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h i g h l i g h t s

• Reversible RSA of objects of various shapes on a 2D triangular lattice is studied.
• We study the response of the model to an abrupt change in desorption probability.
• Short-time response strongly depends on the symmetry properties of the shapes.
• Density correlations decay slower for more symmetrical shapes.
• We observe the weakening of correlation features in multicomponent systems.
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a b s t r a c t

The out-of-equilibrium dynamical processes during the reversible random sequential ad-
sorption (RSA) of objects of various shapes on a two-dimensional triangular lattice are stud-
ied numerically by means of Monte Carlo simulations. We focused on the influence of the
order of symmetry axis of the shape on the response of the reversible RSA model to sud-
den perturbations of the desorption probability Pd. We provide a detailed discussion of the
significance of collective events for governing the time coverage behavior of shapes with
different rotational symmetries. We calculate the two-time density–density correlation
function C(t, tw) for various waiting times tw and show that longer memory of the initial
state persists for themore symmetrical shapes. Ourmodel displays nonequilibriumdynam-
ical effects such as aging.We find that the correlation function C(t, tw) for all objects scales
as a function of single variable ln(tw)/ ln(t). We also study the short-term memory effects
in two-component mixtures of extended objects and give a detailed analysis of the contri-
bution to the densification kinetics coming from eachmixture component. We observe the
weakening of correlation features for the deposition processes inmulticomponent systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Theunderstanding of randomsequential adsorption (RSA)model has attracted large attention as a paradigmatic approach
towards irreversibility, as well as due to the strong departure of the process from equilibrium behavior. In the RSAmodel [1],
particles are added randomly and sequentially onto a substrate without overlapping each other. RSA model assumes that
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deposited particles can neither diffuse along, nor desorb from the surface. The kinetic properties of a deposition process are
described by the time evolution of the coverage θ(t), which is the fraction of the substrate area covered by the adsorbed
particles.Within amonolayer deposit, each adsorbedparticle affects the geometry of all later placements. Due to the blocking
of the substrate area, at large times the coverage approaches the jammed-state value θJ, where only gaps too small to fit new
particles are left in the monolayer.

In pursuit of understanding the various aspects of the adsorption phenomenon large number of studies have taken
place. A comprehensive survey on RSA and cooperative sequential adsorptions is given by Evans [2]. Other surveys include
Privman [3–5], Cadilhe et al. [4], Senger et al. [6], and Talbot et al. [7].

In many real physical situations it is necessary to consider the possibility of desorption of deposited particles [8–10].
Adsorption–desorption processes are important in the binding of ions to a Langmuir monolayer [11], and in many catalytic
reactions. Binding and unbinding of kinesinmotors tomicrotubules [12], ofmyosin to actin filaments, and of proteins to DNA
are commonly studied biological examples. Possibility of desorptionmakes the process reversible and the system ultimately
reaches an equilibrium state when the rate of desorption events balances the rate of adsorption events. The kinetics of the
reversible RSA is governed by the ratio of adsorption to desorption rate, K = k+/k−. For large values of K , there is a rapid
approach to density θ ≃ θJ, followed by a slow relaxation to a higher steady-state value θ∞ [13–16].

The reversible RSA model is frequently used by many authors to reproduce qualitatively the densification kinetics
and other features of weakly vibrated granular materials [9,17,10]. The phenomenon of granular compaction involves the
increase of the density of a granular medium subjected to shaking or tapping [18–23]. The relaxation dynamics is extremely
slow, taking many thousands of taps to approach the steady state, and it slows down for lower vibration intensities. The
final steady-state density is a decreasing function of the vibration intensity [23]. Dynamics of the reversible RSA model
depends on the excluded volume and geometrical frustration, just as in the case of granular compaction. This model can be
regarded as a simple picture of a horizontal layer of a granular material, perpendicular to the tapping force. As a result of
a tapping event, particles leave the layer at random and compaction proceeds when particles fall back into the layer under
the influence of gravity. The ratio of desorption to adsorption rate 1/K = k−/k+ within the model plays a role similar to the
vibration intensityΓ in real experiments [24] (Γ is defined as the ratio of the peak acceleration of the tap to the gravitational
acceleration g).

One of the striking features of granular materials are thememory effects observed bymeasuring the short-time response
to an instantaneous change in the tapping accelerationΓ [25]. For a sudden decrease inΓ it was observed that on short-time
scales the compaction rate increases, while for a sudden increase in Γ the system dilates for short times. This behavior is
transient and after several taps there is a crossover to the ‘‘normal’’ behavior, with the relaxation rate becoming the same
as in constant vibration intensity mode. Furthermore, Nicolas et al. [26] have also shown that periodic shear compaction
exhibits a nontrivial response to a sudden change in shear amplitude. The rapid variation of volume fraction induced by the
sudden change of shear angle is proportional and opposite to the angle change. The short-termmemory effects observed in
granular materials are reflected in the fact that the future evolution of the packing fraction θ after time tw depends not only
on the θ(tw), but also on the previous tapping history. It is important to note that the parking lot model (PLM, 1D off-lattice
reversible RSAmodel) [24,9,27,17] is a widely usedmodel which can reproduce qualitatively the short-termmemory effects
of a weakly vibrated granular material. In Ref. [10] we have presented the detailed studies of the short-termmemory effects
in the framework of a two-dimensional reversible RSA model on a square lattice.

An important issue in two-dimensional deposition is the influence of the shape of the adsorbed particle. It is well known
that the size, aspect ratio and symmetry properties of the object have a significant role in the processes of both irreversible
and reversible deposition. The numerical analyses for the irreversible deposition of various shapes and their mixtures on a
triangular lattice [28,29] establish that the approach to the jamming limit follows the exponential law with the rate depen-
dent mostly on the order of symmetry axis of the shape. In the reversible case of deposition on a triangular lattice [15,30],
we have found that the coverage kinetics is severely slowed down with the increase of the order of symmetry of the shape.

The main goal of the present study is to investigate the interplay between the response of the reversible RSA model
to sudden perturbations of the desorption probability Pd and the symmetry properties of deposited shapes. Numerical
simulations of adsorption–desorption processes are performed for various shapes on the triangular lattice, shown in Table 1.
These shapes are made of self-avoiding walks of the same length ℓ = 2, but they differ in their symmetry properties. The
response in the evolution of the density θ(t) to a change in the desorption probability Pd at a given time tw is accompanied
by transformation of the local configurations in the covering. Essentially, collective (two-particle) events are responsible
for the evolution of θ for θ > θJ. Size of the objects and their symmetry properties have a significant influence on these
collective events, thus affecting the kinetics of the deposition process [15,31,30]. Sincewe focus our interest on the influence
of symmetry of the object on the response of the system to sudden perturbation of the desorption probability Pd, it is
necessary to analyze the processes with the objects of the same size. In this paper we also study the response of two-
componentmixtures of extended objects (see, Table 1) to suddenperturbations of the desorption probability Pd.Wedid carry
out a detailed analysis of the contribution to the densification kinetics coming from each mixture component. Finally, we
study the nonequilibrium two-time density–density correlation function C(t, tw). We focus, in particular, on the influence
of symmetry properties of the shapes on the decay of C(t, tw) and aging effects. This work provides for the first time the link
between the short-term memory effects and intrinsic properties of the shapes.

Recently, we have analyzed the growth of the coverage θ(t) above the jamming limit to its steady-state value θ∞ within
the framework of the adsorption–desorption model of dimers in one dimension [32]. We reported a numerical evidence
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Table 1
Various shapes (x) of length ℓ(x)

= 2 on a triangular lattice. Here n(x)
s denotes the order of the symmetry axis

of the shape (x), s(x) is the object size, and θ
(x)
J is the jamming coverage. The numbers in parentheses are the

numerical values of the standard uncertainty of θ (x)
J referred to the last digits of the quoted value.

(x) Shape n(x)
s s(x) ℓ(x) θ

(x)
J

(A) 2 2 0.8362(4)
(B) 1 1.5 2 0.8345(5)
(C) 3 1 0.7970(4)

that the time needed for a system to reach the given coverage θ can be significantly reduced if Pd decreases both stepwise
and linearly (continuously) over a certain time domain. Based on the results in the present paper, one would expect that the
growth of the coverage in the case of the two-dimensional reversible RSA model can also be accelerated by decreasing the
desorption rate during the deposition process. However, our results indicate that the efficiency of this process depends on
the symmetry properties of the deposited objects. This must be taken into account when developing an optimal protocol
which significantly hastens the process for achieving high coverage densities.

The paper is organized as follows. Section 2 describes the details of the simulations. We give the simulation results and
discussions in Section 3. Finally, Section 4 contains some additional comments and final remarks.

2. Definition of the model and numerical simulation

The depositing shapes aremodeled by directed self-avoidingwalks on a triangular lattice. A self-avoiding shape of length
ℓ is a sequence of distinct vertices (ω0, . . . , ωl) such that each vertex is a nearest neighbor of its predecessor. Consequently, a
walk of length ℓ covers ℓ+1 lattice sites. On a triangular lattice objects with a symmetry axis of first, second, third, and sixth
order can be formed. Rotational symmetry of order ns, also called n-fold rotational symmetry, with respect to a particular
axis perpendicular to the triangular lattice, means that rotation by an angle of 2π/ns does not change the object. In Table 1
three different shapes that can be made by self-avoiding walks of length ℓ = 2 are shown. It should be noted that size s of
an object is taken as the greatest projection of the walk that makes the object on one of the six directions. Thus the size of
a dot is s = 0, the size of a one-step walk is s = 1, and for example the size of the second object (B) in Table 1 is s = 1.5 in
lattice spacing.

The Monte Carlo simulations are performed on a triangular lattice of size L2 = 120 × 120. At each Monte Carlo step
adsorption is attempted with probability Pa and desorption with probability Pd. In the simulations of deposition processes
with desorption, the kinetics is governed by the desorption to adsorption probability ratio Γ = Pd/Pa [33,34]. Since we are
interested in the ratio Γ , in order to save computer time, it is convenient to take the adsorption probability to be Pa = 1,
i.e., to try an adsorption at each Monte Carlo step.

We start with an initially empty triangular lattice. Adsorption and desorption processes perform simultaneously with
corresponding probabilities. For each of these processes, a lattice site is chosen at random. In the case of adsorption, we
attempt to place the object with the beginning at the selected site. If the selected site is unoccupied, one of the six possible
orientations is chosen at random and deposition of the object is tried in that direction. We fix the beginning of the walk
that makes the shape of length ℓ at the selected site and search whether all successive ℓ sites are unoccupied. If they are
empty, we occupy these ℓ + 1 sites and place the object. If, however, any of the ℓ sites are already occupied, the deposition
attempt is rejected and the configuration remains unchanged. This scheme is usually called conventional or standardmodel
of deposition. The other strategy to perform an RSA, where we check all possible directions from the selected site, is named
the end-on model [28]. On the other hand, if the attempted process is desorption and if the selected site is already occupied
by a previously adsorbed object, the object is removed with probability Pd from the layer.

Adsorption–desorption processes on discrete substrates display a surprisingly complex kinetics [9,35]. Here we consider
the case of rapid adsorption and slow desorption (Γ = Pd/Pa ≪ 1). Then there exist two time scales controlling the
evolution of the coverage θ(t). The first stage of the process is dominated by adsorption events and the kinetics displays an
RSA-like behavior. With the growth of the coverage the desorption process becomes more and more important. Increasing
the coverage over the jamming limit is possible only due to the collective rearrangement of the adsorbed particles in order
to open a hole large enough for the adsorption of an additional particle.We are interested in the approach to the equilibrium
coverage in this later, post-jamming time range.

Periodic boundary conditions are used in all directions. The time t is counted by the number of adsorption attempts and
scaled by the total number of lattice sites L2. The data are averaged over 103 independent runs for each shape and each
desorption probability. The finite-size effects, which are generally weak, can be neglected for object sizes <L/8 [36].

Furthermore, during the simulation of irreversible deposition we record the number of inaccessible sites in the lattice.
A site is inaccessible if it is occupied or it cannot be the beginning of the shape. The jamming limit θJ is reached when the
number of inaccessible sites is equal to the total number of lattice sites. Values of jamming coverages θ

(x)
J for three objects

(x) ∈ {(A), (B), (C)} of length ℓ = 2 are given in Table 1. Fig. 1 shows a typical snapshot configuration at coverage fraction
θ = 0.89 obtained in the case of Pd = 0.0045 for line-segments of length ℓ = 2 (object (A) from Table 1).
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Fig. 1. Snapshot of pattern formed during the reversible deposition of object (A) from Table 1 correspond to coverage fraction θ = 0.89, and Pd = 0.0045.
Nodes of the grid corresponding to the beginning of the walk that makes the shape are indicated by large open points. Empty nodes are marked with black
points. A lattice of size L2 = 60 × 60 is used.

3. Results and discussion

In order to analyze the response of the reversible RSAmodel to sudden perturbations of the desorption probability Pd, we
have carried out series ofMonte Carlo simulations for objects (A), (B), and (C), all of them starting from an empty lattice. The
system was evolved at a fixed desorption probability P (1)

d . At a certain time, tw , the value of the desorption probability P (1)
d

was instantaneously changed to another value P (2)
d . The variations of coverage θ(t) in the case of object (A), for three different

values of tw are reported in Fig. 2. It must be emphasized that the same kind of numerical experiments for objects (B) and
(C) produce qualitatively similar results for the time evolution of the coverage θ(t). First, in Fig. 2 we show the response of
the system to the desorption probability shift from P (1)

d = 0.0045 to P (2)
d = 0.0015 at the times tw = 139, 205, 307 needed

for a system to reach the coverages θw = 0.87, 0.88, 0.89, respectively, in the process of reversible RSA with P (1)
d = 0.0045.

As it can be seen, when P (1)
d > P (2)

d , the compaction rate of the perturbed system first increases on short-time scales. After
a transient, compaction slows down and the rate of compaction crosses over to the one observed at constant desorption
probability P (2)

d .
Fig. 2 also shows typical response of the system at short times after an abrupt change of the desorption probability

from P (1)
d = 0.0015 to P (2)

d = 0.0045 at the times tw = 304, 441, 639 needed for a system to reach the coverages
θw = 0.87, 0.88, 0.89, respectively, in the process of reversible RSA with P (1)

d = 0.0015. For P (1)
d < P (2)

d we find a short-
term response of the system opposite to the previous case. First, as the desorption probability is increased, one observes a
decompaction. Later on, the larger desorption probability P (2)

d begins to prevail and the compaction proceeds faster, at the
normal rate for constant P (2)

d . In addition, the comparison (not shown here) of the density relaxations θ(t) at various changes
in the desorption probability Pd indicates that the amplitude of the jump in the compaction rate is larger for larger jump of
the desorption probability ∆Pd = |P (2)

d − P (1)
d |. The probabilities of P (1)

d = 0.0015 and P (2)
d = 0.0045 are chosen to provide

a wide density range θ ∈ (0.86, 0.89) for all three objects where desorption probability can be abruptly changed. We have
verified that usage of different, but sufficiently small, values of desorption probabilities P (1)

d and P (2)
d gives quantitatively

similar results leading to qualitatively same phenomenology.
This shows that the system has some memory of its history at tw . Memory effect implies that the system can be found

in states, characterized by the same coverage fraction θ , that evolve differently under further reversible deposition with
the same desorption probability Pd [17]. This is illustrated in the inset of Fig. 2. The points M and N correspond to states
with equal coverage fraction θc = 0.8686, equal value of Pd = 0.0045, but different further evolution. Their responses to
the same desorption probability Pd are different: coveringM becomes looser whereas covering N pursues its compaction. In
other words, the density evolution θ(t) after the pointsM andN depends not only on the density θc , but also on the previous
tapping history. Thememory of the history up to the density θc is encoded in the arrangement of the objects in the covering.
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Fig. 2. Time evolution of the coverage θ(t) for object (A) when the desorption probability is changed from P (1)
d = 0.0045 to P (2)

d = 0.0015 (from
P (1)
d = 0.0015 to P (2)

d = 0.0045) at times tw = 139, 205, 307 (tw = 304, 441, 639) needed for the system to reach the coverages θw = 0.87, 0.88, 0.89,
respectively, in the process of reversible RSA with P (1)

d = 0.0045 (P (1)
d = 0.0015). Inset: Zoom up on the region around tw = 304 (θ(tw) = 0.87) when

the desorption probability switches from P (1)
d = 0.0015 to P (2)

d = 0.0045. The pointsM and N correspond to states with equal density θc = 0.8686, equal
value of P (2)

d = 0.0045, but different further evolution.

Interpretation of these results for all objects (A), (B), and (C) is quite straightforward using the results of Refs. [37,9,
34]. The compaction rate just before tw is determined by the desorption probability Pd(tw − 0) and by the fraction of the
substrate, Φ(tw − 0), that is available for the insertion of a new particle. The quantity Φ(tw − 0) (the insertion probability)
strongly depends on the state of the system, but it is not unambiguously determined by the coverage fraction θ(tw − 0) at
the same instant [9,10]. When Pd is abruptly lowered, the first effect is that the particles tend to decrease the fraction of
the substrate that is available for deposition of new particles, and the layer becomes more compact. Therefore the rate of
compaction first increases with respect to the unperturbed case. At larger times, however, the compaction is slowed down
by the creation of a denser substrate and smaller fraction of the layer that is available for the insertion of a new particle.

When the desorption probability Pd is suddenly increased at tw , the first effect is decompaction. On short-time scales,
the interplay between the insertion probability and desorption probability leads to the fast density changes. During this
transient stage the fraction of the substrate that is available for the insertion of a new particle is an increasing function
of time. After this transient interval, the adsorption events prevail, and the compaction proceeds faster. Growing of the
insertion probability, Φ(t), during the transient time, leads to the more efficient densification afterwards.

Here we focus our interest on the influence of the order of symmetry axis of the shape on the response of the reversible
RSA model to sudden perturbation of the desorption probability Pd. Consequently, we considered series of numerical
experiments where the short-term memory effects were analyzed for the three systems. In this set of experiments the
objects (A), (B), and (C) were deposited to the same density θw with desorption probability P (1)

d . After the density θw was
achieved, desorption probability Pd was switched from P (1)

d to P (2)
d (P (2)

d ≶ P (1)
d ). In Fig. 3 we show the time evolution of

the density θ(t) during the deposition of objects (A), (B), and (C), when the desorption probability Pd is changed from
P (1)
d = 0.0045 to P (2)

d = 0.0015. Here, the results for three different values of θw are reported, namely, 0.87, 0.88, and 0.89.
The time origin for each experiment has been taken at the timewhen the system reached the prescribed density θw . In Fig. 4
the same set of numerical experiments is carried out, with the only difference that in this case the desorption probability is
changed from P (1)

d = 0.0015 to P (2)
d = 0.0045. These simulations show that the short-time response to an instantaneous

change in desorption probability Pd strongly depends on the symmetry properties of the shapes. From Figs. 3 and 4, it follows
that the change in the compaction rate on short-time scales is less pronounced as order of symmetry axis of the shape ns
increases.

Qualitative interpretation of these results can be attained by exploiting themechanism of collective events for governing
the late-time changes in the coverage fraction (θ(t) > θJ). In the following, we restrict ourselves to the case of weak
desorption (large values of K = Pa/Pd), when the system of adsorbed particles evolves continuously toward an equilibrium
disordered state.When a value of θJ is reached, the rare desorption events are generally followed by immediate readsorption.
The total number of particles is not changed by these single particle events. Essentially, collective events are responsible for
the evolution of coverage fraction θ above the jamming limit θJ. The rearrangement of state corresponding to θ > θJ, to its
steady-state value θ∞, is dominated by the following two-particle processes:

(a) in one process (‘‘2 → 1’’), responsible for decreasing the number of deposited objects by 1, two adjacent objects leave
and a single one comes in their stead;
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Fig. 3. Time evolution of the coverage θ(t) for objects (A), (B), and (C) when the desorption probability is changed from P (1)
d = 0.0045 to P (2)

d = 0.0015
at the times tw needed for the system to reach the coverages θw = 0.87, 0.88, 0.89 in the process of reversible RSA with P (1)

d = 0.0045. The time origin
for each experiment has been taken at the time when the system reached the prescribed density θw .

Fig. 4. Time evolution of the coverage θ(t) for objects (A), (B), and (C) when the desorption probability is changed from P (1)
d = 0.0015 to P (2)

d = 0.0045
at the times tw needed for the system to reach the coverages θw = 0.87, 0.88, 0.89 in the process of reversible RSA with P (1)

d = 0.0015. The time origin
for each experiment has been taken at the time when the system reached the prescribed density θw .

(b) the opposite process (‘‘1 → 2’’) results in adding an extra object to the lattice: an object exits and leaves a space big
enough for two objects.

The rate of the ‘‘2 → 1’’ process has three contributions. First, an object must leave the lattice. Then, an adjacent objectmust
leave before the hole left by the first object fills. Finally, the big hole must be blocked by a badly sited object. In the opposite,
‘‘1 → 2’’ process, the void left by the object must be large enough for two objects. Note that the first incoming object must
park with a sufficient precision in order to leave enough space for the second object.

It is obvious that the process ‘‘1 → 2’’ has an overall rate proportional to Pd (Pd < 1). Since the process ‘‘2 → 1’’ includes
two consecutive desorption events, it is plausible that its overall rate is proportional to (Pd)2 < Pd < 1. That is the main
reasonwhy, for coverages that are not close to the steady-state value, the collective event ‘‘1 → 2’’ ismore frequent than the
opposite event ‘‘2 → 1’’. This regime persists until the coverage is very close to the equilibrium value. Since the coverage
fraction θ(t) increases and the available surface function Φ decreases, the overall rate at which the density increases is
progressively reduced. The efficiency of desorption relative to adsorption increases, and the process reaches a steady state
in which the rate of the ‘‘2 → 1’’ process is balanced by the ‘‘1 → 2’’ process.

Note that in Ref. Kolan et al. [24], the authors calculated the transition rates for the collective processes ‘‘1 � 2’’ in the
case of a 1D RSA model and found that these rates account for the additional slow time scales. Ghaskadvi and Dennin [11]
directly monitored the transition rates for the two-particle processes ‘‘1 � 2’’ as part of the simulation. They have directly
confirmed the importance of multiparticle transitions ‘‘1 � 2’’ for governing the late time behavior of the system.
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Fig. 5. Two-time density–density correlation function C(t, tw) for objects (a) (A), (b) (B), and (c) (C), as a function of t−tw . Thewaiting time tw corresponds
to the time needed for the system to reach the coverage θw = 0.88. The solid lines represent the temporal behavior of C(t, tw) obtained for the fixed
desorption probabilities Pd = 0.0015, 0.0045, as indicated in the legend. The dashed lines represent the temporal dependence of C(t, tw) obtained from
the runs during which an abrupt change of desorption probability P (1)

d = 0.0045 → P (2)
d = 0.0015 (P (1)

d = 0.0015 → P (2)
d = 0.0045) occurs at instant tw ,

as indicated in the legend.

Now we try to explain how the order of symmetry axis of the shape changes the dynamics of the collective processes.
Symmetry properties of the shapes have a significant influence on the filling of small isolated targets on the lattice. Indeed,
there is only a restricted number of possible orientations in which an object can reach a previously opened location,
provided the location is small enough. A shape with a symmetry axis of higher order has a greater number of possible
orientations for deposition into small isolated locations on the lattice, and therefore enhanced probability of single-particle
readsorption. This extends the mean waiting time between consecutive two-particle events ‘‘1 → 2’’, responsible for the
density growth above θJ, and causes a slowing down of the density growth. On the contrary, for the asymmetrical shapes
(angled objects) there is a greater probability for blocking the neighboring sites. The noticeable drop in the probability of
single-particle readsorption for the asymmetrical shapes is thus a clear consequence of the enhanced frustration of the
spatial adsorption. Therefore, desorption process effectively opens holes that are large enough for insertion of two or more
particles. This reduces the mean waiting time between consecutive multiparticle events which leads to more rapid growth
of the density. When Pd is abruptly lowered, such a different object view is the cause of the enhanced density growth in
the case of asymmetrical shapes as compared to those in the case of more round (symmetric) shapes. When the desorption
probability Pd is suddenly increased, decompaction rate of the perturbed system on short-time scales is larger for shapes
with a symmetry axis of lower order (Fig. 4). This is a consequence of the fact that unlike for the more symmetrical
objects, much less orientations are allowed for irregular and asymmetric shapes falling in the isolated selective target
spaces.

Below we try to further quantitatively characterize the out-of equilibrium dynamics in our system. Specifically, we
have evaluated the two-time density–density correlation function, C(t, tw), and qualitatively analyzed its dependence
on symmetry properties of the shapes. The normalized two-time density–density correlation function is defined as
follows,

C(t, tw) =
⟨θ(t)θ(tw)⟩ − ⟨θ(t)⟩ ⟨θ(tw)⟩

θ2(tw)

− ⟨θ(tw)⟩2

, t ≥ tw, (1)
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Fig. 6. Two-time density–density correlation function C(t, tw) for objects (A), (B), and (C), as a function of t − tw . The waiting times tw for each object
correspond to the time needed for the system to reach the coverages θw = 0.87, 0.88, 0.89 in the process of reversible RSA with Pd = 0.0015. The aging
behavior is evident. Inset: The correlation C(t, t0) as a function of the scaling variable α = ln[(t0 + ts)/τ ]/ ln[(t + ts)/τ ]. Fitting parameters are ts = 1760,
and τ(A) = 81, τ (B) = 210, τ (C) = 43.

Fig. 7. Shown here is the time dependence of the coverage fraction θ (B)+(C) for the mixture (B) + (C) and its components for two different values of
desorption probability, Pd = 0.0015, 0.0045. Black (red) and grey (light blue) lines represent the results obtained for Pd = 0.0045 and Pd = 0.0015,
respectively. The solid lines represent the temporal behavior of the coverage fraction θ (B)+(C)(t) (left-hand axis). The dashed and dotted lines are plotted
against the right-hand axis and give the coverage fraction versus time t of the component shapes (C), θ (C)(t) (dashed), and (B), θ (B)(t) (dotted). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where the angular brackets ⟨· · ·⟩ denote an average over independent runs. In order to obtain reasonable statistics, it is
necessary to average over many independent runs (typically 104). Out of equilibrium, C(t, tw) is a function of both times, t
and tw .

In Fig. 5 we show the behavior of the correlation function C(t, tw) for objects (A), (B), and (C). The waiting time tw
corresponds to the time needed for a system to reach the coverage θw = 0.88. Numerical simulations for other densities,
θw = 0.87, 0.89, produce qualitatively similar results for the time evolution of the correlation function C(t, tw). In each
plot of Fig. 5, the temporal dependence of C(t, tw) is displayed for the fixed desorption probabilities, Pd = 0.0015, 0.0045.
For comparison, we also show the temporal dependence of C(t, tw) calculated from 104 independent runs during which
an abrupt change of desorption probability P (1)

d = 0.0045 → P (2)
d = 0.0015 (P (1)

d = 0.0015 → P (2)
d = 0.0045) occurs

at instant tw . Correlation function obtained from the numerical simulation in which there is an instantaneous change of
desorption probability P (1)

d → P (2)
d , interpolates between two correlation functions calculated for constant desorption

probabilities P (1)
d and P (2)

d . At short times, this correlation function behaves as C(t, tw) obtained in the case when the
desorption probability has the constant value P (1)

d = 0.0045 (P (1)
d = 0.0015). However, its long time behavior is consistent

with the decay of C(t, tw) obtained in the casewhen the desorption probability has the constant value P (2)
d = 0.0015 (P (2)

d =

0.0045). By comparing the three panels in Fig. 5, it is obvious that global properties of the correlation function C(t, tw) of
the density fluctuations depend on the order of symmetry axis of the shape ns: as ns grows, the correlation decays slower. In
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Fig. 8. Snapshot of pattern formed during the reversible deposition ofmixture (B)+(C) ((B)-red, (C)-blue) fromTable 1 correspond to (a) coverage fraction
θ (B)+(C)

= 0.88, and (b) steady-state coverage θ
(B)+(C)
∞ = 0.9066. Nodes of the grid corresponding to the beginning of the walk that makes the shapes are

indicated by large open points. Empty nodes are marked with black points. A lattice of size L2 = 60 × 60 and Pd = 0.0045 are used. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

other words, longer memory of the initial state persists for the more symmetrical shapes. Indeed, the increase of the order
of symmetry of the shape enhances the rate of single particle readsorption. This extends the time needed for a system to
forget the initial configuration. However, the correlation curves do not differ qualitatively and they have similar shapes for
all objects.

It is well known that the aging properties of the system are characterized by specific scaling properties of C(t, tw). For
example, in the Tetris and Ising frustrated lattice gas models, it was found that the relaxation of C(t, tw) is given by the
form [38]:

C(t, tw) = (1 − c∞)
ln[(tw + ts)/τ ]

ln[(t + ts)/τ ]
+ c∞, (2)

where τ , ts and c∞ are fitting parameters. The above behavior is found in our model. In Fig. 6 we show the behavior of
the correlation function C(t, tw) for objects (A), (B), and (C), when Pd = 0.0015. The waiting times tw correspond to the
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Fig. 9. Time evolution of coverage fraction θ (B)+(C) for the mixture (B) + (C) when the desorption probability is changed from P (1)
d = 0.0045 to

P (2)
d = 0.0015 (from P (1)

d = 0.0015 to P (2)
d = 0.0045) at the time tw = 126 (tw = 182) needed for the system to reach the coverage θ (B)+(C)

w = 0.88, in the
process of reversible RSA with P (1)

d = 0.0045 (P (1)
d = 0.0015). The time origin for each experiment has been taken at the time when the system reached

the prescribed density θw .

time needed for a system to reach the coverages θw = 0.87, 0.88, 0.89. For all the shapes, the typical aging behavior
is observed: the larger tw , the longer memory of the initial state persists. The inset of Fig. 6 illustrates that when the
two-time correlation function C(t, tw) is plotted as a function of ln[(tw + ts)/τ ]/ ln[(t + ts)/τ ] the data for all three
objects collapse onto single curve. This figure clearly demonstrates the existence of the single universal master function.
It is interesting that the parameter ts is equal for all objects, ts = 1760. However, parameter τ depends on the shape:
τ(A) = 81, τ (B) = 210, τ (C) = 43. The shapes of higher order of symmetry ns have lower values of scaling parameter τ .

3.1. Memory effects in mixtures

In the following, we shall investigate the role that the mixture composition and the symmetry properties of component
shapes play in the deposition process. We shall mainly concentrate on the response of the reversible RSA model to sudden
perturbations of the desorption probability Pd in the case of binary mixtures, composed of the shapes of different rotational
symmetries but of the same number of segments.

Consider the two-component mixture of objects (B) and (C) with the symmetry axis of n(B)
s = 1 and n(C)

s = 3 order,
respectively. The reversible RSA process for a binary mixture is as follows. From a large reservoir of shapes, that contains
the shapes (B) and (C) with equal fractional concentrations, we choose one shape at random. We randomly select a lattice
site and try to deposit the chosen shape in the same manner as in the case of the reversible RSA of pure depositing objects.
Each adsorption attempt is followed by a desorption one with probability Pd. The quantity of interest is the fraction of total
lattice sites, θ (B)+(C)(t), covered by the deposited objects (B) and (C) at time t .

Fig. 7 shows the time dependence of the partial coverages θ (B)(t) and θ (C)(t) resulting from the reversible RSA of the
binary mixture of (B) and (C) shapes, for two values of desorption probability, Pd = 0.0045, 0.0015. For shape (C) of higher
order of symmetry n(C)

s = 3, the partial coverage θ (C)(t) is a monotonously increasing function of time and has the same
general features as the coverage θ (B)+(C)(t) for the mixture (B) + (C). On the other hand, for shape (B) of lower order of
symmetry n(B)

s = 1, the partial coverage θ (B)(t) is not monotonic in time. When the coverage θ (B)+(C)(t) approaches to
the coverage fraction that is equal to the jamming limit θ

(B)+(C)
J = 0.8624, the partial coverage θ (B)(t) reaches a broad

maximum. This is followed by a slow relaxation of θ (B)(t) to the smaller steady-state value θ
(B)
∞ . At late enough time, when

the coverage fraction is sufficient to make the geometry of the unoccupied sites complex, there is a strong dependence of
the adsorption rate on the adsorbed shape [28,15]. Then, both rotational symmetry of the shapes and desorption events
manage the single-particle readsorptions on the lattice and, eventually, allow replacements of the less symmetric particles
by the more symmetric ones. This is reflected in the gradual decrease of the coverage fraction with time for the shape with
the symmetry axis of lower order. Our results confirm that, for sufficiently high coverages of a mixture, the large times
coverage fraction of more symmetric shapes exceeds the coverage fraction of less symmetric ones [31]. The steady-state
value of the coverage fraction of the mixture components is always larger for the shapes with the symmetry axis of higher
order ns [31]. In Fig. 8 we compare the geometric status of the representative snapshots of patterns formed during the
reversible deposition of mixture (B) + (C). The snapshots are taken at the times tw needed for the system to reach (a) the
coverage θ (B)+(C)(tw) = 0.88, and (b) the steady-state coverage θ

(B)+(C)
∞ = 0.9066 in the process of reversible deposition

with Pd = 0.0045. In Fig. 8(a) the partial coverage of triangles (C) (θ (C)(tw) = 0.4375) is slightly smaller than that of angled
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Fig. 10. Shown here is the response of the mixture (B) + (C) to the desorption probability shift P (1)
d → P (2)

d . Black (red) lines represent the results
obtained for the abrupt change P (1)

d = 0.0045 → P (2)
d = 0.0015 at the time tw needed for the system to reach the coverage θ (B)+(C)

w = 0.88 in the process
of reversible RSA with P (1)

d = 0.0045. Grey (light blue) lines represent the results obtained for the abrupt change P (1)
d = 0.0015 → P (2)

d = 0.0045 at the
time tw needed for the system to reach the coverage θ (B)+(C)

w = 0.88 in the process of reversible RSA with P (1)
d = 0.0015. The solid lines represent the

temporal behavior of the coverage fraction θ (B)+(C)(t) (left-hand axis). The dashed and dotted lines are plotted against the right-hand axis and give the
coverage fraction versus time t of the component shapes (C), θ (C)(t) (dashed), and (B), θ (B)(t) (dotted). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Two-time density–density correlation function C(t, tw) for the mixture (B) + (C), as a function of t − tw . The waiting time tw corresponds to
the time needed for the system to reach the coverage θ (B)+(C)

w = 0.88. The solid lines represent the temporal behavior of C(t, tw) obtained for the fixed
desorption probabilities Pd = 0.0015 and 0.0045, as indicated in the legend. The dashed lines represent the temporal dependence of C(t, tw) obtained
from the runs during which an abrupt change of desorption probability P (1)

d = 0.0045 → P (2)
d = 0.0015 (P (1)

d = 0.0015 → P (2)
d = 0.0045) occurs at

instant tw , as indicated in the legend.

objects (B) (θ (B)(tw) = 0.4433). However, at the steady-state density θ
(B)+(C)
∞ = 0.9066 (Fig. 8(b)) the partial coverage

fraction is larger for the shape with symmetry axis of higher order, i.e. θ (C)
∞ = 0.5266 > θ

(B)
∞ = 0.3800.

Fig. 9 shows typical short-term memory effects after an abrupt change of the desorption probability Pd for the mixture
(B) + (C) and for pure component shapes, (B) and (C). Desorption probability Pd is switched from P (1)

d = 0.0045 to
P (2)
d = 0.0015 and vice-versa, at the time tw needed for a mixture to reach the coverage θw = 0.88. Again, we observe

that after several adsorption/desorption events the ‘‘anomalous’’ response ceases and there is a crossover to the ‘‘normal’’
behavior, with the relaxation rate becoming the same as in the constant forcing mode. However, it is interesting to note
that during this transient stage, the temporal evolution of the total coverage fraction θ (B)+(C)(t) is very similar to the one
observed for the shapewith the symmetry axis of lower order. Hence, the dynamics of the short-time response of themixture
(B) + (C) to sudden perturbation of the desorption probability Pd is usually determined by the shape (B) of lower order of
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Fig. 12. Two-time density–density correlation function C(t, tw) for objects (B), (C), and mixture (B) + (C), as a function of t − tw . The waiting time tw
corresponds to the time needed for the system to reach the coverage θw = 0.88when the desorption probability has the constant values (a) P (1)

d = 0.0045,
and (b) P (1)

d = 0.0015.

symmetry, n(B)
s = 1. Fig. 10 puts into evidence the temporal behavior of the partial coverage fraction for component shapes

(B) and (C) during the transient time. As in the case of pure lattice shapes, we observe that the change in the compaction
rate on short-time scales is less pronounced for the component shape of higher symmetry order.

In Fig. 11 we show the temporal dependence of C(t, tw) (see, Eq. (1)) for the mixture (B)+ (C), when the waiting time tw
corresponds to the time needed for a system to reach the coverage θ (B)+(C)

w = 0.88. Correlation function C(t, tw) is displayed
both for the fixed desorption probabilities, Pd = 0.0015, 0.0045, and for the cases with abrupt changes of desorption
probability P (1)

d = 0.0045 → P (2)
d = 0.0015, and P (1)

d = 0.0015 → P (2)
d = 0.0045 at instant tw . As for the pure lattice

shapes, correlation functions calculated for the mixture (B) + (C) in the case of perturbed systems (∆Pd = P (1)
d − P (2)

d ≶ 0)
interpolates between the two correlation functions obtained for the systems with constant desorption probabilities P (1)

d ,
and P (2)

d .
It is instructive to compare the temporal behavior of the correlation function C(t, tw) for the mixture with results for

C(t, tw) in the case of reversible deposition of pure component shapes. In Fig. 12 we show the time evolution of C(t, tw)
during the deposition of objects (B), (C), and themixture (B)+ (C), for the waiting time tw needed for a system to reach the
coverage θw = 0.88 when the desorption probability has the constant values P (1)

d = 0.0045 (Fig. 12(a)) and P (1)
d = 0.0015

(Fig. 12(b)). We can clearly see that for short times, C(t, tw) for themixture (B)+(C) decays in a similar way as for shape (B)
with the symmetry axis of lower order, n(B)

s = 1. This changes slightly at intermediate times, when the correlation function
C(t, tw) for the mixture starts to decay faster than the density correlations of component shapes. Hence, we observe the
weakening of correlation features in multicomponent systems.
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4. Conclusions

Along this paper, we have studied the nonequilibrium response of reversible RSA model to an instantaneous change in
the value of desorption probability Pd. We have performed extensive simulations of reversible deposition using objects of
different rotational symmetries on a triangular lattice. The shapes aremade by self-avoiding lattice steps. First, it was shown
that the change in the compaction rate has opposite sign than that of the modification of the desorption probability Pd, in
contrast with the long-time behavior, where the relaxation is faster for larger Pd. These results are in a qualitative agreement
with the observations in experiments on granular compaction [25]. Further, our numerical simulations have shown that
the short-time response to an instantaneous change in the desorption probability Pd strongly depends on the symmetry
properties of the shapes.We have found that the dynamical behavior is severely slowed downwith the increase of the order
of symmetry of the shape. When the desorption probability Pd is suddenly decreased/increased, compaction/decompaction
rate of the perturbed system on short-time scales is larger for shapes with symmetry axis of lower order. We have also
pointed out the importance of collective events for governing the short-time coverage behavior of shapes with different
rotational symmetry.

We have also considered the nonequilibrium two-time density–density correlation function C(t, tw). We have observed
that decay of the correlation function C(t, tw) depends on the order of symmetry axis of the shape ns. It was confirmed
that the density correlation decays slower for more symmetrical shapes. Eq. (2) states that, for the long enough times, the
correlation C(t, tw) is a function of the ratio ln(tw)/ ln(t). Such scaling behavior is in agreement with the Ising frustrated
lattice gas model and the Tetris model [38], but in contrast with the parking lot model [27], for which a t/tw behavior has
been observed.

Special attention has been paid to the mixtures containing objects of various shapes, but made of the same number of
segments. It was found that the dynamics of the short-time response of themixture to sudden perturbation of the desorption
probability Pd is determined by the shape of lower order of symmetry. In addition, our results confirm the weakening of
correlation features for the deposition processes in multicomponent systems.
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