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ABSTRACT

This paper describes two different techniques that can be used to
model and synthesize bell-like sounds. The first one is a source-
filter model based on frequency-zooming ARMA (pole-zero) mod-
eling techniques. The frequency-zooming approach is powerful
also in modal analysis of bell sound behavior. The second tech-
nique is based on a digital waveguide with a single loop filter
that is designed to generate inharmonic partials by including one
or more second-order allpass sections in the loop filter, possi-
bly augmented with one or a few parallel resonators. A small
handbell with inharmonic partials was recorded and used as a
target of modeling and synthesis. Sound examples are found in
http://www.acoustics.hut.fi/demos/dafx02/.

1. INTRODUCTION

Sound production in bells and bell-like musical instruments has
been mastered experimentally for thousands of years. Acoustically
we understand it to be composed of decaying sinusoids. After hit-
ting a bell by a hard or a soft object the autonomous vibration
consists of eigenmodes that decay exponentially, and this response
can be approximated as a linear and time-invariant (LTI) system.

Bells are manufactured in different sizes and shapes, from
large and loud bells for churches to small handbells for musical
or non-musical purposes. Bells can be tuned, i.e., designed to
approach a series of harmonic partials, but it is essential to bell-
like sounds that there always are inharmonic components (at least
one). This means an irregular spectrum and therefore the efficient
synthesis techniques available for harmonic sounds cannot be em-
ployed directly.

Another typical property of bells is the warble sound, i.e.,
clearly noticeable beating of partials, which may be a desirable
feature to make the sound more colorful and pleasant to listen to.
The warble is caused by minor asymmetry of structure or mate-
rial so that the modal frequencies in different direction of vibra-
tion are slightly different. Unless excited exactly in such a sin-
gle ‘submode’ direction, a beating warble sound is produced as a
summation of ‘submodes’. A good introduction to the acoustics
and sound properties of bells is found in [1]. Among other useful
sources of information, including sound examples, are [2, 3, 4].

Individual bell-like sounds can be synthesized easily by sam-
pling techniques (i.e., playing back from recordings). However,
if the goal is to gain flexibility by parametric control for musical
purposes, or to reduce memory requirement of long wavetables,
other methods become more attractive. In this paper we discuss
two approaches that are computationally efficient and parametri-
cally controllable: (a) modal filterbanks, optionally based on sub-

band techniques, and (b) inharmonic waveguide methods. Both
approaches are found interesting also from a more general view-
point of music-related DSP.

2. SIGNAL ANALYSIS OF BELL SOUND

The exponentially decaying modal response, after the initial attack
of hitting a bell, can be utilized in sound synthesis by modeling
the radiated sound as a convolution of an excitation signal and an
LTI system of modal resonances. This means the applicability of
source-filter modeling for sound synthesis. The problem at hand is
to estimate a low-order filter which has a good match to the decay
part of response and then to find a proper excitation. A strong
excitation may cause some nonlinearity in the vibration of a bell,
but in most cases the LTI assumption works well.

There are many methods available for estimating a paramet-
ric model based on the impulse response of a given LTI sys-
tem: AR (autoregressive) modeling for all-pole filter and ARMA
(autoregressive moving average) modeling for pole-zero filter de-
sign [5, 6, 7]. Each eigenmode should correspond to a complex-
conjugate pole pair in the resulting filter. Although powerful in
many applications, direct application of these methods to bell
sounds may turn out to be problematic as will be described below.
Very closely located modal frequencies require high-resolution
spectral analysis tools, such as the frequency-zooming technique
to be discussed.

2.1. Example handbell case

Figure 1 illustrates the temporal and spectral properties of a small
handbell the response of which is used as a model target of this
study. Subplot 1(a) shows the decay envelope of the bell sound,
which deviates from a simple exponential curve, hinting potential
beats and warble. This is indeed the case, which is easy to confirm
by listening.

Fig. 1(b) depicts the magnitude spectrum of the sound exam-
ple. At a first glance it may be noticed that there is a set of rel-
atively isolated sharp resonances (frequencies up to 10 kHz are
listed in Table 1). A closer look by spectral zooming reveals, how-
ever, that most of the resonances have two or even more nearby
peaks. Fig. 1(c) shows a zoomed-in magnitude spectrum for the
first resonance group around 1313 Hz, showing the existence of
two almost equally intense peaks with frequency separation of
2.5 Hz.

Bandpass filtering (bandwidth = 600 Hz) and temporal enve-
lope analysis of the partials up to 10 kHz is plotted in Fig. 2. This
reveals clearly the beating in the envelopes of the two lowest par-
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Figure 1: Analysis and modeling of a small bell sound: (a)
recorded time-domain signal, (b) magnitude spectrum up to 10
kHz, (c) magnitude spectrum in the modal region around 1313 Hz.

Freq/Hz T60/s

1314.5 / 1312.0 7.04 / 8.02
2362.9 / 2353.3 4.53 / 3.93
3306.5 / 3309.4 1.94 / 0.30
3928.2 / 3923.8 0.57 / 1.77
4993.7 / 4966.6 0.58 / 0.53
5994.4 / 6003.0 0.57 / 0.47
6619.7 / 6598.9 0.14 / 0.04
7671.7 / 7753.2 0.05 / 0.20
8413.1 / 8453.3 0.25 / 0.07
9305.2 / 9292.4 0.17 / 0.12
9912.4 / 9602.3 0.74 / 0.02

Table 1: Center frequencies of modal pairs (= partials) up to
10 kHz and corresponding effective decay times (T60) in the bell
of the case study.

tials, and some irregularity also in the higher partials. Beating of
the partials is a perceptually important feature and must be incor-
porated properly in synthesis models in order to generate realistic
sounding synthesis.

2.2. Frequency-zooming ARMA modeling of modal groups

The modal behavior of individual partials can be analyzed and
modeled in various ways. Bandpass filtering around a partial fre-
quency and envelope detection or short-time Fourier analysis to
track envelope trajectories can be used and the overall decay time
and beating can be approximated by relatively simple rules. For
complex modal combinations this may not work, however.

Estimation of a parametric model through AR or ARMA mod-
eling is in principle an attractive way to obtain a digital filter rep-
resenting the target sound example. It is known, however, that
very closely located poles are often too demanding in practical es-
timation, requiring extremely high filter orders that are impractical
and end up to numerical problems. We have developed a technique
called frequency-zooming ARMA (FZ-ARMA) analysis introduced
in [8] that is a modification of known ARMA methods, particularly
the Steiglitz-McBride method [7, pp. 174–177]. It is influenced
by frequency-selective linear prediction and Prony’s method in [9]
and [10]. FZ-ARMA estimation and modeling is formulated as
follows:
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Figure 2: Decay envelopes for partials of Table 1 from top to down
plotted on dB scale with 20 dB offsets for clarity. Higher partials
reach the measurement noise floor.

The FZ-ARMA analysis starts by modulating (heterodyning)
the desired frequency band of signal h(n) down to the neighbor-
hood of zero frequency [11, 12] by

hm(n) = ejΩmn h(n) (1)

where Ωm = 2πfm/fs, fm is the modulation frequency, and f s is
the sample rate. In the z-domain this can be interpreted as clock-
wise rotation of poles zi by angle Ωm, i.e.,

Ωi,rot = Ωi − Ωm = arg(zi) − Ωm (2)

but retaining the pole radius. The next step to increase frequency
resolution is to limit the frequency range by decimating, i.e., low-
pass filtering and down-sampling the rotated response by zooming
factor Kzoom to obtain a new sampling rate fs,zoom = fs/Kzoom.
This implies mapping to a new z-domain where poles are scaled
by the rule

zi,zoom = z Kzoom
i (3)

Together mappings (2) and (3) yield new poles 1

ẑi,zoom = |zi|Kzoom e j (arg(zi)−Ωm) Kzoom (4)

Now it is possible to apply any AR or ARMA modeling to the
modulated and decimated response. Notice that this new signal is
complex-valued due to the one-sided modulation operation.

The advantage gained by frequency zooming is that in the
zoomed subband the order of (ARMA) analysis can be reduced
by increasing the zooming factor Kzoom and, consequently, the
solution of poles and zeros as roots of the denominator and nu-
merator polynomials of the model transfer function is simplified.
Additionally this means that a different resolution can be used in
each subband, for example based on knowledge about modal com-
plexity and perceptual relevance of a subband.

1Note that Eqs. (2) and (3) merely characterize how the z-
domain properties of a given response are changed through mod-
ulation and decimation, but the estimated pole-zero pattern of an
FZ-ARMA model will be obtained only in the next step.
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Figure 3: Modeling of the decay envelope of the first partial (see
Fig. 2 top curve) with FZ-ARMA orders: (a) ARMA(0,4) and (b)
ARMA(40,4). Dashed line is the target and solid line the model
behavior.

After solving the poles within a zoomed subband they can be
remapped to the full sample rate by inverse scaling of the radii of
poles as well as rotating them counter-clockwise, i.e.,

ẑi = ẑ
1/Kzoom
i,zoom e jΩm (5)

Because of the one-sided down-modulation used in (1), each pole
zi must be used as a complex conjugate pair in order to obtain
real-valued filters.

Finally there are two alternatives of complete model construc-
tion. The subband filters, mapped back to full sample rate and
appropriate frequency band, can be combined into a composite fil-
ter, such as a parallel filterbank. If the computational complexity
of the composite filter is too high and if the subbands are uniform
or regular in bandwidth, multirate techniques [13] can be utilized,
although this introduces extra processing latency.

In the investigations below the frequency-zooming method
used for solving FZ-ARMA coefficients is the Steiglitz-McBride
iteration (stmcb in MATLAB). Notice that the IIR filter orders
N for numerator and P for denominator refer to real-valued fil-
ters, with complex-conjugate pairs constructed from one-sided ze-
ros and poles obtained from the model of the decimated signal.
Thus the orders of real-valued filters are twice the numbers of ze-
ros and poles from the above procedures, respectively.

An FZ-ARMA denominator of order 4 is a natural choice for
a partial with regular beating, while order 2 is sufficient for simple
exponential decay. In practice order 6 may be needed to account
for a bit irregular beating decay. The order of the numerator de-
pends on how well the transient attack needs to be modeled, and
will be discussed later below.

Figure 3 illustrates how the FZ-ARMA analysis works for the
first partial of the bell sound characterized in Fig. 1. In Fig. 3(a)
on approximation of the target response using a zero/pole model of
order (0,4) yields notable deviation in the decay envelope. Order
(40,4) in (b) shows a very good fit. The same can be achieved by
order (4,6), i.e., with more poles and much less zeros. A zooming
factor Kzoom of 200 was applied.

2.3. Real-time synthesis of FZ-ARMA bell models

The target bell sound was modeled for excitation-filter synthesis
in the following way. First the bulk delay in the recorded target
sound was removed. Frequencies above 10 kHz did not contribute
to the perception of recorded sound noticeably, so the modeling
was applied only to a lowpass-filtered signal for modes shown in
Table 1. For all partials, it was sufficient to set the order of the
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Figure 4: Properties of the residual used in source-filter synthesis:
(a) 70 ms from the beginning of the residual and (b) spectrum of
the whole residual.

AR part of the FZ-ARMA filter equal to 4. As for the MA part,
orders between 10 and 30 were enough to properly model the intial
transient. This FZ-ARMA analysis was actually used to estimate
the modal frequencies and decay times in Table 1.

The poles obtained from the FZ-ARMA subband models were
combined to form a single all-pole synthesis filter. The target sig-
nal was then inverse filtered with the synthesis filter in order to
obtain an excitation for perfect synthesis. Figure 4 depicts the first
70 ms of the excitation and the spectrum of the whole excitation.
Note that the FZ-ARMA had a slight tendency to overestimate the
pole radii, which leads to antiresonances in the residual spectrum
at some modal frequencies.

The excitation was truncated, with end tapering to avoid dis-
continuity, and was used as an input signal for source-filter syn-
thesis. An interesting detail is a secondary excitation around 40
ms, probably due to double impact in hitting the bell. If the exci-
tation wavetable is made shorter than 40 ms, this detail is lost in
the synthesized sound. (In fact, there are even more minor extra
excitations in the target sound later in time, as can be noticed by
careful listening to the original sound.)

Now we have obtained a highly efficient synthesis procedure
which yields an almost perfect resynthesis, only the later excita-
tions as well as the recording noise of the target sound are missing.
A 60 ms wavetable corresponds to about 2600 samples for a sam-
ple rate of 44100 Hz, and the order of the obtained all-pole syn-
thesis filter is 4× 11 = 44. The filter order can be reduced further
without audible difference by using four poles only for the first to
partials exhibiting systematic beating and just a pole pair for oth-
ers, thus ending up with a filter order of 4×2+2×9 = 26. In addi-
tion to the low computational load the system is now parametrized,
i.e., the filter parameters can be changed for different sounds or
even modulated for interesting audio effects. The excitation can
be selected among different variants from a collection of waveta-
bles. Multiple impacts can be simulated just by reading multiple
wavetables with offset between their triggering time.

3. INHARMONIC DIGITAL WAVEGUIDE SYNTHESIS

A very efficient way to synthesize harmonic sounds of exponen-
tially decaying partials is by using digital waveguides [14]. The
regularity of harmonic spectral structure can be maximally ex-
ploited by a feedback loop of a (possibly fractional) delay and a
lowpass loop filter. In commuted synthesis the harmonic resonator
is modeled by a digital waveguide and everything else in sound
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Figure 5: Inharmonic waveguide model with strong dispersion.
Parallel resonator(s) for additional inharmonicity and beating of
partials shown in dashed line.
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Figure 6: (top) Poles and zeros of a conventional comb filter
(left) and the one with a nested second-order allpass filter (right).
The corresponding pole radii are shown below as function of fre-
quency. The solid line (bottom right) is the loop gain determined
with the group delay of the open loop (see Eq. 8).

synthesis is consolidated in a wavetable for excitation of the fil-
ter. An advanced version of such single loop filter model for the
acoustic guitar is described in [15].

Since the bell sounds are always inharmonic, the regularity of
the basic digital waveguide cannot be exploited directly. A dig-
ital waveguide with smooth dispersion has been used for disper-
sive piano string models [16, 17]. A banded waveguide structure
has been suggested for producing inharmonic spectra for vibrat-
ing bars [18]. Inharmonic comb filters with an allpass filter in the
feedback loop have been used for generating spectra of spherical
resonators [19]. We will use a similar structure and utilize the
resonance characteristics of a second-order allpass filter. Figure
5 depicts a diagram of a digital waveguide, including a bulk de-
lay, a fractional delay for pitch adjustment, a low-order low-pass
filter for frequency-dependent decay-time control of partials, and
an inharmonizing second-order allpass filter. There can be addi-
tional resonators in parallel with this (as shown in dashed line) for
additional inharmonicity or controlling the beating of partials [20].

3.1. Comb filter with a nested second-order allpass filter

Inserting a second-order allpass filter into the loop of a comb filter
enables design of very inharmonic comb filters. The locations of
resonances depend on the change of phase in the feedback loop.
The phase response of the second-order allpass is [21]
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Figure 7: Magnitude response of the system in grey scales (white
is 0 and black is the maximum value) as a function of pole radius
of the allpass filter (L = 18, g = 0.99510).

φA(ω) = − 2ω − 2 arctan

�
r sin(ω − θ)

1 − r cos(ω − θ)

�

− 2 arctan

�
r sin(ω + θ)

1 − r cos(ω + θ)

� (6)

where ω is the normalized frequency and r and θ are the radius
and frequency of the pole of the second-order allpass filter, re-
spectively. The total phase function of the feedback loop (open
loop) depends on both the allpass filter and the delay line, which
contributes a linear phase term −Lω, where L is the delay-line
length:

φloop(ω) = − (L + 2)ω − 2 arctan

�
r sin(ω − θ)

1 − r cos(ω − θ)

�

− 2 arctan

�
r sin(ω + θ)

1− r cos(ω + θ)

� (7)

Resonancesoccur at frequencies where the value of φ loop is a mul-
tiple of 2π.

The decay time of the resonances is also warped by the allpass
filter. The pole radii of a conventional comb filter are g1/L , where
g is the loop gain. The pole radii of the modified system depend
on the group delay of the open loop:

|pk| = g1/τ(ωp,k ) (8)

where τ(ωp,k) are the open-loop group delay values at pole fre-
quencies ωp,k. The group delay depends on both the delay-line
length L and the allpass filter, as it is the negative derivative of (7).

Figure 6 shows the pole-zero diagrams of a conventional comb
filter (L = 10) and the system of interest in this paper (delay line
with L = 8 and a second-order allpass filter). It is seen that while
the poles are uniformly spaced in the conventional comb filter, this
is not the case for the comb filter with a second-order allpass filter.
In the bottom right in Fig. 6, the dependenceof the pole radii on the
group delay of the allpass filter according to (8) is demonstrated.

The selection of the allpass filter parameters is not as easy as
it may seem, because they affect the properties of the system in a
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Figure 8: Magnitude responseof the system in grey scales (white is
0 and black is the maximum value) as a function of pole frequency
of the allpass filter. The solid line shows the location of the pole
(L = 18, g = 0.99510).

complicated way. Figures 7 and 8 demonstrate how changing the
value of pole radius R or pole frequency θ affects the locations of
resonances, when one of the parameters is fixed (θ = 0.08 in Fig. 7
and R = 0.99 in Fig. 8). The delay-line length L is 18 samples.
The resonances locations of a normal comb filter are the same as
those in the left end of Fig. 7 (obtained with R = 0). It is seen that
the presence of an allpass filter moves all resonances, except for
the trivial ones at 0 and the Nyquist frequency.

3.2. How to design an inharmonic waveguide

Since there are only two degrees of freedom in the allpass filter,
it is reasonable to use them to control the two lowest resonance
frequencies of the system, which are usually the perceptually most
important ones. We need another loop filter to control the decay
times. This loss filter may be a linear-phase filter, such as a 3-tap
FIR filter, so that it does not affect the inharmonicity of the system.
Then it is possible to first design the allpass filter and to account
for its effect on the decay time of modes when designing the loss
filter.

As the low-frequency partials of the bell sound are most im-
portant from a perceptual point of view, we tried to match only
the first 3 partials. The first partial also plays an important role
in the perception of the pitch of the bell sound. Therefore, as a
starting point, we decided to set the length of the delay-line and
the value of the fractional-delay for the tuning filter as to have a
harmonic tone with the fundamental matching the first partial of
the bell tone. From the values shown in Table 1, we verify that the
frequencies of second and third partials of the tone are lower than
those of the harmonic one. The task of the inharmonizing allpass
filter then will be to attract the second and third partials towards
the first partial.

The capability of the allpass filter to attract neighbor reso-
nances is clearly seen in Figs. 7 and 8. From Fig. 7 we also verify
that the attraction power increases with the pole radius. In our case,
it seems natural to set the frequency of the allpass pole between the
frequencies of the first and third partials. In fact, for optimization
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Figure 9: Analysis of a synthetic bell sound: (a) time-domain sig-
nal, (b) magnitude spectrum up to 10 kHz with crosses indicating
the target frequencies of the partials, and (c) magnitude spectrum
around the first partial showing the pair of peaks.

purposes, we can relax about matching the precise values of the
partial frequencies and care more about their ratios. This allows
us to play only with 2 parameters: the radius and frequency of the
allpass pole. Once the frequencies of the first 3 partials are related
by the desired ratios the matching to the actual partial frequencies
can be achieved by adjusting the length of the delayline and the
parameter of the tuning filter.

For the tuning filter we used a first order allpass filter the pa-
rameter of which is given by [22]

at =
sin[(1− δ)ω1/2]

sin[(1 + δ)ω1/2]
, (9)

where ω1 is the frequency of the first partial in radians and 0 <
δ < 1 is the fractional part of the delay line.

We tuned an inharmonic comb filter to match the 3 lowest
modes of the handbell sound. With a delay line of L = 28 plus
a fractional delay of δ = 0.995 and allpass filter with parame-
ters θ = 2495/fs and R = 0.913 we obtain a reasonably good
match with the 3 resonances as depicted in Fig. 9. Altogether the
structure produces 7 inharmonic modes up to 10 kHz. This test
case shows that it is possible to synthesize bell-like sounds that are
in tune and sound similar to the target sound. Note that the sixth
partial was also closely matched, although unintentionally.

The computer-assisted design process for this test case re-
quired some time and nerves, and obviously an automatic design
algorithm is needed. It may either use an optimization strategy,
such as a genetic algorithm, or a heuristic search based on what
we know and can learn from the properties of the structure.

The choice of a 3-tap FIR filter for the loss filter allows us
to meet the magnitude response requirements at two frequencies
precisely. The main restriction to this approach is that the target
magnitude at the higher frequency must be less than that of the
lower one, in order to obtain a loss filter with a lowpass charac-
teristic. Again, for psychoacoustic reasons we decided to set the
magnitude response of the loss filter to match the decay times of
the first two partials. Moreover, one has to remember that the pres-
ence of the allpass filter in the feedback loop affects the decay time
of modes, and this effect has to be taken into consideration when
defining the specification for the loss filter.

If the frequencies of the first two partials in radians are denoted
by ω1 and ω2, the magnitude response of the loss filter at ω1 and
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ω2 is given by

g(ωk) = eτ(ωk) log(0.001)/(T60kfs), k = 1 and 2, (10)

where τ(ωk) are the measured group delays of the open loop at
ωk and T60k are decay times of the first and second partials, as
indicated in Table 1.

Although a single inharmonic comb filter suffices to replicate
an inharmonic tone, it does not produce the prominent beating that
is perceived in the lowest partials of a bell tone. To imitate this
effect we can add a second inharmonic comb filter with parame-
ters slightly changed to approximate the other resonant modes of
the first three partials. Alternatively, we can match these modes
by adding second-order resonators in parallel with the inharmonic
comb filter.

The transfer function of a second-order resonator can be writ-
ten as

Hr(z) =
b0

1 − (2R cos(2πfr/fs))z−1 + R2z−2
, (11)

where fr is the frequency of the resonance in Hz, f s is the sample
rate, b0 is a gain factor, and R is the radius of the poles. The value
of R can be derived from the T60 value by

R = elog(0.001)/(T60fs). (12)

In our example, we used two extra resonators to produce the
beating effect in the first and second partials. Thus, one resonator
was tuned at fr = 1312.0 Hz and R was set according to Eq. (12)
with T60 = 8.02 s. For the other resonator we used f r = 2353.3
Hz and T60 = 3.93 s. The magnitude spectrum zoomed in around
the first partial of the synthetic tone is shown in Fig. 9(c), where
two peaks with a frequency difference of 2.5 Hz are seen.
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