
Reply to the referee’s comments

We thank the referee for the careful perusal of our paper and for the positive overall
assessment.

In particular, referee’s questions 2 and 3 initially prompted us to consider introduc-
ing large extensions of the paper, in order to provide fully detailed answers in the text.
However, we realized that entirely covering these particular aspects of the problem here
would divert the reader from the main results of this work, so we eventually opted to
add only short clarifications in the present paper (while shortly postponing their more
detailed treatment for another publication).

While we find the full discussion of 2 and 3 unsuitable for inserting in the present
paper, we nevertheless provide it below, preceded by concisely addressing all of the
issues brought up by the referee:

1. The computer-output typesetting is very poor. Many formulas are too wide. The number
of equations should be consistent with the style of NPB.

We accept the referee’s criticism, noting that, style-wise, we adhered to the "Your
Paper Your Way" NPB policy, allowing the authors to choose arbitrary style dur-
ing the peer review stage. However, for the revised version we now used Else-
vier’s template/style, took care of the width of formulas, and changed equation
numbering - hopefully to good effect.

2. Eqs.(B.4) and (B.5) give the reflection matrix and corresponding classical reflection equa-
tion, respectively. Does there exist the dual reflection matrix which satisfies the dual
classical reflection equation?

The short answer is: as a consequence of long-range Gaudin model interactions,
the "two ends of the chain" cannot have the same interpretation as in the case of
Heisenberg’s spin chain. Thus, in the Gaudin case, boundary parameters must be
fixed in a way that the reflection equation and its dual effectively degenerate into
a single equation.

We briefly clarify this in Appendix B. But, to fully elucidate this matter requires
considering the Gaudin model as a quasi-classical limit of the spin chain, which
we show below.

3. Is the construction (II.6) of the Lax operator of the model with boundary reflection unique?

The Lax operator (II.6) can be obtained by following a relatively general proce-
dure of quasi-classically expanding the Sklyanin monodromy (detailed below)
and, in this sense, its form is fixed by construction. On the other hand, strictly
speaking, we are not aware of any formal proof of its uniqueness (i.e. whether
there is any freedom to nontrivially modify II.6 while still retaining effectively
the same model).
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In the text below (II.6) we have now mentioned that this form can be, in a straight-
forward manner, obtained by quasi-classical expansion of the Sklyanin monodromy
of the corresponding open Heisenberg spin chain.

4. Does the identity (III.21) give the constraints of Bethe roots? Is it included in the Bethe
ansatz equations (III.26) or satisfied naturally?

The identity (III.21) is purely algebraical (i.e. satisfied by an arbitrary set of com-
plex values λ, µj, ξ, ψ, φ, ν) and it has nothing to do with Bethe equations or their
solutions. We now stressed this in the text.

5. Is the scalar product Eq.(IV.35) a conjecture? Can it be proved by the mathematical in-
duction?

The off-shell scalar products of the Bethe vectors Φ̃M(µ1, µ2, . . . , µM) (IV.8) in the
M = 1 case, the formula (IV.31), and in the M = 2 case, the formulae (IV.32-34)
were derived by a direct, straightforward calculations. The formulae (IV.35-37)
were obtained by symbolic computer calculations for M = 3, 4, 5, for some values
of N. In the general case, the proof of these formulae by induction would be
very difficult, since it would require some highly non-trivial relations between a
certain type of determinants of a different order. In this sense, the general form
(IV.35), strictly speaking, remains a conjecture - which we have now clearly stated
in the text.

Bellow, we address questions 2 and 3 in full detail, putting them in a more general
context. We use the same notation as in the manuscript. At the end of the text we also
include the list of references relevant for this discussion.

We first notice that the O(3) invariant R-matrix was found in [1, 2] (see also [3])

R(λ, η) = λ (λ + η) 1+ 2η (λ + η)P − 6ληK , (1)

where λ is a spectral parameter and η is a quasi-classical parameter. This R-matrix
satisfies the Yang-Baxter equation

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ), (2)

here the standard notation is used to denote spaces Vj, j = 1, 2, 3 on which correspond-
ing R-matrices Rij, ij = 12, 13, 23 act non-trivially. In the present case V1 = V2 = V3 =

C3.
The R-matrix (1) admits the spectral decomposition

Ř(λ, η) = PR(λ, η) = 2η (λ + η) 1+ λ (λ + η)P − 6ληK
= (λ− η)(λ− 2η)P0 − (λ + η)(λ− 2η)P1 + (λ + η)(λ + 2η)P2, (3)
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using the projectors on the irreducible representation components in the Clebsch-Gordan
decomposition V(1) ⊗V(1) = V(2) ⊕V(1) ⊕V(0)

P2 =
1
2
(1+ P − 2K) , P1 =

1
2
(1−P) , P0 = K. (4)

The R-matrix (1) has some important properties: regularity, unitarity, PT-symmetry,
and crossing symmetry. The regularity condition at λ = 0 reads

R(0, η) = 2η2P . (5)

The unitarity relation is
R12(λ)R21(−λ) = ρ(λ)1, (6)

with ρ(λ) = λ4 − 5λ2η2 + 4η4. The so-called PT-symmetry states

Rt
12(λ) = R21(λ) . (7)

One particular consequence of (6) and (7) is the fact that ρ(λ) is necessarily an even
function. Finally, the R-matrix (1) has the following crossing symmetry property:

R(λ) = (J ⊗ 1) Rt2(−λ− η)
(
J −1 ⊗ 1

)
, (8)

where t2 denotes the transpose in the second space and the matrix J is given by

J =

 0 0 −1
0 1 0
−1 0 0

 . (9)

An important consequence of the above relations is the following identity, the so-called
crossing unitarity,

Rt2
12(λ)Rt1

12(−λ− 2η) = ρ(−λ− η)1 , (10)

here t1 and t2 denote the transpose in the first and in the second space, respectively.
A way to introduce non-periodic boundary conditions which are compatible with

the integrability of the bulk model, was developed in [5,6]. Boundary conditions on the
left and right sites of the chain are encoded in the left and right reflection matrices K−

and K+. The compatibility condition between the bulk and the boundary of the system
takes the form of the so-called reflection equation. It is written in the following form
for the left reflection matrix acting on the space C3 at the first site K−(λ) ∈ End(C3)

R12(λ− µ)K−1 (λ)R21(λ + µ)K−2 (µ) = K−2 (µ)R12(λ + µ)K−1 (λ)R21(λ− µ) . (11)

Due to the properties of the R-matrix (6)–(10) the dual reflection equation can be written
in the following form

R12(−λ+µ)K+
1 (λ)R21(−λ−µ− 2η)K+

2 (µ) = K+
2 (µ)R12(−λ−µ− 2η)K+

1 (λ)R21(−λ+µ) .
(12)
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Evidently,
K+(λ) = K−(−λ− η) (13)

is a bijection between solutions to the reflection equation and the dual reflection equa-
tion, in the sense that the substitution of (13) into the dual reflection equation (12) yields
the reflection equation (11) with shifted arguments.

The left reflection matrix, which we have obtained by the fusion procedure [7–9]
starting from the s`(2) K-matrix [10–13],

K−(λ, η) =
(
k−ij (λ, η)

)
, where i, j = 1, 2, 3, (14)

whose matrix elements are given below

k−11(λ, η) = 4ξ− 2 − 8ξ−ν−λ + (2λ− η)
(
2λν− 2 + η(ν− 2 + ψ−ϕ−)

)
,

k−12(λ, η) = −2
√

2ψ−λ
(
2ξ− − ν− (2λ− η)

)
,

k−13(λ, η) = 2ψ− 2λ (2λ− η) ,

k−21(λ, η) = −2
√

2ϕ−λ
(
2ξ− − ν− (2λ− η)

)
,

k−22(λ, η) = 4ξ− 2 − (2λ− η)
(
2λ (ν− 2 − ψ−ϕ−)− η (ν− 2 + ψ−ϕ−)

)
,

k−23(λ, η) = −2
√

2ψ−λ
(
2ξ− + ν− (2λ− η)

)
,

k−31(λ, η) = ϕ− 2λ (2λ− η) ,

k−32(λ, η) = −2
√

2ϕ−λ
(
2ξ− + ν− (2λ− η)

)
,

k−33(λ, η) = 4ξ− 2 + 8ξ−ν−λ + (2λ− η)
(
2λν− 2 + η (ν− 2 + ψ−φ−)

)
,

(15)

satisfies the reflection equation (11). In particular, this K-matrix has the following im-
portant property

K−(−λ, η) · K−(λ, η) = d−(λ, η) d−(−λ, η)1 , (16)

where the function d(λ, η) is given by

d−(λ, η) = 4ξ− 2 − 8ξ−λ
√

ν− 2 + ψ−ϕ− + (4λ2 − η2)(ν− 2 + ψ−ϕ−) . (17)

As it was shown above (13), the corresponding general solution to the dual reflection
equation (12) is given by

K+(λ, η, ξ+, ν+, ψ+, ϕ+) = K−(−λ− η, η, ξ+, ν+, ψ+, ϕ+) . (18)

However, in order to study the Gaudin model one has to identify the parameters of
the reflection matrices at the left and at the right end of the chain, i.e.

ξ− = ξ+ = ξ , ν− = ν+ = ν , ψ− = ψ+ = ψ , ϕ− = ϕ+ = ϕ . (19)
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Usually this is done by imposing the following condition [13–16]

lim
η→0

(
K+(λ, η) · K−(λ, η)

)
= 16 d(λ) d(−λ) 1 , (20)

here

d(λ) =
(

ξ − λ
√

ν2 + ψϕ

)2

. (21)

This identification is essential due to the to the long range interaction of the Gaudin
model [17–19]. Thus, in the following we will use

K−(λ, η) ≡ K(λ, η) , (22)

and
K+(λ, η) = K(−λ− η, η) . (23)

The next step in the derivation of the Gaudin model is the so-called the quasi-
classical limit [13, 16]. For the step-by-step derivation of the classical Reflection Equa-
tion in the s`(2) case see [20] (for the trigonometric case see [21]). Here we write the
R-matrix as follows

1
λ2 R(λ, η) = 1+

η

λ
1− 2ηr(λ) + 2

( η

λ

)2
P , (24)

where r(λ) is the classical r-matrix

r(λ) = −P − 3K
λ

, (25)

and the K-matrix in the following form

K(λ, η) = 4K(λ) + 2ηλM− η2 (ν2 + ψϕ
)
1 , (26)

where K(λ) is the classical K-matrix

K(λ) =


(ξ − νλ)2 −

√
2 ψ λ(ξ − νλ) ψ2λ2

−
√

2 ϕλ(ξ − νλ) ξ2 + (ψϕ− ν2) λ2 −
√

2 ψλ(ξ + νλ)

ϕ2λ2 −
√

2 ϕλ(ξ + νλ) (ξ + νλ)2

 , (27)

and the matrix M is given by

M =


ψϕ −

√
2νψ −ψ2

−
√

2νϕ 2ν2
√

2νϕ

−ϕ2
√

2νϕ ψϕ

 . (28)

In a direct substitution of the formulae (24) and (26) into the Reflection Equation (11),
the terms in the zero order in η lead to some obvious identity satisfied by the classical
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K-matrix (27). However, the first order terms in η, besides some obvious identities for
the matrices K(λ) and M, yield the classical reflection equation

r12(λ− µ)K1(λ)K2(µ) + K1(λ)r21(λ + µ)K2(µ) =

= K2(µ)r12(λ + µ)K1(λ) + K2(µ)K1(λ)r21(λ− µ) .
(29)

Moreover the substitution of the formula (23) into the dual reflection equation (12)
yields

R12(−λ + µ, η)K1(−λ− η, η)R21(−λ− µ− 2η, η)K2(−µ− η, η) =

= K2(−µ− η, η)R12(−λ− µ− 2η, η)K1(−λ− η, η)R21(−λ + µ, η) .
(30)

As expected we have obtained the reflection equation (11) with the shifted arguments.
To study the quasi-classical limit in this case, we use the formulae (24) and (26) with the
shifted arguments λ→ −λ− η and µ→ −µ− η. By following the same steps we have
done in deriving the classical reflection equation (29), we obtain the same equation but
with shifted arguments

r12(−λ + µ)K1(−λ− η)K2(−µ− η) + K1(−λ− η)r21(−λ− µ− 2η)K2(−µ− η) =

= K2(−µ− η)r12(−λ− µ− 2η)K1(−λ− η) + K2(−µ− η)K1(−λ− η)r21(−λ + µ) .
(31)

This shows that, due to the to the long range interaction of the Gaudin model [17–
19], the integrability of the system is guaranteed by the classical Yang-Baxter equation

[r12(λ− µ), r13(λ)] + [r12(λ− µ), r23(µ)] + [r13(λ), r23(µ)] = 0, (32)

and the classical reflection equation (29). Moreover, by introducing the non-unitary,
classical r-matrix [20]

rK
12(λ, µ) = r12(λ− µ)− K2(µ)r12(λ + µ)K−1

2 (µ) , (33)

the two equations can be combined into the generalized classical Yang-Baxter equation
[20] [

rK
32(ν, µ), rK

13(λ, ν)
]
+
[
rK

12(λ, µ), rK
13(λ, ν)

]
+
[
rK

12(λ, µ), rK
23(µ, ν)

]
= 0. (34)

To address the third question posed by the referee (and following our ideas pre-
sented in [20]), we first observe that in the study of the corresponding inhomogeneous
Heisenberg spin chain with N sites one can use the following Lax operator

L0m(λ) =
1

λ(λ + η)
R0m(λ, η) . (35)
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Due to the Yang-Baxter equation (2) the Lax operator satisfies the RLL-relations

R00′(λ− µ)L0m(λ)L0′m(µ) = L0′m(µ)L0m(λ)R00′(λ− µ) , (36)

as well as the following important identity

L0m(λ)L0m(−λ) =

(
1−

(
2η

λ

)2
)
10 . (37)

Hence the corresponding monodromy operator reads

T(λ) = L0N(λ− αN) · · ·L01(λ− α1) . (38)

For simplicity we have omitted the dependence on the quasi-classical parameter η and
the inhomogeneous parameters {αj, j = 1, ..., N}. Notice that T(λ) is a three-by-three
matrix acting in the auxiliary space V0 = C3, whose entries are operators acting in the
Hilbert space of the system. From RLL-relations (36) it follows that the monodromy
matrix satisfies the RTT-relations

R00′(λ− µ)T0(λ)T0′(µ) = T0′(µ)T0(λ)R00′(λ− µ) . (39)

For our study of the corresponding Gaudin model it is instructive to consider the
expansion of the monodromy matrix (38) with respect to the quasi-classical parameter
η

T0(λ) = 10 + 2ηL0(λ) +O(η2) , (40)

where

L0(λ) =
N

∑
m=1

~S0 · ~Sm

λ− αm
=

N

∑
m=1

1
λ− αm

(
S3

0 ⊗ S3
m +

1
2
(
S+0 ⊗ S−m + S−0 ⊗ S+

m
))

, (41)

here we us the same notation as in the manuscript.
Moreover the identity (42) implies that

L0m(λ− αm)L0m(−λ + αm) =

(
1− 4η2

(λ− αm)2

)
10 . (42)

Thus the equation above and the RLL-relations (36) imply that the RTT-relations (39)
can be recasted as follows

T̃0′(µ)R00′(λ + µ)T0(λ) = T0(λ)R00′(λ + µ)T̃0′(µ) , (43)

T̃0(λ)T̃0′(µ)R00′(µ− λ) = R00′(µ− λ)T̃0′(µ)T̃0(λ) . (44)

where
T̃0(λ) = L01(λ + α1) · · ·L0N(λ + αN) . (45)
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Therefore the Sklyanin monodromy T (λ) of the SO(3) inhomogeneous spin chain
with non-periodic boundary consists of the operators T(λ) (38) and T̃0(λ) (45) and the
reflection matrix K−(λ) (14)

T0(λ) = T0(λ)K−0 (λ, η)T̃0(λ) . (46)

It follows from the reflection equation (11) and the RTT-relations (39), (43) , (44) that the
exchange relations of the Sklyanin monodromy T (λ) in V0 ⊗V0′ are

R00′(λ− µ)T0(λ)R0′0(λ + µ)T0′(µ) = T0′(µ)R0′0(λ + µ)T0(λ)R0′0(λ− µ) . (47)

The open Heisenberg spin chain transfer matrix is given by the trace of T0(λ) over the
auxiliary space V0 with an extra reflection matrix K+(λ, η) [5],

t(λ) = tr0
(
K+(λ, η) T0(λ)

)
. (48)

The commutativity of the transfer matrix for different values of the spectral parameter

[t(λ), t(µ)] = 0 , (49)

is guaranteed by the dual reflection equation (12) and the exchange relations (47) of
the monodromy matrix T0(λ). Moreover, a central element of the reflection equation
algebra (47) is given by

∆[T0(λ)] =
1

6η2 tr00′ R00′(−η, η)T0(λ− η/2)R00′(2λ, η)T0(λ + η/2) . (50)

The expansion of the Sklyanin monodromy T (λ) in powers of the quasi-classical
parameter η reads

T0(λ) = 4K0(λ) + 2ηλM0 + 8ηL0(λ)K0(λ) +
η2

2
d2T0(λ)

dλ2

∣∣∣
λ=0

+O(η3) , (51)

where
L0(λ) = L0(λ)− K0(λ)L0(−λ)K−1

0 (λ) . (52)

By substituting (24) and (51) into (47) we can confirm that the zero and first orders in η

are identically satisfied. The relations we seek follow from the terms of the second order
in η. When the terms containing the second order derivatives of T (λ) are eliminated
then, after some calculations, it can be shown that the remaining terms can be recasted
in the following form

[L0(λ),L0′(µ)] =
[
rK

00′(λ, µ),L0(λ)
]
−
[
rK

0′0(µ, λ),L0′(µ)
]

, (53)

here the non-unitary classical r-matrix rK
00′(λ, µ) is given in (33). This linear bracket is

obviously anti-symmetric and it obeys the Jacobi identity because the r-matrix rK
00′(λ, µ)

(33) satisfies the generalized classical Yang-Baxter equation (34).
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Moreover, the generating function of the Gaudin model

τ(λ) =
1
2

tr0
(
L2

0(λ)
)

. (54)

can be obtained by the η expansion of a linear combination of the transfer matrix t(λ)
(48) of the corresponding Heisenberg spin and the central element ∆[T0(λ)] (50) of the
reflection equation algebra (47).

As we have shown above, our derivation of the Gaudin model with boundary terms
can be resumed to the following five formulae. The non-unitary classical r-matrix
rK

00′(λ, µ) (33), together with the the generalized classical Yang-Baxter equation (34),
the Lax operator L0(λ) (52) of corresponding generalized Gaudin algebra, jointly with
the linear bracket (53), and finally the generating function τ(λ) (54). In this sense we
can say the this is the unique structure which defines the system at hand.
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[6] P. P. Kulish, N. Manojlović and Z. Nagy, Jordanian deformation of the open XXX
spin chain, (in Russian) Teoreticheskaya i Matematicheskaya Fizika Vol. 163 No. 2
(2010) 288-298; translation in Theoretical and Mathematical Physics Vol. 163 No. 2
(2010) 644-652; doi: 10.1007/s11232-010-0047-x; arXiv:0911.5592.

-9-



REFERENCES REFERENCES

[7] P. P. Kulish and E. K. Sklyanin, Quantum spectral transform method. Recent
developments, Lect. Notes Phys. 151 (1982), 61–119.

[8] L. Mezincescu and R. I. Nepomechie, Fusion procedure for open chains, J. Phys. A 25
(1992) 2533-2544.
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[13] N. Cirilo António, N. Manojlović and I. Salom, Algebraic Bethe ansatz for the XXX
chain with triangular boundaries and Gaudin model, Nucl. Phys. B 889 (2014), 87-108;
doi:10.1016/j.nuclphysb.2014.10.014
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