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Abstract. A percolation model with nucleation and object growth is stud-
ied by Monte Carlo simulations on a triangular lattice with finite-size impurit-
ies. The growing objects are needle-like objects and self-avoiding random walk
chains. Results are obtained for three different shapes of impurities covering
three lattice sites—needle-like, angled and triangular. In each run through the
system, the lattice is initially randomly occupied by impurities of a specified
shape at a given concentration ρimp. Then, the seeds for the object growth are
randomly distributed at a given concentration ρ. The percolation and jamming
properties of the growing objects are compared for the three different impurity
shapes. For all the impurity shapes, the percolation thresholds θ*p have lower val-
ues in the growing needle-like objects than in the growing self-avoiding random
walk chains. In the presence of needle-like and angled impurities, the percolation
threshold increases with the impurity concentration for a fixed seed density. The
percolation thresholds have the highest values in the needle-like impurities, and
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somewhat lower values in the angled impurities. On the other hand, in the pres-
ence of the triangular impurities, the percolation threshold decreases with the
concentration of impurities.
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1. Introduction

Nanoparticles and other low-dimensional nanostructures are the subject of great sci-
entific interest, significantly influencing technologically important and health-relevant
areas. Nanotechnology has contributed to nanocatalysis [1–3], electronics [4], photon-
ics [5], information storage [6], imaging [7] and various biomedical applications [8–10].
The properties of nanoparticles are related to their size and shape. One can fine-tune
nanoparticles’ photochemical, catalytic, magnetic and electronic properties by con-
trolling these structural characteristics. In fact, there are many factors that influence
the outcome of the nanoparticle growth process, such as size [11], temperature [12],
chemical environment and addition of surfactants/capping agents [13]. Seeded growth
has emerged as a compelling method to create a wide variety of nanocrystal samples [14–
18]. Random sequential adsorption (RSA) on a lattice is often used as a basic model
for describing particle growth by aggregation [19].

RSA is a process in which particles of different shapes and sizes are constantly trying
to attach themselves to a random location on a surface. If the incoming particle does
not overlap any previously attached particles, then it binds irreversibly. A quantity
of central interest is the fraction of the total area covered by the depositing particles
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θ(t). Because of the blocking effect by the already deposited particles of the substrate
available for deposition of additional particles, the limiting value θJ is less than the
close packing [20–22]. The formation of the limiting jammed state is governed by the
infinite memory correlation effects, due to the absence of relaxation.

During the process of RSA, the number of deposited objects on the substrate
increases so that they form clusters. A cluster is a group of occupied sites in such a
way that each site has at least one occupied nearest-neighbor site. Percolation assumes
the existence of a large cluster that extends from one side to the opposite side of the
system. Basically, percolation theory is based on finding the minimum coverage fraction
for which a complete path of adjacent sites crossing the entire system becomes possible.
This value of the fraction of the total area is called the effective percolation threshold
θp. The formation of long-range connectivity in disordered systems attracts considerable
interest due to its applications in numerous practical problems, such as conductivity
in composite materials, flow through porous media, polymerization, gelation and the
behavior of scale-free random networks [23–29].

Recently, we proposed an artificial but instructive model, which is able to reproduce
the granular growth, from nucleation to percolation, and for different growing shapes
on a triangular lattice [30, 31]. This model can be regarded as a very simple picture of
the size- and shape-controlled nanoparticles’ growth. In fact, we numerically examined
a percolation model with nucleation and simultaneous growth of multiple finite clusters,
taking the initial seed concentration ρ as a tunable parameter [18, 32, 33]. As growing
objects of predefined shape, we considered needle-like objects, random walk chains and
‘wrapping’ objects, whose size is gradually increased by wrapping the walks in several
different ways, making triangles, rhombuses and hexagons. For the growing needle-like
objects and the growing random walk chains, the percolation threshold θ*p increases
with the seed density ρ for lower values of ρ, reaches a broad maximum and slightly
falls for higher values of the seed density. The growing random walk chains cover the
surface more efficiently than the needle-like objects, and percolation is reached at higher
coverages in the growing random walk chains. The percolation threshold is most affected
by the way the object grows at low seed concentrations.

When modeling real deposition processes, one often has to consider some contamina-
tions (impurities) that disturb the deposition of primary particles and introduce disorder
into the system. The surfaces may be chemically heterogeneous and contain defects [34],
or may be prepatterned [35]. Cornette et al [36, 37] numerically investigated both the
bond and the site percolation problems for linear k -mers and self-avoiding walks in
the presence of impurities. The contaminated lattice was built by randomly selecting a
fraction of bonds or sites that were considered forbidden for deposition. This research
suggested that the concentration of impurities at which percolation becomes impossible
decreases rapidly with increasing values of k. Centers and Ramirez-Pastor [38] investig-
ated a similar system and reported that for each fixed value of k, percolation can occur
when a fraction of imperfect bonds is smaller than the critical concentration of defects.

Tarashevich et al [39, 40] studied the influence of defects on the behavior of electrical
conductivity in a monolayer produced by the isotropic and anisotropic deposition of
k -mers onto a square lattice. Two kinds of defects were taken into consideration. In
the first one, it was assumed that nonconducting point defects initially occupied some
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fractions of the sites, and in the second one, some fractions of the sites in the k -mers
were nonconducting. Calculation of the electrical conductivities explicitly confirmed
that even a very small concentration of defects has a strong impact on the electrical
conductivity. Above some critical concentrations of defects, percolation was found to be
blocked, even at the jamming limit.

The percolation properties of the deposition process on a triangular lattice with
extended impurities were studied in [41]. For needle-like impurities of various lengths
ℓ at various concentrations p, the percolation threshold θ*p was determined for k -mers,
angled objects and triangles of two different sizes. For sufficiently large impurities,
the percolation threshold θ*p of all examined objects was found to increase with the
concentration p, and this increase was more prominent for impurities of larger length ℓ.

Irreversible deposition of two types of objects, linear k -mers and self-avoiding ran-
dom walks (SARWs), covering k lattice sites was simulated on a square lattice with
randomly distributed impurities [42]. The lattice was considered ‘contaminated’ with
impurities in a fraction c (0⩽ c < 1). For all examined objects, linear k -mers and
SARWs, the jamming coverage θJ decreases as the concentration of impurities increases
for a fixed object length. Also, θJ is found to be a monotonic decreasing function of k
for a fixed value of c. SARWs, for a given k and c, give higher jamming coverages than
the linear k -mers.

Here, we present the results of Monte Carlo simulations of the seed growth on sur-
faces with impurities of various shapes on a triangular lattice. We consider three different
shapes of impurities covering three lattice sites—needle-like, angled and triangular. We
compare the results of the percolation thresholds and jamming coverages for growing
needle-like objects and growing random walk chains. The aim of this work is to invest-
igate how seed growth and the deposit formation are affected by the shape of defects
present in the lattice.

The paper is organized as follows. Section 2 describes the details of the model and the
simulations. The results and discussions are given in section 3, while section 4 contains
some additional comments and final remarks.

2. Definition of the model

The substrate for the object growth is a two-dimensional (2D) triangular lattice of size L
with finite-size impurities of various shapes. Namely, there is a finite number of different
shapes that can be made by SARWs of length ℓ, and such shapes are given in table 1 for
ℓ= 1 and ℓ= 2. The impurities are of needle-like, angled and triangular shapes, covering
three lattice sites—objects (B), (C) and (D) in table 1. In each run through the system,
the lattice is initially randomly occupied by needle-like, angled or triangular impurities
at a given concentration ρimp, and by the monomer seeds for the object growth randomly
distributed at a given concentration ρ. Both of these distributions are obtained via the
RSA process. The concentrations ρimp and ρ are defined as fractions of the lattice sites
occupied by impurities and seeds, respectively.

After the initial configuration is prepared, a random growing process is initiated in
the system. Two kinds of growing objects are considered: needle-like shapes (k -mers)
of length ℓ= k− 1, and the shapes made by SARW chains.
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Table 1. Various shapes made by self-avoiding walks of length ℓ= 1 and ℓ= 2. The
number of nearest neighbors is denoted by m(x) for the corresponding shape, and
ℓ denotes the length of the walk that makes the shape.

(x) Shape m(x) ℓ(x)

(A) 8 1

(B) 10

(C) 10 2

(D) 9

At each Monte Carlo step, a lattice site occupied by a seed is selected at random.
Then, an unoccupied adjacent site is selected at random according to the rules for the
object growth—the needle-like objects or the SARW chains, as shown in figure 1. In
the needle-like shapes, the chosen k -mer extends in the direction of the first step in
the formation of the depositing object. For illustration, the possible growth directions
of individual seeds are shown by red dashed lines in figure 1(a). If the corresponding
adjacent site is occupied by an impurity or by the previously deposited object, the
attempted k -mer growth is not possible and the object remains unchanged. In random
walk chains, the selected chain randomly extends into one of the empty nearest-neighbor
sites. Examples of the growth of some random chains are illustrated in figure 1(b), where
the red dashed lines represent the possible directions of the growth in the next Monte
Carlo step. If all nearest-neighbor sites are occupied, the chosen chain does not change.

Growth of the objects leads to the contact of two objects when they are separated by
a single lattice spacing. Then, they are merged into a single cluster. During the growth of
these clusters, two clusters may come into contact. Two clusters separated by a single
lattice spacing are amalgamated into a single cluster. The coverage of the surface is
increased in the process up to the percolation threshold θp, when a cluster that extends
through the whole system appears. Conventional boundary conditions (percolation on
a torus) have been used throughout the paper without loss of generality, i.e. sites on an
open border are connected to corresponding sites on the opposite border. A tree-based
union and find algorithm was used to determine the percolation threshold [43]. Each
cluster of connected sites is stored as a separate tree, with a single ‘root’ site. All the
sites in the cluster possess pointers to the root site; therefore, it is simple to ascertain
whether two sites are members of the same cluster. When two separate clusters connect,
they are amalgamated by adding a pointer from the root of the smaller cluster to the
root of the larger one.

During the simulation, each growing object is examined for possible growth. The
jamming limit θJ is reached when no object can grow anymore. Objects that have
no empty sites for further growth are removed from the list of dialing objects. The
simulation stops when there are no more objects in the list. Data are averaged over
500 independent runs through the system for each lattice dimension and for each set of
parameters.

It is well-established that correlations in RSA decay extremely fast [19, 44, 45]. As
a result, high-precision results can be obtained numerically on relatively small lattices
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Figure 1. Illustration of the object growth for: (a) k -mers and (b) SARWs. The
growing objects are red, and the triangle impurities are shown in blue. The red
dashed lines show the possible growth directions.

without significant concern for finite-size effects [46–48] and the need for averaging
over a large number of runs, as the system is self-averaging. Numerical studies have
demonstrated that finite-size effects on a lattice of size L can be disregarded for object
sizes ⩽L/8 [20]. Therefore, Monte Carlo simulations are conducted on a triangular
lattice up to a size of L⩽ 3200.

3. Results and discussion

Percolation and jamming properties are studied for growing k -mers and growing SARWs
on a triangular lattice. Simulations are performed for three different shapes of impurities
covering three lattice sites—needle-like, angled, and triangular. Results are obtained for
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a wide range of impurity concentrations ρimp, and for a wide range of initial monomer
(seed) densities ρ.

3.1. Percolation

The values of the percolation thresholds for the infinitely large lattice θ*p are determined
using the usual finite-size scaling analysis of percolation on 2D lattices [49]. In such
systems, the effective percolation threshold θp approaches the asymptotic value θ*p for
L→∞ via the power law:

θp− θ*p ∝ L−1/ν . (1)

Here, θ*p is the exact percolation threshold (as L→∞), and ν is the correlation length
critical exponent. It should be noted that the universality class of random percolation
in 2D is very well identified and the critical exponents are known, namely, ν ≃ 4/3 [49,
50]. The latter relationship allows us to extrapolate the threshold for an infinite sys-
tem, L→∞. This kind of behavior, which is expected for systems without long-range
correlations, has been observed in previous studies of percolation of extended objects
on 2D lattices [51–54].

Simulations were performed for lattice sizes ranging from L=100 to L=3200. Finite-
size scaling of the percolation threshold θp for the growing k -mers (needle-like objects)
and impurities of shape (D) is illustrated in figure 2(a), and for the growing SARWs and
impurities of shape (B) in figure 2(b). Values of the percolation threshold θp vs L−3/4

are shown for various seed densities ρ and for impurity concentrations ρimp = 0.2 and
ρimp = 0.25 in the k -mers and SARWs, respectively. Plotting the obtained value θp of the

percolation threshold for various lattice sizes against L−1/ν confirms the validity of the
finite-size scaling in the system and determines the asymptotic value of the percolation
threshold θ*p.

According to the scaling theory, the standard deviation σ of the percolation threshold
measured for a finite lattice L satisfies the power law:

σ ∝ L−1/ν . (2)

The standard deviation σ(L) is calculated for the growing k -mers and for various seed
densities ρ and initial impurity concentrations ρimp. In all the cases, we obtained confirm-
ation of the power law of equation (2), with the value of the exponent 1/ν ranging from
0.711 to 0.758. These results are in good agreement with the universal value 1/ν = 3/4
for 2D percolations. In figure 3, and all subsequent figures that show the values of the
percolation thresholds, the error bars do not exceed the size of the symbols.

3.1.1. Impurities of shape (B). The results of the simulations of the object growth on
a triangular lattice with needle-like impurities (k -mers covering three lattice sites) are
shown in figures 3–5. Figure 3(a) shows the dependence of the percolation threshold θ*p
on the seed density ρ and on the impurity concentration ρimp for the growing needle-
like objects (k -mers). For a given impurity concentration, the percolation threshold
increases with the seed density, reaches a maximum and slightly decreases for higher
values of ρ in the lower impurity concentrations, but increases monotonically at the
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Figure 2. (a) Finite-size scaling of the percolation threshold θp against L−1/ν , with
ν = 4/3, for the growing needle-like objects (k -mers) and various values of the
initial seed densities given in the legend. The impurities of shape (D) are distrib-
uted randomly at concentration ρimp = 0.2; (b) finite-size scaling of the percolation
threshold θp against L−1/ν , with ν = 4/3, for the growing SARWs and various val-
ues of the initial seed densities given in the legend. The impurities of shape (B) are
distributed randomly at concentration ρimp = 0.25.
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Figure 3. (a) The dependence of the percolation threshold θ*p on the initial seed
density ρ and on the impurity concentration ρimp for the growing k -mers in the
presence of impurities of shape (B). (b) The dependence of the percolation threshold
θ*p on the initial seed density ρ and on the impurity concentration ρimp for the
growing SARWs in the presence of impurities of shape (B).

highest impurity concentrations. At low values of the seed densities, objects have enough
space to grow, longer objects form a porous surface and the percolation threshold θ*p
is reached at low values of the coverage. Higher seed density reduces the possibility of
the object growth. As the seed density increases, the contribution of small objects to
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Figure 4. Comparison of the influence of the seed density ρ on the percolation
threshold θ*p for the growing k -mers (squares) and for the growing SARW chains

(circles). The dependence of θ*p on ρ is shown for three different values of the
impurity concentration ρimp given in the legend. The impurities are shape (B).

the coverage increases and the percolation threshold is reached at higher coverages. At
low values of the initial seed densities, the percolation threshold can only be reached
for sufficiently low values of the impurity concentration. The initial seed density above
which percolation can be reached increases with the growth of ρimp. The percolation
threshold monotonically increases with the impurity concentration for all values of ρ. In
the presence of impurities, it is more difficult to make connections between the growing
objects, and the percolation cluster appears at higher coverages.

For the growth of the SARWs, the percolation threshold can be reached for all values
of the impurity concentration investigated (figure 3(b)). These growing objects have a
greater ability to avoid impurities and make connections. The percolation threshold
increases with the seed density, reaches a maximum and decreases for higher values of
ρ. The percolation threshold monotonically increases with the impurity concentration
for all values of ρ. The structure of the coverings depends on the seed density ρ and
on the impurity concentration ρimp. Basically, fractions of monomers, dimers and longer
objects at the percolation threshold depend on the seed density ρ and on the impurity
concentration ρimp. For lower values of ρimp, there is a value of ρ for which these fractions
result in the highest values of the percolation thresholds [31].

Comparison of the influence of the seed density ρ on the percolation threshold θ*p for
the growing k -mers (squares) and for the growing random walk chains (circles) is shown
in figure 4. The dependence of θ*p on ρ is shown for three different values of the impurity

concentration ρimp. It can be seen that the values of θ*p have lower values for the needle-
like objects than for the SARW chains in the whole seed density range. This difference
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Figure 5. Comparison of the influence of the impurity concentration ρimp on the
percolation threshold θ*p for the growing k -mers (squares) and for the growing

SARW chains (circles). The dependence of θ*p on ρimp is shown for three different
values of the seed densities ρ given in the legend. The impurities are shape (B).

is more prominent for lower values of the seed densities. Surface configurations that
form during the growth of the needle-like objects are more porous than in the growth of
the SARWs, and percolation occurs at lower coverage values for the needle-like objects.
With the growth of the seed density ρ, this difference decreases and practically ceases
when ρ approaches the value of the percolation threshold for monomers on the triangular
lattice.

The influence of the impurity concentration ρimp on the percolation threshold θ*p for
the growing k -mers and for the growing random walk chains is illustrated in figure 5.
The dependence of θ*p on ρimp is shown for three different values of the seed densities ρ
given in the legend. For given seed concentrations, the percolation thresholds have lower
values for the k -mers than for the growing SARWs for all the impurity concentration
values.

3.1.2. Impurities of shape (C). The dependence of the percolation threshold θ*p for
the growing needle-like objects (k -mers) on the seed density ρ and on the impurity
concentration ρimp is shown in figure 6(a). Similarly, the dependence of θ*p on the seed
density and on the impurity concentration for the growing SARWs is illustrated in
figure 6(b).

For the angled impurity shape, the percolation threshold increases monotonically
with the seed density for the highest values of the impurity concentrations. For lower
impurity concentrations, the percolation threshold increases with the seed density,
reaches a maximum and slightly decreases for higher values of ρ. Except for the lowest
seed concentrations considered for the growth of the SARWs, the percolation threshold
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Figure 6. (a) The dependence of the percolation threshold θ*p on the initial seed
density ρ and on the impurity concentration ρimp for the growing k -mers in the
presence of impurities of shape (C). (b) The dependence of the percolation threshold
θ*p on the initial seed density ρ and on the impurity concentration ρimp for the
growing SARWs in the presence of impurities of shape (C).

increases with the impurity concentration ρimp. It can be seen that the presence of
angled impurities has a qualitatively similar influence on the percolation threshold to
the presence of the needle-like impurities of shape (B).
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Figure 7. Comparison of the influence of the seed density ρ on the percolation
threshold θ*p for the growing k -mers (squares) and for the growing SARW chains

(circles). The dependence of θ*p on ρ is shown for three different values of the
impurity concentration ρimp given in the legend. The impurities are shape (C).

Figure 7 gives a comparison of the influence of the seed density ρ on the percolation
threshold θ*p for the growing k -mers and for the growing SARW chains. At a given
impurity concentration, the growing SARWs have higher percolation thresholds than
the growing needle-like objects (k -mers). A comparison of the influence of the impurity
concentration ρimp on the percolation threshold θ*p for the growing k -mers and for the
growing random walk chains is given in figure 8. At a given seed concentration, the
growing SARWs have higher percolation thresholds than the growing needle-like objects.

3.1.3. Impurities of shape (D). The dependence of the percolation threshold θ*p on the
seed density ρ and on the impurity concentration ρimp for the triangular lattice covered
with impurities of a triangular shape is shown in figure 9. Figure 9(a) illustrates the
dependence of the percolation threshold on ρ and ρimp for the k -mer growth. It can be

seen that for the growing k -mers, θ*p increases with the seed density, reaches a maximum
and decreases for higher values of ρ. The percolation threshold increases monotonically
with the seed density for only the highest value of the impurity concentration considered.
On the other hand, θ*p slightly decreases with the impurity concentration for given values
of the seed concentration.

When the growing objects are the SARWs, the dependence of the percolation
threshold on the seed density is qualitatively similar, but with larger differences in
θ*p for various impurity concentrations ρimp (figure 9(b)). In the SARWs growth, θ*p
decreases more abruptly with the triangular impurity concentration than in the needle-
like-objects. SARWs can avoid the impurities more easily than the needle-like objects,
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Figure 8. Comparison of the influence of the impurity concentration ρimp on the
percolation threshold θ*p for the growing k -mers (squares) and for the growing

SARW chains (circles). The dependence of θ*p on ρimp is shown for three different
values of the seed densities ρ given in the legend. The impurities are shape (C).

and the impurities of a triangular shape are more easily avoided. It seems that the
existence of the impurities of a triangular shape facilitates percolation.

A comparison of the percolation properties in the needle-like objects growth to the
SARWs growth in the presence of impurities of a triangular shape is shown in figures 10
and 11. The dependence of the percolation threshold θ*p on the seed density ρ for three
different values of the impurity concentrations is shown in figure 10, and the dependence
of the percolation threshold θ*p on the impurity concentration ρimp for three different
seed concentrations is shown in figure 11. Both figures clearly indicate that percolation
is reached at lower coverages in the growing needle-like objects.

3.1.4. The influence of impurity shape—comparisons. Figures 12 and 13 illustrate the
impact of the impurity shape on the percolation properties of the growing k -mers and of
the growing SARWs. The dependence of the percolation threshold on the seed density is
shown for the triangular lattice with needle-like, angled and triangular impurities. The
results for the triangular lattice with point-like impurities, given in detail elsewhere [31],
are also shown for the sake of comparison. The dependence of θ*p on the seed density is
shown in figure 12(a) for the growing k -mers, and in figure 12(b) for the growing SARWs.
For a fixed impurity concentration, the largest percolation thresholds are obtained for
the needle-like impurities (B), slightly lower values of θ*p are obtained in the presence of
angled impurities (C) and the lowest percolation thresholds are found for the impurities
with a triangular shape (D).

The dependence of θ*p on the impurity concentration is shown in figures 13(a) and
(b) for the growing k -mers and for the growing SARWs, respectively. In the presence of
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093213Figure 9. (a) The dependence of the percolation threshold θ*p on the initial seed
density ρ and on the impurity concentration ρimp for the growing k -mers in the
presence of impurities of shape (D). The dotted lines are only for the visualization.
(b) The dependence of the percolation threshold θ*p on the initial seed density ρ
and on the impurity concentration ρimp for the growing SARWs in the presence of
impurities of shape (D).

needle-like and angled impurities, the percolation threshold increases with the impurity
concentration for a fixed seed density. The percolation thresholds have the highest values
in the needle-like impurities, and somewhat lower values in the angled impurities. For
the growing objects, avoidance is most difficult for the needle-like shaped impurities. On
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Figure 10. Comparison of the influence of the seed density ρ on the percolation
threshold θ*p for the growing k -mers (squares) and for the growing SARW chains

(circles). The dependence of θ*p on ρ is shown for three different values of the
impurity concentration ρimp given in the legend. The impurities are shape (D).

Figure 11. Comparison of the influence of the impurity concentration ρimp on the
percolation threshold θ*p for the growing k -mers (squares) and for the growing

SARW chains (circles). The dependence of θ*p on ρimp is shown for three different
values of the seed densities ρ given in the legend. The impurities are shape (D).
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Figure 12. (a) Values of the percolation threshold θ*p as a function of the seed
density ρ in the growth of k -mers. The fraction of the sites covered by the impurities
is ρimp = 0.4, and the types of impurities are indicated in the legend. (b) Values of
the percolation threshold θ*p as a function of the seed density ρ in the growth of
SARWs. The fraction of the sites covered by the impurities is ρimp = 0.4, and the
types of impurities are indicated in the legend.

the other hand, in the presence of the triangular impurities, the percolation threshold
decreases with the concentration of impurities. Triangular obstacles, being compact,
can easily be avoided by the growing objects. Moreover, for larger concentrations of
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Figure 13. (a) Values of the percolation threshold θ*p as a function of the impur-
ity concentration ρimp in the growth of k -mers. The seed density is ρ=0.4, and
the types of impurities are indicated in the legend. (b) Values of the percolation
threshold θ*p as a function of the impurity concentration ρimp in the growth of
SARWs. The seed density is ρ=0.4, and the types of impurities are indicated in
the legend.
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Figure 14. Typical configurations for the growth of: (a) k -mers on the lattice with
impurities of type (B); (b) k -mers on the lattice with impurities of type (D); (c)
SARWs on the lattice with impurities of type (B); (d) SARWs on the lattice with
impurities of type (D). The snapshots are made at the moment of percolation cluster
formation. Objects of different sizes are distinguished by color. The monomers are
shown in blue and the longest objects in red. Impurities are black, while the empty
lattice nodes are shown as open circles.

these impurities, growing objects have limited paths for growth and the surface is more
porous, causing lower percolation threshold values.

Snapshots of the surface configurations at the percolation threshold are shown in
figure 14 for k -mers and SARWs for two types of impurities: (B) and (D). Objects of
different sizes are distinguished by color. The monomers are shown in blue and the
longest objects in red. Different shades of purple correspond to different object lengths
between these two. From comparison of figures 14(a) and (b) it can be seen that in
the presence of the triangular impurities (D), a small fraction of growing needle-like
objects can reach longer lengths than in the presence of the needle-like impurities (B).
The length distribution of the objects differs in these two cases and leads to lower
percolation threshold values in the triangular impurities. The growing SARWs can avoid
the impurities more easily than the needle-like objects, resulting in larger fractions of
longer objects in the surface configurations (figures 14(c) and (d)).

3.2. Jamming

The values of the jamming coverage θJ for the growing needle-like objects are shown in
figure 15 as a function of the initial seed density ρ and the impurity concentration ρimp,
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Figure 15. Values of the jamming coverage θJ as a function of the impurity con-
centration ρimp and on the initial seed density ρ for the growing k -mers in the pres-
ence of impurities of shapes (B) (red circles), (C) (blue squares) and (D) (green
diamonds).

Figure 16. Values of the jamming coverage θJ as a function of the impurity con-
centration ρimp and on the initial seed density ρ for the growing SARWs in the
presence of impurities of shapes (B) (red circles), (C) (blue squares) and (D) (green
diamonds).

for various impurity shapes—needle-like, angled and triangular. The same dependence
is shown in figure 16 for the growing SARWs. As expected, larger seed density provides
growth of more objects, especially including the short ones, covering the surface more
efficiently.
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For a given ρ, θJ decreases with ρimp, since larger impurity concentrations leave

less space for the object’s growth. Unlike the percolation threshold θ*p, the jamming
coverage is only slightly affected by the shape of impurities. This impact is a little more
pronounced in the growing SARWs. Jamming coverages have the highest values in the
substrates with impurities of a triangular shape, and the lowest values in the angled
impurities. Triangular impurities are most easily avoided by the growing objects, while
the presence of angled impurities causes an increase in the number of blocked sites. In
figures 15 and 16, the error bars do not exceed the size of the symbols.

4. Concluding remarks

Percolation and jamming properties were studied in a seeded growth model on a trian-
gular lattice with finite-size impurities. Impurities of various shapes—needle-like, angled
or triangular—were distributed on the lattice at random. The growing objects were the
needle-like shapes and the random walk chains. Simulations were performed for various
seed concentrations ρ up to the percolation threshold for monomer deposition, and also
for various impurity concentrations ρimp .

For fixed seed densities and impurity concentrations, the percolation thresholds
always have lower values in the k -mer growth than in the growth of the SARW chains.
The growing needle-like objects form more porous surfaces, and the percolation is
reached at lower values of the coverage fraction. On the other hand, the growing SARWs
cover the surface more efficiently, resulting in higher percolation threshold values.

Our results suggest that the percolation properties in the seeded growth model are
not only affected by the seed concentration and the impurity concentration, but also
by the shape of impurities. For a given seed density, the percolation threshold increases
with the impurity concentration in the needle-like and angled shaped impurities, but
decreases in the point-like and triangular impurities. Percolation is most easily reached
at high concentrations of triangular impurities. On the other hand, it is most difficult
to achieve percolation at high concentrations of needle-like impurities. It seems that
the placement of obstacles on the substrate can facilitate percolation or make it more
difficult, depending on the obstacle shape.

As far as the jamming coverage is concerned, only a slight dependence on the shape of
impurities is observed. This impact is a little more pronounced in the growing SARWs.
Jamming coverages have the highest values in the substrates with triangular-shaped
impurities, and the lowest values in the angled impurities. The triangular impurities are
more easily avoided by the growing SARWs, causing the highest jamming coverages.
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Particle morphology effects in random sequential adsorption Phys. Rev. E 95 022114
[23] Kondrat G 2008 Impact of composition of extended objects on percolation on a lattice Phys. Rev. E 78 011101
[24] Ziff R M 2009 Explosive growth in biased dynamic percolation on two-dimensional regular lattice networks

Phys. Rev. Lett. 103 045701
[25] Tsakiris N, Maragakis M, Kosmidis K and Argyrakis P 2010 Percolation of randomly distributed growing

clusters: finite-size scaling and critical exponents for the square lattice Phys. Rev. E 82 041108
[26] Ioselevich A S and Kornyshev A A 2002 Approximate symmetry laws for percolation in complex systems:

percolation in polydisperse composites Phys. Rev. E 65 021301
[27] Tarasevich Y Y, Lebovka N I and Laptev V V 2012 Percolation of linear k -mers on a square lattice: from

isotropic through partially ordered to completely aligned states Phys. Rev. E 86 061116

https://doi.org/10.1088/1742-5468/ad7851 22

https://doi.org/10.1038/454948a
https://doi.org/10.1038/454948a
https://doi.org/10.1007/s12274-008-8026-3
https://doi.org/10.1007/s12274-008-8026-3
https://doi.org/10.1038/449292a
https://doi.org/10.1038/449292a
https://doi.org/10.1016/S1567-1739(01)00094-3
https://doi.org/10.1016/S1567-1739(01)00094-3
https://doi.org/10.1002/adfm.200600764
https://doi.org/10.1002/adfm.200600764
https://doi.org/10.1002/1616-3028(200110)11:53.0.CO;2-J
https://doi.org/10.1002/1616-3028(200110)11:53.0.CO;2-J
https://doi.org/10.1007/s12274-008-8047-y
https://doi.org/10.1007/s12274-008-8047-y
https://doi.org/10.1016/S1748-0132(06)70020-2
https://doi.org/10.1016/S1748-0132(06)70020-2
https://doi.org/10.1021/nl052396o
https://doi.org/10.1021/nl052396o
https://doi.org/10.1021/la0519249
https://doi.org/10.1021/la0519249
https://doi.org/10.1103/PhysRevLett.92.115507
https://doi.org/10.1103/PhysRevLett.92.115507
https://doi.org/10.1016/j.jcrysgro.2005.05.018
https://doi.org/10.1016/j.jcrysgro.2005.05.018
https://doi.org/10.1023/A:1021175612112
https://doi.org/10.1023/A:1021175612112
https://doi.org/10.1021/cm020732l
https://doi.org/10.1021/cm020732l
https://doi.org/10.1021/cm0492336
https://doi.org/10.1021/cm0492336
https://doi.org/10.1038/nmat1957
https://doi.org/10.1038/nmat1957
https://doi.org/10.1021/cm303708p
https://doi.org/10.1021/cm303708p
https://doi.org/10.1103/PhysRevE.95.010101
https://doi.org/10.1103/PhysRevE.95.010101
https://doi.org/10.1103/RevModPhys.65.1281
https://doi.org/10.1103/RevModPhys.65.1281
https://doi.org/10.1088/0305-4470/24/12/003
https://doi.org/10.1088/0305-4470/24/12/003
https://doi.org/10.1016/S0927-7757(99)00409-4
https://doi.org/10.1016/S0927-7757(99)00409-4
https://doi.org/10.1103/PhysRevE.95.022114
https://doi.org/10.1103/PhysRevE.95.022114
https://doi.org/10.1103/PhysRevE.78.011101
https://doi.org/10.1103/PhysRevE.78.011101
https://doi.org/10.1103/PhysRevLett.103.045701
https://doi.org/10.1103/PhysRevLett.103.045701
https://doi.org/10.1103/PhysRevE.82.041108
https://doi.org/10.1103/PhysRevE.82.041108
https://doi.org/10.1103/PhysRevE.65.021301
https://doi.org/10.1103/PhysRevE.65.021301
https://doi.org/10.1103/PhysRevE.86.061116
https://doi.org/10.1103/PhysRevE.86.061116
https://doi.org/10.1088/1742-5468/ad7851


Percolation and jamming properties in an object growth model on a triangular lattice with finite-size impurities

J.S
tat.

M
ech.(2024)

093213
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[31] Dujak D, Karač A, Budinski-Petković L, Jakšić Z M and Vrhovac S B 2023 Percolation and jamming properties
in object growth model on a lattice with impurities J. Stat. Mech. 023204

[32] Roy B and Santra S B 2018 Finite size scaling study of a two parameter percolation model: constant and
correlated growth Physica A 492 969–79

[33] Carrey J and Maurice J-L 2001 Transition from droplet growth to percolation: Monte Carlo simulations and an
analytical model Phys. Rev. B 63 245408

[34] Adamson A W and Gast A P 1997 Physical Chemistry of Surfaces 6th edn (Wiley)
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