
so(3) classical r-matrix (B.8) is then obtained by combining the unitary so(3)
invariant classical r-matrix and the K-matrix. This non-unitary classical r-
matrix defines the so(3) Maillet linear bracket, for the suitable Lax operator,
and provides an algebraic framework for our study of the non-periodic so(3)
Gaudin model. As an immediate consequence of the definition of the so(3)
Maillet bracket follows the mutual commutativity of the generating function
for different values of the spectral parameter. However, as it will be confirmed
in the following, the natural set of generators unfortunately turns out not to
be adequate for the implementation of the algebraic Bethe ansatz. Thus we
will here propose a new set of generators. Besides the relative simplicity of
the local realization of the new generators, their most striking feature will
be the compact form of their commutation relations. This is of great signifi-
cance since it efficiently enables the algebraic proof of the off-shell action of
the generating function on the Bethe states. Furthermore, it is important to
stress that these results will be obtained without any restriction whatsoever
on the boundary parameters. It is only when solving the generalized so(3)
Knizhnik-Zamolodchikov equations that the key identity in the proof will
require one of four boundary parameters to be set to zero. However, in spite
of this constraint we will retain a large improvement in generality over the
previous studies: while the formulas that we here provide for the solutions to
the generalized so(3) Knizhnik-Zamolodchikov equations, the on-shell norm
of the Bethe vectors and the off-shell scalar product of the Bethe vectors do
superficially look similar to the analogous formulae in the s`(2) case [85],
only one of the boundary parameters will be fixed here, instead of all four of
them (as, for example, in [85]).

The paper is organised as follows. In Section 2 we study the so(3) Maillet
linear bracket which provides the algebraic framework for implementation of
the Bethe ansatz. In the same section we propose the novel set of generators
with simplified commutation relations and introduce Gaudin Hamiltonians.
The implementation of the algebraic Bethe ansatz is the principal topic of the
Section 3. There we will obtain the expression for the off-shell action of the
generating function τ(λ), as well as for the off-shell action of the so(3) Gaudin
Hamiltonians with general boundary terms – and prove these formulas by
mathematical induction. The solutions to the generalized so(3) Knizhnik-
Zamolodchikov equations will be given in the Section 4. Our results will be
summarised in the concluding Section 5. Fundamental definitions regarding
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the so(3) Lie algebra, including the two so(3) invariant operators in C3⊗C3

which generate the relevant Brauer algebra, are presented in the Appendix
Appendix A. Finally, the cornerstone of our study – the non-unitary so(3)
classical r-matrix – is given in the Appendix Appendix B.

2. The so(3) Maillet linear bracket

In this section we show how the non-unitary so(3) classical r-matrix (B.8)
helps define the so(3) Maillet linear bracket (8) for the suitable Lax operator
(7). Although this Maillet bracket provides an appropriate algebraic frame-
work for studying the quantum so(3) Gaudin model, yielding the generating
function of the so(3) Gaudin Hamiltonians with general boundary terms, it
will be shown below that the natural set of generators unfortunately does not
provide the most efficient way for implementing the algebraic Bethe ansatz in
this case. Thus we will propos a new set off generators of the corresponding
generalized so(3) Gaudin algebra.

In our study we use the Lax operator

L0(λ) =
N∑
m=1

~S0 · ~Sm
λ− αm

=
N∑
m=1

1

λ− αm

(
S3
0 ⊗ S3

m +
1

2

(
S+
0 ⊗ S−m + S−0 ⊗ S+

m

))
,

(1)
where the spin operators Sαm, with α = +,−, 3 and m = 1, 2, . . . , N , are
introduced in (A.12) and the matrices S3

0 and S±0 in the auxiliary space C3

are specified by (A.1) and (A.3), respectively. The Lax operator (1) can also
be represented in the following form

L0(λ) = ~S0 · ~S(λ) , (2)

where the generators of the so(3) Gaudin algebra are defined by [2, 3, 4]

S3(λ) =
N∑
m=1

S3
m

λ− αm
, S±(λ) =

N∑
m=1

S±m
λ− αm

. (3)

The so-called Sklyanin linear bracket [8, 15, 16] for the Lax operator (1) and
the r-matrix (B.1)

[L1(λ), L2(µ)] = [r12(λ− µ), L1(λ) + L2(µ)] (4)

5



yields nontrivial commutation relations for the generators (3)

[
S3(λ), S±(µ)

]
= ∓ S

±(λ)− S±(µ)

λ− µ
,

[
S+(λ), S−(µ)

]
= (−2)

S3(λ)− S3(µ)

λ− µ
. (5)

The Lax operator corresponding to the generalized so(3) Gaudin algebra
is given by

L0(λ) = L0(λ)−K0(λ)L0(−λ)K−10 (λ) , (6)

where L0(λ) is the Lax operator (1) and K0(λ) is the reflection K-matrix
defined in (B.4). This form of the Lax operator can be obtained by following
a relatively general procedure of quasi-classical expansion of the Sklyanin
monodromy [68]. By direct substitution we obtain

L0(λ) = ~S0 · ~S(λ)−
(
K0(λ)~S0K

−1
0 (λ)

)
· ~S(−λ)

=


H(λ) 1√

2
F (λ) 0

1√
2
E(λ) 0 1√

2
F (λ)

0 1√
2
E(λ) −H(λ)

 .

(7)

The Lax operator (7) obeys the following so(3) Maillet linear bracket [72, 73,
74, 38, 68]

[L0(λ),L0′(µ)] =
[
rK00′(λ, µ),L0(λ)

]
−
[
rK0′0(µ, λ),L0′(µ)

]
. (8)

This linear bracket is obviously anti-symmetric and it obeys the Jacobi iden-
tity because the r-matrix (B.6) satisfies the generalized classical Yang-Baxter
equation (B.7).

The so(3) Maillet bracket (8) implies the following commutation relations
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for the generators E(λ), F (λ) and H(λ) (7)

[E(λ), E(µ)] =
−2ϕ2

λ+ µ

(
µ2

ξ2 − (ψϕ+ ν2)µ2
H(λ)− λ2

ξ2 − (ψϕ+ ν2)λ2
H(µ)

)
,

+
2ϕ

λ+ µ

(
(ξ + νµ)µ

ξ2 − (ψϕ+ ν2)µ2
E(λ)− (ξ + νλ)λ

ξ2 − (ψϕ+ ν2)λ
E(µ)

)
,

(9)

[F (λ), F (µ)] =
2ψ2

λ+ µ

(
µ2

ξ2 − (ψϕ+ ν2)µ2
H(λ)− λ2

ξ2 − (ψϕ+ ν2)λ2
H(µ)

)
+

2ψ

λ+ µ

(
(ξ − νµ)µ

ξ2 − (ψϕ+ ν2)µ2
F (λ)− (ξ − νλ)λ

ξ2 − (ψϕ+ ν2)λ
F (µ)

)
,

(10)

[H(λ), H(µ)] =
−ψ
λ+ µ

(
(ξ + νµ)µ

ξ2 − (ψϕ+ ν2)µ2
E(λ)− (ξ + νλ)λ

ξ2 − (ψϕ+ ν2)λ2
E(µ)

)
+
−ϕ
λ+ µ

(
(ξ − νµ)µ

ξ2 − (ψϕ+ ν2)µ2
F (λ)− (ξ − νλ)λ

ξ2 − (ψϕ+ ν2)λ2
F (µ)

)
,

(11)
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and

[H(λ), E(µ)] =
ϕ

λ+ µ

(
ϕµ2

ξ2 − (ψϕ+ ν2)µ2
F (λ)− 2 (ξ − νλ)λ

ξ2 − (ψϕ+ ν2)λ2
H(µ)

)
− 1

(λ− µ)(λ+ µ)

(
(2(ξ − νλ) (ξ + νµ)− ψϕ (λ+ µ)µ)µ

ξ2 − (ψϕ+ ν2)µ2
E(λ)

− 2 (ξ2 − (ψϕµ+ ν2λ)λ)λ

ξ2 − (ψϕ+ ν2)λ2
E(µ)

)
, (12)

[H(λ), F (µ)] =
−ψ
λ+ µ

(
ψ µ2

ξ2 − (ψϕ+ ν2)µ2
E(λ) +

2 (ξ + νλ)λ

ξ2 − (ψϕ+ ν2)λ2
H(µ)

)
+

1

(λ− µ)(λ+ µ)

(
(2(ξ − νµ) (ξ + νλ)− ψϕ (λ+ µ)µ)µ

ξ2 − (ψϕ+ ν2)µ2
F (λ)

− 2 (ξ2 − (ψϕµ+ ν2λ)λ)λ

ξ2 − (ψϕ+ ν2)λ2
F (µ)

)
, (13)

[F (λ), E(µ)] =
−2

λ+ µ

(
ϕ (ξ + νµ)µ

ξ2 − (ψϕ+ ν2)µ2
F (λ)− ψ (ξ − νλ)λ

ξ2 − (ψϕ+ ν2)λ2
E(µ)

)
+

2

(λ− µ)(λ+ µ)

(
(2(ξ − νλ) (ξ + νµ)− ψϕ (λ+ µ)µ)µ

ξ2 − (ψϕ+ ν2)µ2
H(λ)

− (2(ξ − νλ) (ξ + νµ)− ψϕ (λ+ µ)λ)λ

ξ2 − (ψϕ+ ν2)λ2
H(µ)

)
. (14)

Moreover, the Maillet linear bracket (8) yields the expression for the
generating function of the so(3) Gaudin Hamiltonians with general boundary
terms in terms of the Lax operator (6)

τ(λ) =
1

2
tr0
(
L2

0(λ)
)
. (15)

Namely, using the Maillet bracket (8), it is straightforward to check that the
operator τ(λ) commutes for different values of the spectral parameter,

[τ(λ), τ(µ)] = 0 . (16)

From (7) it follows that

τ(λ) = H2(λ) +
1

2
(E(λ)F (λ) + F (λ)E(λ)) . (17)
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Our aim here is to obtain the spectrum and the corresponding states of
the generating function τ(λ) by algebraic methods. To this end we would
have to use the relations (9) – (14). As it is evident from the formulae above,
these relations do not seem to be suitable to efficiently address this problem.
Therefore, we propose a new set of generators

E(λ) =
1

2ψ
√
ψϕ+ ν2

(
ψ2E(λ)−

(
ψϕ+ 2ν

(
ν −

√
ψϕ+ ν2

))
F (λ)

+ 2ψ
(
ν −

√
ψϕ+ ν2

)
H(λ)

)
, (18)

F(λ) =
1

2ψ
√
ψϕ+ ν2

(
− ψ2E(λ) +

(
ψϕ+ 2ν

(
ν +

√
ψϕ+ ν2

))
F (λ)

− 2ψ
(
ν +

√
ψϕ+ ν2

)
H(λ)

)
, (19)

H(λ) =
1

2
√
ψϕ+ ν2

(ψE(λ) + ϕF (λ) + 2νH(λ)) . (20)

The commutation relations we obtain for the new generators are substantially
simpler than the initial relations (12)–(11). In particular,

[E(λ),E(µ)] = [F(λ),F(µ)] = [H(λ),H(µ)] = 0 , (21)

and the three non-trivial relations are

[H(λ),E(µ)] =
−2

λ2 − µ2

(
µ
ξ − λ

√
ψϕ+ ν2

ξ − µ
√
ψϕ+ ν2

E(λ)− λ E(µ)

)
, (22)

[H(λ),F(µ)] =
2

λ2 − µ2

(
µ
ξ + λ

√
ψϕ+ ν2

ξ + µ
√
ψϕ+ ν2

F(λ)− λF(µ)

)
, (23)

[F(λ),E(µ)] =
4

λ2 − µ2

(
µ
ξ − λ

√
ψϕ+ ν2

ξ − µ
√
ψϕ+ ν2

H(λ)− λ ξ + µ
√
ψϕ+ ν2

ξ + λ
√
ψϕ+ ν2

H(µ)

)
.

(24)
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Furthermore, the local realization of the new generators is:

E(λ) =
λ√

ψϕ+ ν2

N∑
m=1

ξ − αm
√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

×
2(ν −

√
ψϕ+ ν2)S3

m + ψS+
m −

ψϕ+2ν (ν−
√
ψϕ+ν2)

ψ
S−m

(λ− αm)(λ+ αm)
, (25)

F(λ) =
−λ√
ψϕ+ ν2

N∑
m=1

ξ + αm
√
ψϕ+ ν2

ξ + λ
√
ψϕ+ ν2

×
2(ν +

√
ψϕ+ ν2)S3

m + ψS+
m −

ψϕ+2ν (ν+
√
ψϕ+ν2)

ψ
S−m

(λ− αm)(λ+ αm)
, (26)

H(λ) =
λ√

ψϕ+ ν2

N∑
m=1

2νS3
m + ψS+

m + ϕS−m
(λ− αm)(λ+ αm)

. (27)

A straightforward but somewhat lengthy calculation shows that the gen-
erating function τ(λ) (17) has exactly the same form when expressed in terms
of the new generators

τ(λ) = H2(λ) +
1

2
(E(λ)F(λ) + F(λ)E(λ)) . (28)

The explicit expressions for the so(3) Gaudin Hamiltonians with general
boundary terms are derived by substituting the the local realization of the
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new generators (25) – (27) in the right-hand-side of (28)

Hm =(±) Res
λ=±αm

τ(λ) =
1

ξ2 − (ψϕ+ ν2)α2
m

×
(
ξ2 + (ψϕ− ν2)α2

m

αm
(S3

m)2 − αm
2

(
ψ2 (S+

m)2 + ϕ2 (S−m)2

+2ψν
(
S+
mS

3
m + S3

mS
+
m

)
+ 2ϕν

(
S−mS

3
m + S3

mS
−
m

))
+
ξ2 + ν2α2

m

2αm

(
S+
mS
−
m + S−mS

+
m

))

+
αm

ξ2 − (ψϕ+ ν2)α2
m

N∑
n6=m

(
4 (ξ2 − ψϕαmαn − ν2α2

m)

α2
m − α2

n

S3
mS

3
n

− αm
αm + αn

(
ψ2 S+

mS
+
n + ϕ2 S−mS

−
n

+ 2ψν
(
S+
mS

3
n + S3

mS
+
n

)
+ 2ϕν

(
S−mS

3
n + S3

mS
−
n

) )
+

2 (ξ2 − (ψϕ+ ν2)αmαn)− ψϕαm (αm − αn)

α2
m − α2

n

(
S−mS

+
n + S+

mS
−
n

))

+
ξ · αm

ξ2 − (ψϕ+ ν2)α2
m

N∑
n6=m

1

αm + αn

(
2ψ
(
S+
mS

3
n − S3

mS
+
n

)
+ 2ν

(
S−mS

+
n − S+

mS
−
n

)
+ 2ϕ

(
S3
mS
−
n − S−mS3

n

) )
. (29)

Besides the formula above for the so(3) Gaudin Hamiltonians with general
boundary terms, our main result in this section is the new form of generators
of the generalized so(3) Gaudin algebra (25) – (27). Due to their strikingly
simple commutation relations (21) – (24) they now provide a suitable frame-
work for applying the algebraic Bethe ansatz without any restrictions on
boundary parameters.

3. Implementation of the algebraic Bethe ansatz

Before we can proceed to find Bethe vectors and determine the off-shell
action of the generating function τ(λ), we have to establish several interme-
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diary results.
In the Hilbert space H (A.11) of the system we have to define the so-

called vacuum vector Ω+ ∈ H together with the appropriate action of the
generators (25) – (27) on it. To this purpose we observe that in every local
space Vm = C3, m ∈ {1, . . . , N} there exists a vector ωm ∈ Vm given by

ωm =


ψ2

−
√

2ψ
(
ν −

√
ψϕ+ ν2

)
(
ν −

√
ψϕ+ ν2

)2
 ∈ C3 = Vm , (30)

where the parameters ν, ψ and ϕ are the parameters of the boundary K-
matrix (B.4). Then it is easy to check that(

2
(
ν −

√
ψϕ+ ν2

)
S3
m + ψ S+

m −
ψϕ+ 2ν (ν −

√
ψϕ+ ν2)

ψ
S−m

)
ωm = 0 ,

(31)(
2νS3

m + ψS+
m + ϕS−m

)
ωm = 2

√
ψϕ+ ν2 ωm . (32)

Therefore the vacuum vector Ω+, defined as

Ω+ = ω1 ⊗ · · · ⊗ ωN ∈ H (33)

has the desired properties. Namely, it is annihilated by the generator E(λ)
(25) and, at the same time, it is an eigenvector of the generator H(λ) (27),
that is

E(λ) Ω+ = 0 and H(λ) Ω+ = ρ(λ) Ω+ with ρ(λ) =
N∑
m=1

2λ

λ2 − α2
m

.

(34)
Our next aim is to rewrite the formula for τ(λ) (28) in a more suitable

way so that the action of the generating function τ(λ) on the vacuum vector
Ω+ (33) becomes more transparent. With this aim, we first note that the
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commutation relations (22) – (24) imply

[H(λ),F(λ)] =
−ξ

λ
(
ξ + λ

√
ψϕ+ ν2

) F(λ) + F′(λ) , (35)

[H(λ),E(λ)] =
ξ

λ
(
ξ − λ

√
ψϕ+ ν2

) E(λ)− E′(λ) , (36)

[F(λ),E(λ)] = 2

(
−1

λ

ξ2 + (ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
H(λ) + H′(λ)

)
, (37)

where prime denotes derivative with respect to parameter. Therefore we can
express the generating function τ(λ) (28) as follows

τ(λ) = H2(λ) +
1

λ

ξ2 + (ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
H(λ)− H′(λ) + F(λ)E(λ) . (38)

Taking into account (34) and (38), it is evident that the vacuum vector Ω+

(33) is an eigenvector of the generating function

τ(λ) Ω+ = χ0(λ) Ω+ with χ0(λ) = ρ2(λ)+
ξ2 + (ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
ρ(λ)

λ
−ρ′(λ) .

(39)
In our approach, one fo the essential steps in the implementation of alge-

braic Bethe ansatz is to find the commutation relation between the generating
function τ(λ) (38) and the generator F(µ) (19). To this end, we will also need
the following auxiliary result which follows from (23)

[H′(λ),F(µ)] =
2

λ2 − µ2

 ξ (λ− µ)

(λ+ µ)
(
ξ + µ

√
ψϕ+ ν2

) F(λ)

+
λ2 + µ2

λ2 − µ2
(F(µ)− F(λ)) + µ

ξ + λ
√
ψϕ+ ν2

ξ + µ
√
ψϕ+ ν2

F′(λ)

)
.

Now we can compute the commutator by a straightforward calculation,
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based on the formulae (38), (23), (24) and (40):

[τ(λ),F(µ)] = − 4

λ2 − µ2
F(µ)

(
λH(λ) +

(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2

)

+
4

λ2 − µ2

λ

µ

ξ − µ
√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(λ)

(
µH(µ) +

(ψϕ+ ν2)µ2

ξ2 − (ψϕ+ ν2)µ2

)
.

(40)

The relative simplicity of the right hand side of the equation above has
encouraged us to seek the commutator between the operator τ(λ) and the
product F(µ1)F(µ2) as the next step. In this case, an analogous direct cal-
culation based on the previous formulae, leads to

[τ(λ),F(µ1)F(µ2)] =

− 4

λ2 − µ2
1

F(µ1)F(µ2)

(
λH(λ) +

(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
− λ2

λ2 − µ2
2

)
− 4

λ2 − µ2
2

F(µ1)F(µ2)

(
λH(λ) +

(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
− λ2

λ2 − µ2
1

)

+
4

λ2 − µ2
1

λ

µ1

ξ − µ1

√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(λ)F(µ2)

×
(
µ1H(µ1) +

(ψϕ+ ν2)µ2
1

ξ2 − (ψϕ+ ν2)µ2
1

− 2µ2
1

µ2
1 − µ2

2

)

+
4

λ2 − µ2
2

λ

µ2

ξ − µ2

√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(µ1)F(λ)

×
(
µ2H(µ2) +

(ψϕ+ ν2)µ2
2

ξ2 − (ψϕ+ ν2)µ2
2

− 2µ2
2

µ2
2 − µ2

1

)
.

(41)

Evidently, the right hand side of (41) has extra lines and every line has
extra terms in comparison with (40). While certain pattern is already visible,
we will explicitly compute one more step befor conjecturing the general case.
The commutation relation between the generating function τ(λ) and the
product F(µ1)F(µ2)F(µ3) is obtained in a similar manner, using the previous

14



results,

[τ(λ),F(µ1)F(µ2)F(µ3)] =

− 4

λ2 − µ2
1

F(µ1)F(µ2)F(µ3)

(
λH(λ) +

(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
− λ2

λ2 − µ2
2

− λ2

λ2 − µ2
3

)
− 4

λ2 − µ2
2

F(µ1)F(µ2)F(µ3)

(
λH(λ) +

(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
− λ2

λ2 − µ2
1

− λ2

λ2 − µ2
3

)
− 4

λ2 − µ2
3

F(µ1)F(µ2)F(µ3)

(
λH(λ) +

(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
− λ2

λ2 − µ2
1

− λ2

λ2 − µ2
2

)

+
4

λ2 − µ2
1

λ

µ1

ξ − µ1

√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(λ)F(µ2)F(µ3)

×
(
µ1H(µ1) +

(ψϕ+ ν2)µ2
1

ξ2 − (ψϕ+ ν2)µ2
1

− 2µ2
1

µ2
1 − µ2

2

− 2µ2
1

µ2
1 − µ2

3

)

+
4

λ2 − µ2
2

λ

µ2

ξ − µ2

√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(µ1)F(λ)F(µ3)

×
(
µ2H(µ2) +

(ψϕ+ ν2)µ2
2

ξ2 − (ψϕ+ ν2)µ2
2

− 2µ2
2

µ2
2 − µ2

1

− 2µ2
2

µ2
2 − µ2

3

)

+
4

λ2 − µ2
3

λ

µ3

ξ − µ3

√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(µ1)F(µ2)F(λ)

×
(
µ3H(µ3) +

(ψϕ+ ν2)µ2
3

ξ2 − (ψϕ+ ν2)µ2
3

− 2µ2
3

µ2
3 − µ2

1

− 2µ2
3

µ2
3 − µ2

2

)
.

(42)
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In the general case, we conjecture validity of the following relation:

[τ(λ),F(µ1)F(µ2) · · ·F(µM)] = −F(µ1)F(µ2) · · ·F(µM)
M∑
j=1

4

λ2 − µ2
j

×

×

(
λH(λ) +

(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
−

M∑
k 6=j

λ2

λ2 − µ2
k

)

+
M∑
j=1

4

λ2 − µ2
j

λ

µj

ξ − µj
√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(λ)F(µ1)F(µ2) · · · F̂(µj) · · ·F(µM)

×

(
µjH(µj) +

(ψϕ+ ν2)µ2
j

ξ2 − (ψϕ+ ν2)µ2
j

−
M∑
k 6=j

2µ2
j

µ2
j − µ2

k

)
,

(43)

where the notation F̂(µj) means that the operator F(µj) is omitted.
The proof of the formula above is by mathematical induction. Our initial

hypothesis is that the equation (43) is valid for some natural number M .
Thus, we have to show that the analogous equation is valid for M + 1. To
this end, we write

[τ(λ),F(µ1)F(µ2) · · ·F(µM)F(µM+1)] =

= [τ(λ),F(µ1)F(µ2) · · ·F(µM)]F(µM+1)

+ F(µ1)F(µ2) · · ·F(µM)F(µM+1) [τ(λ),F(µM+1)] (44)

= [[τ(λ),F(µ1)F(µ2) · · ·F(µM)] ,F(µM+1)]

+ F(µM+1) [τ(λ),F(µ1)F(µ2) · · ·F(µM)]

+ F(µ1)F(µ2) · · ·F(µM)F(µM+1) [τ(λ),F(µM+1)] . (45)

It follows from (43) that the first term on the right hand side of (45) yields
two type of terms. In the second term of (45) we can just substitute the
right hand side of (43). Finally, in the last term of (45) we use (40). In this
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way we obtain

[τ(λ),F(µ1)F(µ2) · · ·F(µM )F(µM+1)] =

− F(µ1)F(µ2) · · ·F(µM )
M∑
j=1

4λ

λ2 − µ2j
[H(λ),F(µM+1)]

+
M∑
j=1

4λ

λ2 − µ2j
ξ − µj

√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

×

× F(λ)F(µ1)F(µ2) · · · F̂(µj) · · ·F(µM ) [H(µj),F(µM+1)]

− F(µ1)F(µ2) · · ·F(µM )F(µM+1)×

×
M∑
j=1

4

λ2 − µ2j

λH(λ) +
(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
−

M∑
k 6=j

λ2

λ2 − µ2k


+

M∑
j=1

4

λ2 − µ2j
λ

µj

ξ − µj
√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(λ)F(µ1)F(µ2) · · · F̂(µj) · · ·F(µM )F(µM+1)×

×

µjH(µj) +
(ψϕ+ ν2)µ2j

ξ2 − (ψϕ+ ν2)µ2j
−

M∑
k 6=j

2µ2j
µ2j − µ2k


+ F(µ1)F(µ2) · · ·F(µM )

(
− 4

λ2 − µ2M+1

F(µM+1)

(
λH(λ) +

(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2

)

+
4

λ2 − µ2M+1

λ

µM+1

ξ − µM+1

√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(λ)×

×

(
µM+1H(µM+1) +

(ψϕ+ ν2)µ2M+1

ξ2 − (ψϕ+ ν2)µ2M+1

))
. (46)

In the first two terms on the right hand side of (46) we used the equation
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(23) and the remaining terms we rewrite in a more appropriate order

[τ(λ),F(µ1)F(µ2) · · ·F(µM )F(µM+1)] = −F(µ1)F(µ2) · · ·F(µM )
M∑
j=1

4λ

λ2 − µ2j
×

× 2

λ2 − µ2M+1

(
µM+1

ξ + λ
√
ψϕ+ ν2

ξ + µM+1

√
ψϕ+ ν2

F(λ)− λF(µM+1)

)

+
M∑
j=1

4λ

λ2 − µ2j
ξ − µj

√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(λ)F(µ1)F(µ2) · · · F̂(µj) · · ·F(µM )×

× 2

µ2j − µ2M+1

(
µM+1

ξ + µj
√
ψϕ+ ν2

ξ + µM+1

√
ψϕ+ ν2

F(µj)− µj F(µM+1)

)
− F(µ1)F(µ2) · · ·F(µM )F(µM+1)×

×
M∑
j=1

4

λ2 − µ2j

λH(λ) +
(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
−

M∑
k 6=j

λ2

λ2 − µ2k


− F(µ1)F(µ2) · · ·F(µM )F(µM+1)×

× 4

λ2 − µ2M+1

(
λH(λ) +

(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2

)

+

M∑
j=1

4

λ2 − µ2j
λ

µj

ξ − µj
√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(λ)F(µ1)F(µ2) · · · F̂(µj) · · ·F(µM )F(µM+1)×

×

µjH(µj) +
(ψϕ+ ν2)µ2j

ξ2 − (ψϕ+ ν2)µ2j
−

M∑
k 6=j

2µ2j
µ2j − µ2k


+

4

λ2 − µ2M+1

λ

µM+1

ξ − µM+1

√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(µ1)F(µ2) · · ·F(µM )F(λ)×

×

(
µM+1H(µM+1) +

(ψϕ+ ν2)µ2M+1

ξ2 − (ψϕ+ ν2)µ2M+1

)
. (47)
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Now it is just a question of reordering the terms in a more suitable manner

[τ(λ),F(µ1)F(µ2) · · ·F(µM)F(µM+1)] =

− F(µ1)F(µ2) · · ·F(µM)F(µM+1)×

×
M∑
j=1

4

λ2 − µ2
j

(
λH(λ) +

(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
−

M+1∑
k 6=j

λ2

λ2 − µ2
k

)

− F(µ1)F(µ2) · · ·F(µM)F(µM+1)×

× 4

λ2 − µ2
M+1

(
λH(λ) +

(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
−

M∑
k=1

λ2

λ2 − µ2
k

)

+
M∑
j=1

4

λ2 − µ2
j

λ

µj

ξ − µj
√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(λ)F(µ1)F(µ2) · · · F̂(µj) · · ·

· · ·F(µM)F(µM+1)

(
µjH(µj) +

(ψϕ+ ν2)µ2
j

ξ2 − (ψϕ+ ν2)µ2
j

−
M+1∑
k 6=j

2µ2
j

µ2
j − µ2

k

)

+
4

λ2 − µ2
M+1

λ

µM+1

ξ − µM+1

√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(µ1)F(µ2) · · ·F(µM)F(λ)×

×

(
µM+1H(µM+1) +

(ψϕ+ ν2)µ2
M+1

ξ2 − (ψϕ+ ν2)µ2
M+1

−
M∑
k=1

2µ2
M+1

µ2
M+1 − µ2

k

)
. (48)

To obtain all the terms in the last sum (in the last line above) we had to use
a generally valid, purely algebraic identity:

−1

(λ2 − µ2
j)(λ

2 − µ2
M+1)

ξ2 − (ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)µ2
M+1

+
1

(λ2 − µ2
j)(µ

2
j − µ2

M+1)
×

×
ξ2 − (ψϕ+ ν2)µ2

j

ξ2 − (ψϕ+ ν2)µ2
M+1

=
−1

(λ2 − µ2
M+1)(µ

2
M+1 − µ2

j)
,

(49)

which is valid for every j = 1, 2, . . . ,M .
Finally, to complete the proof we can simply combine together similar

19



terms and obtain the desired result

[τ(λ),F(µ1)F(µ2) · · ·F(µM)F(µM+1)] =

− F(µ1)F(µ2) · · ·F(µM)F(µM+1)×

×
M+1∑
j=1

4

λ2 − µ2
j

(
λH(λ) +

(ψϕ+ ν2)λ2

ξ2 − (ψϕ+ ν2)λ2
−

M+1∑
k 6=j

λ2

λ2 − µ2
k

)

+
M+1∑
j=1

4

λ2 − µ2
j

λ

µj

ξ − µj
√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

F(λ)F(µ1)F(µ2) · · · F̂(µj) · · ·

· · ·F(µM)F(µM+1)

(
µjH(µj) +

(ψϕ+ ν2)µ2
j

ξ2 − (ψϕ+ ν2)µ2
j

−
M+1∑
k 6=j

2µ2
j

µ2
j − µ2

k

)
. (50)

This completes the proof by mathematical induction of the formula (43).
It should be stressed that the right hand side is in an algebraically closed
form. Thus the off-shell action of the generating function of the so(3) Gaudin
Hamiltonians with general boundary terms becomes a simple corollary of this
result.

Namely, from (43) it follows that, for an arbitrary natural number M ,
the off-shel action of the generating function τ(λ) on the Bethe vectors

ΦM(µ1, µ2, . . . , µM) = F(µ1)F(µ2) · · ·F(µM)Ω+ , (51)

is given by

τ(λ)ΦM(µ1, µ2, . . . , µM) = χM(λ, µ1, µ2, . . . , µM) ΦM(µ1, µ2, . . . , µM)

+
M∑
j=1

4λ

λ2 − µ2
j

ξ − µj
√
ψϕ+ ν2

ξ − λ
√
ψϕ+ ν2

(
ρ(µj) +

(ψϕ+ ν2)µj
ξ2 − (ψϕ+ ν2)µ2

j

−
M∑
k 6=j

2µj
µ2
j − µ2

k

)
×

× ΦM(λ, µ1, . . . , µ̂j, . . . , µM) ,

(52)

where the eigenvalue χM(λ, µ1, µ2, . . . , µM) is given by

χM(λ, µ1, µ2, . . . , µM) =

χ0(λ)−
M∑
j=1

4λ

λ2 − µ2
j

(
ρ(λ) +

(ψϕ+ ν2)λ

ξ2 − (ψϕ+ ν2)λ2
−

M∑
k 6=j

λ

λ2 − µ2
k

)
.

(53)
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The unwanted terms on the right hand side of (52) are annihilated once the
Bethe equations

ρ(µj) +
(ψϕ+ ν2)µj

ξ2 − (ψϕ+ ν2)µ2
j

−
M∑
k 6=j

2µj
µ2
j − µ2

k

= 0 , j = 1, 2, . . . ,M , (54)

are imposed on the parameters µ1, µ2, . . . , µM .
The off-shell action of the so(3) Gaudin Hamiltonians with general bound-

ary terms (29) on the Bethe vectors (51) is obtained by taking the residue,
at λ = αm, of the equation (52)

Hm ΦM(µ1, µ2, . . . , µM) = Em,M ΦM(µ1, µ2, . . . , µM)

+
M∑
j=1

4αm
α2
m − µ2

j

ξ − µj
√
ψϕ+ ν2

ξ − αm
√
ψϕ+ ν2

×

×

(
ρ(µj) +

(ψϕ+ ν2)µj
ξ2 − (ψϕ+ ν2)µ2

j

−
M∑
k 6=j

2µj
µ2
j − µ2

k

)
×

×

−2(ν +
√
ψϕ+ ν2)S3

m − ψS+
m +

ψϕ+2ν (ν+
√
ψϕ+ν2)

ψ
S−m

2
√
ψϕ+ ν2

×
× ΦM−1(µ1, . . . , µ̂j, . . . , µM) ,

(55)

where
Hm = Res

λ=αm
τ(λ) (56)

and the eigenvalues Em,M of the so(3) Gaudin Hamiltonians are the residues
of the eigenvalues χM(λ, µ1, µ2, . . . , µM) (53) of the generating function τ(λ)
at λ = αm,

Em,M = Res
λ=αm

χM(λ, µ1, µ2, . . . , µM)

=
2ξ2

(ξ2 − (ψϕ+ ν2)α2
m)αm

+
N∑

n6=m

4αm
α2
m − α2

n

−
M∑
j=1

4αm
α2
m − µ2

j

,
(57)
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and

Res
λ=αm

ΦM(λ, µ1, . . . , µ̂j, . . . , µM) = Res
λ=αm

(F(λ)) · ΦM−1(µ1, . . . , µ̂j, . . . , µM)

=

−2(ν +
√
ψϕ+ ν2)S3

m − ψS+
m +

ψϕ+2ν (ν+
√
ψϕ+ν2)

ψ
S−m

2
√
ψϕ+ ν2

 ·
· ΦM−1(µ1, . . . , µ̂j, . . . , µM) , (58)

where the notation µ̂j means that the argument µj is omitted.
As a closing remark for this section we must underline the complete ger-

ality of these results: the formulae for the off-shell action of the generating
function τ(λ) (52) and the so(3) Gaudin Hamiltonians on the Bethe vec-
tors (51) are obtained for an arbitrary natural number M and without any
restriction whatsoever on all four boundary parameters. In this sense we
can say that these formulae are as general as they can possibly be. In the
next section we will establish a correspondence between the Bethe vectors
(51) established here and the solutions to the generalized so(3) Knizhnik-
Zamolodchikov equations.

4. Generalized so(3) Knizhnik-Zamolodchikov equations

In this section we study solutions to the generalized so(3) Knizhnik-
Zamolodchikov equations. To proceed further, we now have to set the pa-
rameter ξ to zero, i.e. ξ = 0. Consequently, the local realization of the
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generators (25) – (27) simplifies to

Ẽ(λ) =
N∑
m=1

αm√
ψϕ+ ν2

2(ν −
√
ψϕ+ ν2)S3

m + ψS+
m −

ψϕ+2ν (ν−
√
ψϕ+ν2)

ψ
S−m

λ2 − α2
m

,

(59)

F̃(λ) =
N∑
m=1

−αm√
ψϕ+ ν2

2(ν +
√
ψϕ+ ν2)S3

m + ψS+
m −

ψϕ+2ν (ν+
√
ψϕ+ν2)

ψ
S−m

λ2 − α2
m

,

(60)

H(λ) =
λ√

ψϕ+ ν2

N∑
m=1

2νS3
m + ψS+

m + ϕS−m
λ2 − α2

m

. (61)

These generators have the following non-trivial commutation relations[
H(λ), Ẽ(µ)

]
=
−2λ

λ2 − µ2

(
Ẽ(λ)− Ẽ(µ)

)
, (62)

[
H(λ), F̃(µ)

]
=

2λ

λ2 − µ2

(
F̃(λ)− F̃(µ)

)
, (63)

[
Ẽ(λ), F̃(µ)

]
=

−4

λ2 − µ2
(λH(λ)− µH(µ)) . (64)

Thus, in this case, the first Bethe vector is here defined by

Φ̃1(µ) = Φ1(µ)
∣∣∣
ξ=0

= F̃(µ)Ω+ , (65)

and, in general case, for the Bethe vectors Φ̃M(µ1, µ2, . . . , µM) we have

Φ̃M(µ1, µ2, . . . , µM) = ΦM(µ1, µ2, . . . , µM)
∣∣∣
ξ=0

= F̃(µ1)F̃(µ2) · · · F̃(µM)Ω+ .

(66)
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It is useful to explicitly write Hm for ξ = 0:

H̃m = Hm

∣∣∣
ξ=0

=
1

2 (ψϕ+ ν2)αm

(
2
(
ν2 − ψϕ

)
(S3

m)2

+ ψ2 (S+
m)2 + ϕ2 (S−m)2 + 2ψν

(
S+
mS

3
m + S3

mS
+
m

)
+ 2ϕν

(
S−mS

3
m + S3

mS
−
m

)
− ν2

(
S+
mS
−
m + S−mS

+
m

) )
+

1

ψϕ+ ν2

N∑
n6=m

(
4 (ψϕαn + ν2αm)

α2
m − α2

n

S3
mS

3
n +

1

αm + αn
×

×
(
ψ2 S+

mS
+
n + ϕ2 S−mS

−
n + 2ψν

(
S+
mS

3
n + S3

mS
+
n

)
+ 2ϕν

(
S−mS

3
n + S3

mS
−
n

))
+

2ν2αn + ψϕ (αm + αn)

α2
m − α2

n

(
S−mS

+
n + S+

mS
−
n

))
. (67)

Therefore the off-shell action of these Hamiltonians reads

H̃m Φ̃M(µ1, µ2, . . . , µM) =

Ẽm,M Φ̃M(µ1, µ2, . . . , µM) +
M∑
j=1

(−2)µj
α2
m − µ2

j

βM(µj) Φ̃
(j,m)
M−1 ,

(68)

where

Ẽm,M = Em,M
∣∣∣
ξ=0

=
N∑

n6=m

4αm
α2
m − α2

n

−
M∑
j=1

4αm
α2
m − µ2

j

, (69)

βM(µj) = −2

(
ρ(µj)−

1

µj
−

M∑
k 6=j

2µj
µ2
j − µ2

k

)
, (70)

and

Φ̃
(j,m)
M−1 =

−2(ν +
√
ψϕ+ ν2)S3

m − ψS+
m +

ψϕ+2ν (ν+
√
ψϕ+ν2)

ψ
S−m

2
√
ψϕ+ ν2

 ·
· Φ̃M−1(µ1, . . . , µ̂j, . . . , µM) .

(71)
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Our main objective in this section is to show how to each Bethe vector (66)
we can relate a solution to the generalized so(3) Knizhnik-Zamolodchikov
equations

κ ∂αmΨ(α1, α2, . . . , αN) = H̃m Ψ(α1, α2, . . . , αN) . (72)

Within our approach [22, 60, 15, 16, 17, 85, 87] this correspondence is defined
by a closed contour integration with respect to the variables µ1, µ2, . . . , µM

Ψ(α1, α2, . . . , αN) =

∮ ∮
· · ·
∮

Υ (−→µ ;−→α ) · Φ̃M (−→µ ;−→α ) dµ1 dµ2 · · · dµM .

(73)
The scalar function Υ (−→µ ;−→α ) is defined by

Υ (−→µ ;−→α ) = exp

(
S(−→µ ;−→α )

κ

)
, (74)

with the constant κ and the function S(−→µ ;−→α ) specified by

S (−→µ ;−→α ) =
N∑
m=1

(
N∑

n6=m

ln
(
α2
n − α2

m

)
−

M∑
j=1

2 ln
(
µ2
j − α2

m

))
(75)

+
M∑
j=1

(
ln
(
µ2
j

)
+

M∑
k 6=j

ln
(
µ2
j − µ2

k

))
. (76)

It is straightforward to check that the function Υ (−→µ ;−→α ) satisfies the system

κ ∂αmΥ = Ẽm,M Υ , (77)

κ ∂µjΥ = βM(µj) Υ , (78)

where Ẽm,M and βM(µj) are defined in (69) and (70), respectively.
The crucial identity in our approach is

∂αmΦ̃M =
M∑
j=1

∂µj

(
2µj

α2
m − µ2

j

Φ̃
(j,m)
M−1

)
. (79)

It takes a few rather simple steps to confirm that the function Ψ(α1, α2, . . . , αN)
(73) is a solution to the to the generalized so(3) Knizhnik-Zamolodchikov
equations (72). As the first step, using the Leibniz rule, we calculate

κ ∂αm

(
Υ · Φ̃M

)
= (κ ∂αmΥ) · Φ̃M + Υ ·

(
κ ∂αmΦ̃M

)
. (80)
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Then we use the equation (77) in the first term on the right hand side of the
equation above and the identity (79) in the second term

κ ∂αm

(
Υ · Φ̃M

)
= Em,M

(
Υ · Φ̃M

)
+ Υ · κ

M∑
j=1

∂µj

(
2µj

α2
m − µ2

j

Φ̃
(j,m)
M−1

)
. (81)

In the following step we use the equation (68) in the first term and the Leibniz
rule in the second term on the right hand side of the equation above

κ ∂αm

(
Υ · Φ̃M

)
= H̃m

(
Υ · Φ̃M

)
+

M∑
j=1

2µj
α2
m − µ2

j

βM(µj) ·Υ · Φ̃(j,m)
M−1

+ κ
M∑
j=1

∂µj

(
2µj

α2
m − µ2

j

Υ · Φ̃(j,m)
M−1

)
− κ

M∑
j=1

(
∂µjΥ

) 2µj
α2
m − µ2

j

Φ̃
(j,m)
M−1 .

(82)

Now it remains to rewrite the last terms on the right hand side using the
equation (78)

κ ∂αm

(
Υ · Φ̃M

)
= H̃m

(
Υ · Φ̃M

)
+

M∑
j=1

2µj
α2
m − µ2

j

βM(µj) ·Υ · Φ̃(j,m)
M−1

+ κ
M∑
j=1

∂µj

(
2µj

α2
m − µ2

j

Υ · Φ̃(j,m)
M−1

)
−

M∑
j=1

2µj
α2
m − µ2

j

βM(µj) ·Υ · Φ̃(j,m)
M−1 .

(83)

As the final step of this demonstration, we simplify the second and the last
term in the equation above in order to obtain the desired result

κ ∂αm

(
Υ · Φ̃M

)
= H̃m

(
Υ · Φ̃M

)
+ κ

M∑
j=1

∂µj

(
2µj

α2
m − µ2

j

Υ · Φ̃(j,m)
M−1

)
. (84)

This shows that the function Ψ(α1, α2, . . . , αN) (73) is a solution to the to the
generalized so(3) Knizhnik-Zamolodchikov equations (72) since the terms in
the sum will not contribute to the closed contour integrals with respect to
the variables µj, j = 1, 2, . . . ,M .

In the final part of this section we determine the on-shell norm as well
as the off-shell scalar products of the Bethe vectors (66). In particular, the
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on-shell norm of the Bethe vector (65) is obtained to be

∥∥Φ̃1(µ)
∥∥2 = lim

ν→µ

〈
Ω+, Ẽ(ν)F̃(µ)Ω+

〉
= −2

(
ρ′(µ) +

ρ(µ)

µ

)

=
∂β1(µ)

∂µ

∣∣∣
β1(µ)=0

=
∂2S(µ)

∂µ2

∣∣∣
β1(µ)=0

.

(85)

Similarly, the norm of the Bethe vector

Φ̃2(µ1, µ2) = F̃(µ1)F̃(µ2)Ω+ , (86)

when the Bethe equations are imposed on the parameters µ1 and µ2, is given
by∥∥Φ̃2(µ1, µ2)

∥∥2 = lim
ν1→µ1
ν2→µ2

〈
Ω+, Ẽ(ν1)Ẽ(ν2)F̃(µ2)F̃(µ1)Ω+

〉

= 4 ρ′(µ1) ρ
′(µ2) + 4 ρ′(µ1)

(
1

µ2
2

+
2

µ2
2 − µ2

1

+
4µ2

1

(µ2
2 − µ2

1)
2

)

+ 4 ρ′(µ2)

(
1

µ2
1

+
2

µ2
1 − µ2

2

+
4µ2

2

(µ2
2 − µ2

1)
2

)
+ 12

(µ2
1 + µ2

2)
2

µ2
1µ

2
2 (µ2

2 − µ2
1)

2

= det

 ∂β2(µ1)
∂µ1

∂β2(µ2)
∂µ1

∂β2(µ1)
∂µ2

∂β2(µ2)
∂µ2

∣∣∣∣∣
β2(µ1)=0
β2(µ2)=0

= det

 ∂2S
∂µ21

∂2S
∂µ1 ∂µ2

∂2S
∂µ2 ∂µ1

∂2S
∂µ22

∣∣∣∣∣
β2(µ1)=0
β2(µ2)=0

.

(87)

In the general case, for an arbitrary positive integer M , the norm of the Bethe
vector
Φ̃M(µ1, µ2, . . . , µM) (66), when the Bethe equations

βM(µj) = −2

(
ρ(µj)−

1

µj
−

M∑
k 6=j

2µj
µ2
j − µ2

k

)
= 0 , j = 1, 2, . . . ,M , (88)
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are imposed on the parameter µ1, . . . , µM , is obtained to be

∥∥Φ̃M(µ1, µ2, . . . , µM)
∥∥2 = det


∂2S
∂µ21

∂2S
∂µ1∂µ2

. . . ∂2S
∂µ1∂µM

...
. . .

...

∂2S
∂µM∂µ1

∂2S
∂µM∂µ2

. . . ∂2S
∂µ2M

 βM (µ1)=0

...
βM (µM )=0

.

(89)
Finally, we also calculate the off-shell scalar products of the Bethe vectors

Φ̃M(µ1, µ2, . . . , µM) (66). As our first step, we observe that in the case when
M = 1 the scalar product is

〈
Φ̃1(µ), Φ̃1(ν)

〉
= 4

(
−µ ρ(µ)− ν ρ(ν)

µ2 − ν2

)
. (90)

For M = 2, a straightforward calculation yields〈
Φ̃2(µ1, µ2), Φ̃2(ν1, ν2)

〉
= 42

∑
σ∈S2

detMσ = 16
(
detM1 + detM2

)
, (91)

where S2 is the symmetric group of degree two and the two-by-two matrices
M1 and M2 are given by

M1
11 = −µ1 ρ(µ1)− ν1 ρ(ν1)

µ2
1 − ν21

− µ2
2 + ν22

(µ2
1 − µ2

2) (ν21 − ν22)
,

M1
12 = − µ2

2 + ν22
(µ2

1 − µ2
2) (ν21 − ν22)

,

M1
22 = −µ2 ρ(µ2)− ν2 ρ(ν2)

µ2
2 − ν22

− µ2
1 + ν21

(µ2
2 − µ2

1) (ν22 − ν21)
,

M1
21 = − µ2

1 + ν21
(µ2

2 − µ2
1) (ν22 − ν21)

,

(92)
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and

M2
11 = −µ1 ρ(µ1)− ν2 ρ(ν2)

µ2
1 − ν22

− µ2
2 + ν21

(µ2
1 − µ2

2) (ν22 − ν21)
,

M2
12 = − µ2

2 + ν21
(µ2

1 − µ2
2) (ν22 − ν21)

,

M2
22 = −µ2 ρ(µ2)− ν1 ρ(ν1)

µ2
2 − ν21

− µ2
1 + ν22

(µ2
2 − µ2

1) (ν21 − ν22)
,

M2
21 = − µ2

1 + ν22
(µ2

2 − µ2
1) (ν21 − ν22)

.

(93)

In general case, for an arbitrary positive integer M , we have〈
Φ̃M(µ1, µ2, . . . , µM), Φ̃M(ν1, ν2, . . . , νM)

〉
= 4M

∑
σ∈SM

detMσ , (94)

where SM is the symmetric group of degree M and the matrix entries of the
M ×M matrix Mσ are given by

Mσ
jj = −

µj ρ(µj)− νσ(j) ρ(νσ(j))

µ2
j − ν2σ(j)

−
∑
k 6=j

µ2
k + ν2σ(k)

(µ2
j − µ2

k)(ν
2
σ(j) − ν2σ(k))

, (95)

Mσ
jk = −

µ2
k + ν2σ(k)

(µ2
j − µ2

k)(ν
2
σ(j) − ν2σ(k))

, for j, k = 1, 2, . . . ,M . (96)

The off-shell scalar products of the Bethe vectors Φ̃M(µ1, µ2, . . . , µM) (66)
in the M = 1 case (90) and in the M = 2 case (91) were derived by a direct,
straightforward calculations. The formula (94) was obtained by symbolic
computer calculations for M = 3, 4, 5, for some values of N . In the general
case, the proof of these formulae by induction would be very difficult, since
it would require some highly non-trivial relations between a certain type of
determinants of a different order. In this sense, the general formula (94),
strictly speaking, remains a conjecture.

5. Conclusions

The cornerstone of our study of the non-periodic so(3) Gaudin model
was the so(3) Maillet linear bracket (8) for the suitable Lax operator (7) and
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the non-unitary so(3) classical r-matrix (B.8) constructed from the generic
boundary K-matrix (B.4). Based on Maillet bracket we obtained the gener-
ating function (15) of the so(3) Gaudin Hamiltonians with general boundary
terms. However it turned out that the natural set of generators was not the
most efficient choice for implementing the algebraic Bethe ansatz due to the
cumbersome commutation relations (9) - (14). For this reason we proposed
a new set of generators: (18) - (20). Not only that their commutation rela-
tions had a strikingly compact form (21) - (24) but also their local realization
was fairly simple (25) - (27), yielding the explicit expression for the Gaudin
Hamiltonians with all four boundary parameters (29).

There were several preceding objectives which we had to address before
attempting to find the off-shell action of the generating function τ(λ) (28).
In the first place, we had to define the so-called vacuum vector Ω+ (30) - (33).
Then we had to confirm the action of the generators on the vacuum vectors
(34) and to show that the vector Ω+ is the eigenvector of the generating
function τ(λ) (39). As our next step, we have calculated the commutation
relations between the generating function τ(λ) and the remaining generator
F(µ) of the generalized so(3) Gaudin algebra (40). The idea of using the
generator F(µ) as the so-called creation operator prompted us to calculate the
commutation relations between the generating function τ(λ) and the product
F(µ1)F(µ2) (41) as well as the product F(µ1)F(µ2)F(µ3) (42). Hence, we
have conjectured the formula (43), in the general case, for the commutator
between the generating function τ(λ) and the product F(µ1)F(µ2) · · ·F(µM),
for an arbitrary natural number M . The proof of the formula (43) based on
the mathematical induction was presented in (44) - (50). Once we have
accordingly defined the Bethe vectors (51), the off-shell action (52) of the
generating function τ(λ), including the formulae for the eigenvalues (53) and
the Bethe equations (54), followed from (43). Moreover, the off-shell action
(55) of the Gaudin Hamiltonians (29) on the Bethe vectors (51) was obtained
by taking the the residue, at λ = αm, of the left and the right hand side of
(52). It should be stressed that the formulae of the off-shell action (52) and
(55) have been obtained without any restriction whatsoever on any of the
four boundary parameters and therefore we can say that these formulae are
as general as they can possibly be.

Next, we found the solutions to the generalized so(3) Knizhnik-Zamolod-
chikov equations (72). In spite that the key identity (79) in the proof required
the parameter ξ to be set to zero, the formulae we obtained for the solutions
to the generalized so(3) Knizhnik-Zamolodchikov equations (73), the on-shell
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norm of the Bethe vectors (89) and the off-shell scalar product of the Bethe
vectors (94) – all possess higher degree of generality than the analogous
formulae in the s`(2) case [85] (here we have fixed only one of the four
boundary parameters instead of all four).

In our future research we hope to address the remaining open problem
of correlation functions for the so(3) Gaudin model with general boundary,
following Sklyanin approach in the periodic s`(2) case [98].
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Appendix A. Preliminaries

Some essential definitions regarding the so(3) Lie algebra and its funda-
mental representation are given in the Appendix Appendix A. Namely, we
consider the spin one operators

Sx =
1√
2

 0 1 0
1 0 1
0 1 0

 , Sy =
ı√
2

 0 −1 0
1 0 −1
0 1 0

 , Sz =

 1 0 0
0 0 0
0 0 −1


(A.1)

acting in the space V (1) = C3 with the commutation relations

[Sx, Sy] = ıSz, [Sz, Sx] = ıSy, [Sy, Sz] = ıSx

and the Casimir element

c2 = ~S · ~S = (Sx)2 + (Sy)2 + (Sz)2 = 21. (A.2)

Introducing raising and lowering operators

S+ = Sx + ıSy =

 0
√

2 0

0 0
√

2
0 0 0

 , S− = Sx − ıSy =

 0 0 0√
2 0 0

0
√

2 0

 ,

(A.3)
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the relations above can also be written as

[Sz, S±] = ±S±, [S+, S−] = 2Sz, (A.4)

and

c2 = (Sz)2 +
1

2
(S+S− + S−S+) = (Sz)2 + Sz + S−S+. (A.5)

It is useful to notice that the tensor Casimir operator can be expressed
as follows

c⊗2 (1, 2) = ~S1 · ~S2 = P − 3K. (A.6)

The permutation operator

P =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


, (A.7)

the rank 1 projector

K =
1

3



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 −1 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(A.8)

and the identity operator 1 satisfy the relations

P2 = 1 , K2 = K , PK = KP = K . (A.9)
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and therefore define the representation of the Brauer algebra in C3 ⊗ C3.
Moreover these are the three invariant operators acting on C3 ⊗ C3

[Sα ⊗ 1 + 1⊗ Sα,P ] = 0 , [Sα ⊗ 1 + 1⊗ Sα,K] = 0 , (A.10)

here α = x, y, z.
In our study of the so(3) Gaudin model with N sites, characterised by

the local space Vm = C3 together with the corresponding inhomogeneous
parameter αm, the Hilbert space is given by

H =
N
⊗
m=1

Vm = (C3)⊗N . (A.11)

The local spin operators

Sαm = 1⊗ · · · ⊗ Sα︸︷︷︸
m

⊗ · · · ⊗ 1 , (A.12)

with α = x, y, z and m = 1, 2, . . . , N , are given by the matrices (A.3) and
(A.1) in every local space Vm = C3. Evidently, they satisfy the usual com-
mutation relations

[S3
m, S

±
n ] = ±S±m δmn , [S+

m, S
−
n ] = 2S3

m δmn . (A.13)

Appendix B. The non-unitary so(3) classical r-matrix

The cornerstone of our study presented in this paper is the non-unitary
so(3) classical r-matrix (B.8). Here, in the Appendix Appendix B, we re-
count how the r-matrix (B.8) can be obtained starting from the unitary, so(3)
invariant classical r-matrix

r(λ) = −
~S1 · ~S2

λ
= −P − 3K

λ
, (B.1)

where we have used the notation introduced in the Appendix Appendix A.
In particular, the classical r-matrix (B.1) can be obtained as a quasi-classical
limit of the SO(3) quantum R-matrix [96, 97, 6]. Evidently, this classical
r-matrix satisfies the classical Yang-Baxter equation [10]

[r12(λ−µ), r13(λ− ν)] + [r12(λ−µ), r23(µ− ν)] + [r13(λ− ν), r23(µ− ν)] = 0,
(B.2)
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and has the unitarity property

r21(−λ) = −r12(λ). (B.3)

We also consider the following reflection matrix

K(λ) =


(ξ − νλ)2 −

√
2ψ λ(ξ − νλ) ψ2λ2

−
√

2ϕλ(ξ − νλ) ξ2 + (ψϕ− ν2)λ2 −
√

2ψλ(ξ + νλ)

ϕ2λ2 −
√

2ϕλ(ξ + νλ) (ξ + νλ)2

 ,

(B.4)
here ξ, ν, ψ, ϕ are arbitrary parameters. As it is well known, this K-matrix
can be obtained by the so-called fusion procedure [6, 88, 89], starting from the
s`(2) K-matrix [57, 90, 91, 92]. This method is outlined, in the trigonometric
so(3), in [93]. Alternatively, the so-called scaling limit [94] can be used to
obtain the K-matrix (B.4) from the trigonometric so(3) boundary K-matrix
[93, 95]. Evidently, this K-matrix satisfies the classical reflection equation

r12(λ− µ)K1(λ)K2(µ) +K1(λ)r21(λ+ µ)K2(µ) =

= K2(µ)r12(λ+ µ)K1(λ) +K2(µ)K1(λ)r21(λ− µ).
(B.5)

It is worth mentioning that, while in the context of Heisenberg’s open spin
chain, one should also consider the dual reflection equation, this is not the
case in the Gaudin model. Namely, as a consequence of long-range Gaudin
model interactions, the “two ends of the chain” cannot have the same in-
terpretation as in the case of Heisenberg’s spin chain. In the Gaudin case,
boundary parameters must be fixed in a way that the reflection equation and
its dual effectively degenerate into a single equation.

Therefore, it follows that the corresponding non-unitary classical r-matrix,
given by [68, 75, 76, 77, 78, 79, 80, 81]

rK12(λ, µ) = r12(λ− µ)−K2(µ)r12(λ+ µ)K−12 (µ) , (B.6)

satisfies the generalized classical Yang-Baxter equation [68, 71, 72, 73, 74][
rK32(ν, µ), rK13(λ, ν)

]
+
[
rK12(λ, µ), rK13(λ, ν)

]
+
[
rK12(λ, µ), rK23(µ, ν)

]
= 0. (B.7)

The explicit form of this non-unitary so(3) classical r-matrix is the following

rK12(λ, µ) = −

~S1 · ~S2

λ− µ
−
~S1 ·

(
K2(µ)~S2K

−1
2 (µ)

)
λ+ µ

 . (B.8)
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[66] N. Manojlović, Z. Nagy and I. Salom, Derivation of the trigonomet-
ric Gaudin Hamiltonians, Proceedings of the 8th Mathematical Physics
meeting: Summer School and Conference on Modern Mathematical
Physics, 24 - 31 August 2014, Belgrade, Serbia, SFIN XXVIII Series
A: Conferences No. A1(2015) 127–135; ISBN: 978-86-82441-43-4.
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[86] N. Manojlović and I. Salom, Algebraic Bethe Ansatz for the Trigonomet-
ric s`(2) Gaudin Model with Triangular Boundary, Symmetry 12 no.3
(2020) 352; doi:10.3390/sym12030352
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