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Abstract. We consider the percolation model with nucleation and simultaneous growth of multiple finite
clusters, taking the initial seed concentration p as a tunable parameter. Growing objects expand with
constant speed, filling the nodes of the triangular lattice according to rules that control their shape. As
growing objects of predefined shape, we consider needle-like objects and “wrapping” objects whose size
is gradually increased by wrapping the walks in several different ways, making triangles, rhombuses, and
hexagons. Growing random walk chains are also analyzed as an example of objects whose shape is formed
randomly during the growth. We compare the percolation properties and jamming densities of the systems
of various growing shapes for a wide range of initial seed densities p < 0.5. To gain a basic insight into
the structure of the jammed states, we consider the size distribution of deposited growing objects. The
presence of the most numerous and the largest growing objects is recorded for the system in the jamming
state. Our results suggest that at sufficiently low seed densities p, the way of the object growth has a
substantial influence on the percolation threshold. This influence weakens with increasing p and ceases

near the value of the site percolation threshold for monomers on the triangular lattice, p;, = 0.5.

1 Introduction

The formation of many physical systems can be

described by a growth process in which individual ele-
ments randomly join together to form an interconnected
network. Important examples include the gelation of
polymeric materials [1] and the growth of rough sur-
faces and disorderly interfaces via atomic chemisorp-
tion [2]. The most widely used model for such systems
is the standard site percolation model, in which each
site has a probability p (independent of the neighbor-
ing sites) of being designated as occupied or, equiva-
lently, a probability 1 — p of being designated as empty
[3]. Nearest-neighboring occupied sites form structures
called clusters. When the probability p exceeds a critical
value p., called the percolation threshold, a spanning
cluster occupying a finite fraction of the total number
of sites emerges. This infinite cluster corresponds, for
example, to a gel in gelation, or to a conduction path
through metallic atoms across a surface. The percola-
tion transition is a second-order phase transition and
can be characterized by well-defined critical exponents.
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More general percolation problems can be formulated
by including deposition of extended objects occupying
more than one site [4-8]. In random sequential adsorp-
tion (RSA) processes particles are randomly, sequen-
tially and irreversibly deposited on an initially empty
substrate or lattice with the restriction that they must
not overlap with previously added objects [9-12]. The
quantity of interest is the fraction of total lattice sites,
0(t), covered at time ¢ by the deposited objects. Due to
the blocking of the substrate area by the previously
adsorbed particles, at large times the coverage 6(t)
approaches the jammed-state value 05, where only gaps
too small to accommodate new particles are left in the
monolayer. Percolation assumes the existence of a large
cluster that reaches two opposite sides of the lattice
[3]. Consequently, 6(t) ranges from 0 to 6 for objects
occupying more than one site, so that interplay between
RSA and percolation should be considered [13-21]. In
Ref. [7] the results for the percolation thresholds, jam-
ming coverages and their ratios were given for the depo-
sition of extended objects on a triangular lattice. It was
found that for elongated shapes, the percolation thresh-
old monotonically decreases, while for more compact
shapes, it monotonically increases with the object size.
For various objects of the same length, the percolation
threshold of more compact objects exceeds the perco-
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lation threshold of the elongated ones. Such behavior
of the percolation threshold and jamming density as a
function of object length is based on simulations for
relatively short k-mers (up to & = 20). Perino et al.
[22] extended the work of Budinski-Petkovié¢ et al. [7]
to larger lattice sizes and longer k-mers (2 < k < 256
and 40 < L/k < 160). A nonmonotonic size depen-
dence was found for the percolation threshold, which
decreases for small objects sizes, goes through a min-
imum around k£ = 13, and finally increases for larger
segments. Furthermore, results suggest that percolation
is impossible if k exceeds approximately 10*. However,
Kondrat et al. [16] have refuted these claims and pre-
sented rigorous proof that each cluster in every jammed
configuration of fixed-length nonoverlapping horizontal
or vertical needles on a finite square lattice is a perco-
lating cluster. Slutskii et al. [17] have generalized this
theorem to the case of periodic boundary conditions.

Standard percolation usually deals with the problem
when the constitutive elements of the clusters are ran-
domly distributed. However, correlations cannot always
be ignored when, for example, percolation follows a par-
ticular direction along which activity can spread only
in one way. Several correlated percolation models such
as bootstrap percolation [23], directed percolation [24],
and spiral percolation [25] are studied extensively.

In the past two decades, it has become possible to
synthesize many classes of nanoscale building blocks
with controlled structure, size, and shape for appli-
cations in electronics, photonics, chemical engineer-
ing, medicine, etc. However, researchers must solve the
fundamental problem of how to use nanoscale blocks
to build functional structures or devices. Assembly of
building blocks for large-scale applications, therefore,
appears as fundamental problems of contemporary nan-
otechnology. Seeded growth has emerged as a com-
pelling method to create a wide variety of novel metal
nanostructures [26-28]. Seeded methods are outstand-
ing way to obtain high-quality nanocrystal samples
because structurally well-defined seeds can be selected
and serve as preferential platforms for deposition of
additional material [28-30].

We propose an artificial, but instructive model which
is able to reproduce the granular growth, from nucle-
ation to percolation and for different growing shapes.
This model can be regarded as a very simple pic-
ture of the size- and shape-controlled nano-particles
growth. Actually, we examine numerically a percolation
model with nucleation and simultaneous growth of mul-
tiple finite clusters, taking the initial seed concentra-
tion p as a tunable parameter [31-33]. However, growth
of islands is now deterministic rather than stochas-
tic. Objects expand with constant speed, incorporating
and filling the nodes of the triangular lattice according
to a predefined rules that determine their shape. As
growing objects of fixed shape, we consider needle-like
objects, and “wrapping” objects which size is gradu-
ally increased by wrapping the walks in several differ-
ent ways, making triangles, rhombuses and hexagons.
In addition, growing random walk chains are also ana-
lyzed as an example of objects whose shape is formed
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Table 1 Wrapping triangles, 7. The colors are associated
with different order ns of the symmetry axis

Shape (T}) j Ns 03
. 2 0.9141(3)
S 3 3 0.7970(4)
l 4 1 0.7741(4)
J.E\. 5 1 0.7605(4)
A 6 3 0.7211(5)
/l 7 1 0.6901(5)
zl 8 1 0.6993(5)
é 9 1 0.7101(4)
{:E 10 3 0.6816(6)
i"'} 11 1 0.6493(5)
5:5 . 12 1 0.6624(5)
f:éﬁ 13 1 0.6683(6)
{lgﬁ 14 1 0.6816(7)
A 15 3 0.6572(6)
i:gﬁ 16 1 0.6263(7)
é:gﬁ 17 1 0.6368(7)
2;;} 18 1 0.6445(6)
:é;gﬁ 19 1 0.6518(6)
fé;g} 20 1 0.6633(6)
/‘E:gﬁ 21 3 0.6406(8)
Cé:gﬁ 22 1 0.6119(8)
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Table 1 continued

Shape (7}) Vi N 0;

A 23 1 0.6197(9)
ééggﬁ 24 1 0.6286(8)
ggigﬁ 25 1 0.6323(8)
égigﬁ 26 1 0.6406(9)
gg:gé 27 1 0.6498(7)
ﬁg;gé 28 3 0.6286(7)
,ffgggé 29 1 0.6016(9)

A 30 1 0.6079(10)

A

For each shape, 6j is the jamming coverage. The numbers in
parentheses are the numerical values of the standard uncer-
tainty of 0 referred to the last digits of the quoted value

randomly during the growth. We compare the percola-
tion properties and jamming densities of the systems of
growing needle-like objects (k-mers), wrapping shapes,
and growing self-avoiding random walks for a wide
range of initial seed densities p. To gain a basic insight
into the structure of the jammed state, we consider the
size distribution of deposited growing objects. Length of
the most numerous and the length of the largest grow-
ing objects in the jamming coverages are also exam-
ined for whole range of initial seed densities p < 0.5.
The presented results suggest that at sufficiently low
seed densities p, the way of the object growth has a
substantial influence on the percolation threshold. This
influence weakens with increasing p and ceases near to
the value of the site percolation threshold for monomers
on the triangular lattice, pj = 0.5 [34].

The paper is organized as follows. Section 2 describes
the details of the model and the numerical simulations.
The results of the simulations for growing objects of
various shapes are given in Sect. 3. Finally, Sect. 4 con-
tains some additional comments and final remarks.
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Table 2 Wrapping rhombuses, R;. The colors are associ-
ated with different order ns of the symmetry axis

Shape (R;) J Ns 03
e 2 2 0.9141(3)
vy 3 1 0.8345(3)
o7 4 2 0.7591(4)
=7 5 1 0.7605(4)
Vg 6 2 0.7299(4)
X‘.t}‘ 7 1 0.7075(5)
é:? 8 1 0.6956(5)
&7‘ 9 2 0.6793(6)
AE 10 1 0.6706(6)
ﬁ 11 1 0.6885(5)
H 12 2 0.6716(6)
M 13 | 0.6506(7)
5/; 14 1 0.6531(6)
i,:.:?? 15 1 0.6463(6)
P 6oz oemo
Z? 17 1 0.6332(7)
@:7 18 1 0.6439(8)
@7 19 1 0.6549(7)
/2_27:7 20 2 0.6416(6)
/5:77 21 1 0.6224(8)
[A_:,:jy 22 1 0.6258(8)
[5:77 23 1 0.6254(7)
E 24 1 0.6226(7)
/dg? 25 2 0.6220(7)
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Table 2 continued
Shape (R;) J N 0;

@ 27 1 0.6199(9)
@ 28 1 0.6260(9)
@ 29 1 0.6349(10)
@ 30 2 0.6236(9)

For each shape, 0; is the jamming coverage. The numbers in
parentheses are the numerical values of the standard uncer-
tainty of 0; referred to the last digits of the quoted value

2 Definition of the model and the
simulation method

The model is developed on a triangular lattice of size
L in two dimensions (2D) with periodic boundary con-
ditions. The lattice is initially and randomly occupied
by point-like seeds at given concentration p less than
~ 0.5. This concentration is defined as a fraction of
sites of the lattice that are occupied by seeds. For each
seed, a grain, composed by self-avoiding lattice steps,
grows. Note that there are multiple growth centers from
which finite clusters grow simultaneously.

The growing objects are modeled by self-avoiding
steps on the planar triangular lattice. A self-avoiding
shape of length ¢ is a sequence of distinct vertices
(wo, - - - ,w;) such that each vertex is a nearest neighbor
of its predecessor, i.e., a walk of length £ covers j = £+1
lattice sites. We consider three different types of grow-
ing shapes: needle-like objects, random walk chains,
and wrapping shapes. Needle-like shapes are k-mers of
length ¢ = k — 1. Chains are formed by self-avoiding
random walks (SARW), which are generated under the
simple constraint that step ¢ + 1 cannot return to the
location of the walk at step 7. The wrapping shapes are
made by self-avoiding lattice steps in a specific manner.
Starting from a monomer (¢ = 0), size of the objects
is gradually increased by wrapping the walks in several
different ways. Formation of wrapping triangles T} is
shown in Table 1. In a similar way, rhombuses R; and
hexagons H; of larger sizes are obtained by wrapping as
shown in Tables 2 and 3 , respectively. In this manner,
wrapping objects of larger sizes occupy all comprised
sites on the lattice.

The initial state of the system is prepared through
the random sequential adsorption model (RSA) of seeds
in two dimensions. For this purpose, we perform the
Monte Carlo procedure of filling the triangular lattice
by inserting the monomers randomly, up to the chosen
coverage fraction p. In this way, we are able to prepare
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Table 3 Wrapping hexagons, H;. The colors are associated
with different order ns of the symmetry axis

Shape (H;) Jj Ns 03
/ 2 2 0.9141(3)
z. 3 3 0.7970(4)
27 4 2 0.7591(4)
.Z> 5 1 0.7605(4)
Z} 6 1 0.7347(4)
@ 7 6 0.6696(5)
f.’} 8 1 0.6923(5)
@ 9 1 0.6857(5)
@ 10 2 0.6813(4)
@ 11 1 0.6665(6)
@ 12 3 0.6508(5)
@ 13 1 0.6431(5)
@ 14 2 0.6457(6)
CL}} 15 1 0.6433(7)
é}} 16 1 0.6623(6)
é}} 17 1 0.6472(6)
@ 18 1 0.6367(7)
@ 19 6 0.6148(6)
@ 20 1 0.6163(7)
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Table 3 continued
(Hj) J Ns 0y

2]
=
o
=}
@

@ 21 1 0.6352(6)
@ 22 1 0.6265(8)
@ 23 1 0.6293(8)
@ 24 2 0.6327(9)
@ 25 1 0.6204(8)
@ 26 1 0.6190(10)
@ 27 3 0.6136(9)
@ 28 1 0.6057(10)
@ 29 1 0.6099(10)
@ 30 2 0.6119(12)

For each shape, 0; is the jamming coverage. The numbers in
parentheses are the numerical values of the standard uncer-
tainty of 0; referred to the last digits of the quoted value

the system in disordered initial state with a statistically
reproducible density p. Then, for each initially prepared
configuration, we switch the deposition events off and
initiate a random growing processes in our system.

At each Monte Carlo step, a lattice site occupied by a
seed is selected at random. The first segment of a grow-
ing object is formed by randomly selecting an adjacent
node that is not occupied by another seed or object.
We allow only the single step object growth that do not
cause a double occupation at any site. If the selected
seed is the beginning of a non-zero length object, only
the last point of the corresponding self-avoiding walk
is active for further growth. In the case of needle-like
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Table 4 The jamming coverages 0; and the percolation
thresholds 6 for k-mers of different lengths £ =k — 1

k-mer V4 05 05
. 0 1 0.5000(1)
— 1 0.9141(3) 0.4867(1)
— 2 0.8362(4) 0.4628(3)
—— . 3 0.7891(6) 0.4432(2)
———. 4 0.7584(7) 0.4299(4)
———— . 5 0.7370(9) 0.4206(5)
6 0.7212(11) 0.4145(6)
7 0.7089(12) 0.4124(6)

The numbers in parentheses are the numerical values of the
standard uncertainty of 8; and 6}, referred to the last digits
of the quoted value

shapes, the chosen k-mer (kK > 1) grows in direction
of the first step in the formation of the shape on the
lattice. If the corresponding adjacent site is not empty,
the attempted k-mer elongation is not possible and the
object remains unchanged. In the case of random walk
chains, the object growth depends on the occupancy
of the first neighbors of the last point of the walk. If
there are no empty nearest neighbors of the ending site
of the walk, the chosen chain does not change. If the
ending site has empty adjacent sites, the selected chain
randomly extends into one of them. Growing of wrap-
ping triangles, rhombuses and hexagons depends in the
same way on the occupancy of the first neighbors of the
ending site, but the rules of their growth are illustrated
in the Tables 1, 2 and 3 , respectively.

During the growth of the objects, if two objects come
in contact, i.e., are found to be separated by a single
lattice spacing, they are merged into a single cluster.
During the growth of these clusters, two clusters may
come in contact. Two clusters with occupied perimeter
sites separated by a single lattice spacing is amalga-
mated to be a single cluster. Consequently, the cover-
age of the lattice is increased in the process up to the
percolation threshold 6, when there appears a cluster
that extends through the whole system. We say that a
percolating cluster arises in the system when the oppo-
site edges of the system are connected via some path
of nearest neighbor sites occupied by the particles. The
tree-based union/find algorithm was used to determine
the percolation threshold 6, [35].

Another quantity of interest is the jamming coverage
0;. In standard lattice RSA problems jamming cover-
age 0y is reached when no more objects can be placed
in any position on the lattice [36,37]. The jamming
density values corresponding to the random deposition
of triangles, rhombuses and hexagons are given in the
Tables 1, 2 and 3 , respectively. In the present case, jam-
ming limit €y is reached when no more growing objects
can be increased in any necessary direction on the lat-
tice. Additionally, in Table 4 we show the jamming cov-
erages 0 and the percolation thresholds 67 for k-mers
of different lengths £ = k —1 = 0,...,7 [34]. These
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Fig. 1 Finite-size scaling of the effective percolation threshold 6, against L~/* with v = 4/3 for (a) growing needle-like
objects, and (b) growing random walk chains, for various values of the initial seed densities 0.05 < p < 0.49

*

values are in a very good agreement with the results  olds for the infinitely large lattice 67 are obtained using
published in [22]. the usual finite-size scaling analysis of the percolation
behavior on two-dimensional lattices [3]. In such sys-
tems, one assumes that the effective percolation thresh-
old 6, (the mean value of threshold measured for a finite

3 Results and discussion lattice) approaches the asymptotic value 6, — ¢ for
L — oo via the power law:

Percolation thresholds and jamming densities are
obtained for growing objects for a wide range of initial
seed densities p < 0.5. Values of the percolation thresh- Op — 0, L=, (1)
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Here, the constant v is the critical exponent that gov-
erns the divergence of the correlation length as &
— 0%|7¥. It should be noticed that the universality
class ofP random percolation in two dimensions is very
well identified and the critical exponents are known
exactly, namely, v = 4/3 [3]. The latter relationship
allows us to extrapolate the threshold for an infinite
system, L — oo. Simulations were performed for lat-
tices of various sizes ranging from L = 40 to L = 3200
and the data are averaged over 500 independent runs
for each lattice size.
Plotting the mean value 6, of the threshold for vari-

ous lattice sizes against L~/%, we confirm the validity
of the finite-size scaling in the system and determine
the asymptotic value of the percolation threshold 67.
Finite-size scaling of the lattice threshold 6, against

L~Y" (v = 4/3) for needle-like objects and random
walk chains is illustrated in Fig. la,b, respectively, for
various initial seed densities 0.05 < p < 0.49.

In Fig. 2, we show the typical snapshot configurations
at (a) the beginning of the process (§ = p = 0.35),
(b) percolation threshold (6 = 6), and (c) jamming
state (§ = 0;), obtained for wrapping triangles. The
snapshots of size AL? = 322 are taken from the central
part of the lattice. The colors of the lattice nodes are
determined by the size of the growing object in them.

Dependence of the percolation threshold 67 on the
initial seed (monomer) density p is shown in Fig. 3 for
growing needle-like objects (k-mers) and growing ran-
dom walk chains. In both cases, the percolation thresh-
old #; grows monotonically for sufficiently low values of
initial seed density p. At low values of initial monomer
densities objects have enough space to grow, surface
is porous, and the percolation threshold 67 is reached
at low values of the coverage. Higher initial monomer
density suppresses the object growth. As the seed den-
sity increases, the contribution of small objects in the
coverage increases and the percolation threshold 607 is
reached at higher coverages. Percolation thresholds 67
for the growing random walks chains are higher than
those for the growing needle-like objects, especially at
low seed densities. During the object growth, the ran-
dom walk chains cover the surface more efficiently than
k-mers and the percolation occurs at higher coverage
values. It is interesting that the percolation threshold 67
after growth at lower density values p, reaches a broad
maximum, and slightly falls for larger p, as shown in
the inset of Fig. 3. Indeed, at sufficiently high initial
seed densities p, slight growth of objects is sufficient
for their connection and efficient propagation of clus-
ters. At densities p close to the percolation threshold
for monomers (p;, = 0.5), the growth of objects up to
the short k-mers (e.g., dimers or 3-mers) can ensure the
formation of a percolation cluster. This is the reason for
the small difference in percolation thresholds between
the growing needle-like objects and the growing ran-
dom walk chains when the density of the seeds is close
to pj, = 0.5.

Values of the jamming coverage €5 are shown in Fig. 4
for the growing needle-like objects and the growing ran-
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Fig. 2 Typical configurations of wrapping triangles at (a)
0 =p, (b) 8 =65, and (c) § = 0y obtained for initial seed
(monomer) density p = 0.35. The snapshots are taken from
the central part of the packings. Colormap “blue—purple—
pink-red” corresponds to the size distribution of growing
objects, from the smaller to the larger ones
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Fig. 3 Dependence of the percolation threshold 6 on the initial seed density p for growing needle-like objects (black
symbols) and growing random walk chains (red symbols). The inset shows an enlarged part of this graph that displays a

non-monotonic behavior
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Fig. 4 Dependence of the jamming density 05 on the initial seed density p for growing needle-like objects (black symbols)

and growing random walk chains (red symbols)

dom walk chains. Jamming coverage 65 grows with the
initial seed density p for both ways of the object growth.
Growing self-avoiding random walks cover the surface
more efficiently than the growing k-mers so that 65 has
higher values for the first one, for all investigated seed
densities p.

To gain a basic insight into the structure of coverings
generated by the process of the object growth, we first
consider the number of deposited k-mers N(k), k > 1,

@ Springer

normalized by the initial number of seeds Ny. Depen-
dence of the ratio N(k)/Ny on the object length ¢ =
k — 1 for the system in the jamming state is shown in
Fig. 5 for various values of the seed density p. For all
presented initial seed densities p > 0.1, maximum of
the ratio N(k)/Ny is for the length equal unity, i.e.,
dimers are the most numerous objects in the deposit
at the jamming coverage. Only for the very low initial
monomer densities, such as p = 0.01 and p = 0.05,
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Fig. 5 Dependence of the normalized number of deposited k-mers N(k)/No, k > 1 on the object length £ = k — 1, for the
system in the jamming state. Curves are given for various values of seed density p, as indicated in the legend. Here, Ny is

initial number of seeds at given density p
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Fig. 6 Dependence of the normalized number of growing random walk chains N (£)/No on the walk length ¢ = k — 1, for
the system in the jamming state. Curves are given for various values of seed density p, as indicated in the legend. Here, Ny

is initial number of seeds at given density p

longer k-mers prevail in the jamming configuration. In
Fig. 6, normalized number N (¢)/Ny of the growing ran-
dom walk chains wvs. their length ¢, for various values of
the initial seed densities p is presented. For the highest
seed densities p, most of the initial monomers do not
even start their growth, they are followed in number by
walks cowering two lattice sites, and the ratio N (¢)/Ny

decreases with the length ¢ of the self-avoiding random
walks. At the initial monomer densities between p = 0.3
and p = 0.46 maximum of the ratio N(¢)/Ny is reached
by the walks cowering two lattice sites. Furthermore,
for lower initial monomer densities, this maximum is
shifted towards longer self-avoiding random walks.
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represent the standard deviation

Length ¢ of the most numerous growing object in
the jamming coverages depends on the initial seed den-
sity p. These dependencies for the cases of the growing
needle-like objects and the growing random walk chains
are given in Fig. 7. It can be seen that for values of the
initial seed densities over p = 0.1 the most numerous
growing k-mers are dimers. However, at very low val-
ues of p, the most numerous k-mers appear to be longer
since k-mers have more space for growth. At low initial

@ Springer

monomer densities p, the growing random walk chains
can reach larger lengths than the k-mers. The difference
in the length of the most numerous objects between
the k-mers and the random walk chains decreases with
p. For 0.3 < p < 0.46, the most numerous random
walk chains are covering two lattice sites (¢ = 1). For
larger values of p > 0.46, the most numerous objects
are monomers (¢ = 0) because a large part of seeds
cannot start their growth at such high densities.
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Table 5 Values of the jamming coverages 65 and the per-
colation thresholds 6}, for compact triangles T}, rhombuses
R;, and hexagons H; of larger sizes

(z5) Shape 03 0,
(Ts) A 0.7970(4) 0.5214(9)
(Ts) i 0.7211(5) 0.5524(14)
(To) é 0.6816(6) 0.5789(15)
(Tis) ... 0.6572(6) 0.6003(15)
(T21) . 0.6406(8) /
(T2s) . 0.6286(7) /
(Ra) 7 0.7591(4) 0.5393(12)
(Ro) 5 0.6793(6) 0.5793(14)
(Ri1s) .. 0.6428(7) /
(Ras) ... 0.6220(7) /
(Hq) 6 0.6696(5) 0.5843(13)
(H1o) 0.6148(6) /
(Hs7) C .. 0.5942(8) /

For larger sizes of compact objects a no-percolation regime
is observed. The numbers in parentheses are the numerical
values of the standard uncertainty of ;5 and 6} referred to
the last digits of the quoted value

Figure 8 shows the dependences of the length ¢, of
the largest growing objects in the jamming coverages on
the initial seed density p. These dependencies are given
for the cases of growing needle-like objects and growing
random walk chains. Due to the flexibility of the self-
avoiding random walks, for all initial monomer densities
p, the growing random walk chains can reach larger
lengths than the growing k-mers. This difference is most
pronounced for the lowest values of p and decreases with
increasing initial monomer density p.

Simulations are also performed for the wrapping tri-
angles, thombuses and hexagons shown in Tables 1-3.
In Table 5, we show the values for the jamming den-
sity 65 and the percolation threshold 67 for several
regular triangles, rhombuses, and hexagons of various
sizes. Interestingly, compact objects of larger sizes can
show a no-percolating behavior on the triangular lat-
tice [7,8,38]. In Table 5, we present only the perco-
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lation thresholds for the objects for which percolation
was reached in all N = 500 runs on the largest lattice
used in the finite-size scaling analysis (L = 3200). This
effect is most pronounced for hexagons for which no
percolation was found for the objects larger than the
basic ones. Our results are in a good agreement with
the results presented in reference [5], where the maxi-
mal length for which the most bent particles percolate
is @ = 13; while for the not fully bent particles, the
maximal length is about a = 22. The absence of perco-
lation has also been reported in the studies of RSA of
large rectangular particles [39], squares [40], and bent
particles [5] on a square lattice.

Finite-size scaling of the percolation threshold 6,
against L~Y", with v = 4/3, is illustrated in Fig. 9 for
the growing triangles, rhombuses and hexagons. Results
are presented for various initial seed densities ranging
from p = 0.15 to p = 0.49. Values of the percolation
thresholds 7 obtained by the extrapolation for an infi-
nite lattice (L — oo) are presented in Fig. 10. We can
see that the dependence of 67 on the initial seed density
p differs significantly for these three ways of the object
growth, especially for lower densities p. At lower den-
sities, objects can reach larger sizes and the diversity
of shapes has a significant influence on making bonds
leading to percolation. At high seed densities p, a great
majority of objects are small with few shape variations,
and the percolation thresholds have similar values for
different types of wrapping shapes.

Values of the jamming coverages 65 for wrapping tri-
angles, rhombuses and hexagons vs. the seed density p
are shown in Fig. 11. It is interesting to note that these
jamming coverages differ only slightly for different ways
of the object growth. This can be explained by the fact
that the small empty regions in the finale stages of the
process are filled with the smallest objects.

Figure 12 shows the dependences of the length £y,
of the largest wrapping objects in the jamming cover-
ages on the initial seed density p. For low values of the
seed density p, the largest wrapping triangles, rhom-
buses and hexagons can reach rather large sizes at jam-
ming density ;5. The number of sites ¢;,,x covered by
the largest growing object in the jamming configuration
decreases with the initial monomer density p.

4 Concluding remarks

Jamming and percolation of growing objects was inves-
tigated for needle-like objects, random walk chains and
wrapping shapes—triangles, rhombuses and hexagons.
Simulations were performed for initial states of various
initial seed densities p < 0.5.

Jamming coverage 6 increases with the initial seed
density p for all examined ways of the object growth.
Comparing the growing needle-like objects and the ran-
dom walk chains, jamming densities 65 has larger values
for the latter ones for all initial seed densities. Values
of the jamming coverages 6; for the wrapping triangles,
rhombuses and hexagons differ only slightly for differ-
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ent ways of the object growth. It is interesting to note
that 0; of the wrapping objects is lower than 6; of the
needle-like objects at low seed densities, and it is even
higher than 85 of the random walk chains for very high
values of p. At higher seed densities p, the most numer-
ous objects in the jamming configurations are dimers,
and even monomers. Longer objects prevail at lower
initial densities.

For the growing needle-like objects and the grow-
ing random walk chains, the percolation threshold 6
increases with p for lower values of the initial seed den-
sity, reaches a broad maximum, and slightly falls for
higher values of p. The growing random walk chains
cover the surface more efficiently than the needle-like
objects and percolation is reached at higher coverages
for the random walk chains.
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Dependence of the percolation threshold 67 on the
initial seed density p differs significantly for the growing
triangles, rhombuses, and hexagons. For the growing
hexagons, ) decreases monotonically with p, while for
the growing triangles and rhombuses decreases, reaches
a minimum, increases, reaches a maximum and falls
again for high values of p. The difference is most signif-
icant for lower initial seed densities, when the growing
objects can reach larger sizes with larger influence on
percolation.

All presented results suggest that the percolation
threshold is most affected by the way of the object
growth at low seed concentrations. This influence ceases
when the value of p tends to the percolation threshold
for monomers.
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