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Adsorption-desorption processes of polydisperse mixtures on a triangular lattice
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Adsorption-desorption processes of polydisperse mixtures on a triangular lattice are studied by numerical
simulations. Mixtures are composed of the shapes of different numbers of segments and rotational symmetries.
Numerical simulations are performed to determine the influence of the number of mixture components and the
length of the shapes making the mixture on the kinetics of the deposition process. We find that, above the jamming
limit, the time evolution of the total coverage of a mixture can be described by the Mittag-Leffler function
θ (t) = θ∞ − �θEβ [−(t/τ )β ] for all the mixtures we have examined. Our results show that the equilibrium
coverage decreases with the number of components making the mixture and also with the desorption probability,
via corresponding stretched exponential laws. For the mixtures of equal-sized objects, we propose a simple
formula for predicting the value of the steady-state coverage fraction of a mixture from the values of the
steady-state coverage fractions of pure component shapes.
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I. INTRODUCTION

Adsorption of extended particles on various surfaces is
involved in a large variety of physical, chemical, and biological
processes. Deposition processes in which the events occur
essentially irreversibly on the time scales of the experiment
can be studied as random sequential adsorption (RSA) [1–3].

In the RSA model objects of a specified shape are randomly
and sequentially deposited onto a substrate without overlap-
ping each other. The adsorbed particles are permanently fixed
at their spatial positions and they affect the geometry of all
later placements. The kinetic properties of a deposition process
are described by the evolution of the coverage θ (t), which is
the fraction of the substrate area covered by the adsorbed
particles. The deposition process ceases when all unoccupied
spaces are smaller than the size of an adsorbing object. The
system is then jammed in a disordered state for which the
limiting (jamming) coverage θjam is less than that in the close
packing. Depending on the system of interest, the substrate can
be continuum or discrete and RSA models can differ in
substrate dimensionality. Jamming coverage depends on the
shape and on the size of the depositing objects. An asymptotic
approach of the coverage fraction θ (t) to its jamming limit
follows a power law [4,5] for continuum systems, while in the
case of lattice deposition models the approach to the jamming
limit is exponential with the rate dependent mostly on the
symmetry properties of the object [6,7].

In real physical situations, however, one often needs
to consider the possibility of desorption or diffusion of
deposited particles. Examples of such processes are catalytic
reactions, binding of motor proteins to microtubules in living
cells [8], etc. Compaction of granular materials can also be
successfully modeled using adsorption-desorption processes
which reproduce the slow density relaxation [9,10], memory
effects [11,12], and other features of vibrated granular mate-
rials. The dynamics of the reversible RSA model depends on
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the excluded volume and geometrical frustration, just as in the
case of granular compaction. This model can be regarded as
a simple picture of a horizontal layer of a granular material,
perpendicular to the tapping force. As a result of a tapping
event, particles leave the layer at random and compaction
proceeds when particles fall back into the layer under the
influence of gravity. The ratio of desorption to adsorption
probability within the model plays a role of vibration intensity.

Allowing desorption makes the process reversible and the
system ultimately reaches an equilibrium state. Adsorption-
desorption processes in one dimension were studied analyti-
cally [13] and an exact solution for the equilibrium properties
was obtained. Steady-state density was found to be a function
only of the adsorption to desorption rate ratio. Continuum
adsorption-desorption models display a three-stage approach
of the coverage to its equilibrium value: an algebraic one where
the coverage varies as 1/t and a logarithmic one where the
coverage varies as 1/ ln(t), followed by a terminal exponential
approach [9,14,15]. On one-dimensional lattice a power-law
decay of the density of interparticle gaps in a time range
after the initial “jamming” was obtained [16]. Numerical
simulations of reversible lattice deposition suggested that
kinetics of the process depends on the dimensionality of the
system. For adsorption-desorption processes of k-mers on a
one-dimensional lattice [17,18] it was found that a stretched
exponential growth of the coverage θ (t) toward the steady-state
value θeq occurs: θeq − θ (t) ∝ exp[−(t/τ )β] . On the other
hand, results of the numerical simulations of reversible RSA
on a triangular lattice obtained for a wide variety of object
shapes [10] showed an excellent agreement of the relaxation
dynamics with the function of the form:

θ (t) = θ∞ − �θ Eβ(−(t/τ )β), �θ = θeq − θ0, (1)

where θ∞, θ0, τ , and β are the fitting parameters and Eβ

denotes the Mittag-Leffler function of order β [19]. Note
that the Mittag-Leffler function is one of the most frequently
used phenomenological fitting functions for relaxation pro-
cesses in many complex disordered systems such as glasses,
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TABLE I. Illustration of the construction of the objects larger than the basic ones for line segments,
angled objects, and triangles. Here n(x)

s denotes the order of the symmetry axis of the shape. The ellipses
denote objects larger than those shown explicitly.

Line segments ns = 2 Angled objects ns = 1 Triangles ns = 3

� = 1 s = 1.5 s = 1

� = 2 s = 3 s = 2

. . . . . . . . . . . . . . . . . .

. . . � = 10 . . . s = 15 . . . s = 5

ferroelectric crystals, and dielectrics [20]. It has been shown
that the Mittag-Leffler law (1) describes the relaxation of
granular materials under very different modes of external
excitation [21–23].

The relaxation dynamics of reversible deposition depends
not only on the desorption to adsorption probability ratio
but also on the order of symmetry of the shape and on the
object size. Evolution of the coverage includes a rapid growth
towards the jamming limit and a slow approach to the equilib-
rium coverage governed by collective adsorption-desorption
events [24]. Namely, when θjam is reached, the rare desorption
events are generally followed by immediate readsorption.
These single-particle events do not change the total number
of particles. However, when one badly sited object desorbs
and two particles adsorb in the opened locations, the number
of particles is increased by one. Likewise, if two well sited
objects desorb and a single object adsorbs in their stead, the
number of particles is decreased by one. Size of the objects and
their symmetry properties have a significant influence on these
collective events, thus affecting the kinetics of the process.

Particles in nature often vary in their size and shape so that
polydispersity is an inevitable property in many experimental
situations. Irreversible deposition of mixtures is studied in
numerous works [25–28], but to the best of our knowledge
there are very few works concerning adsorption-desorption
processes of mixtures. Adsorption-desorption processes of
polydisperse mixtures of hard disks on a continuous planar sur-
face are studied in Ref. [29]. Results were obtained for various
binding energies of the particles and a dramatic slowing down
of the process was observed for the exponential decrease of the
desorption rate with the particle size. It was found that the long
time kinetics can be described with a stretched exponential
function. The same kind of approach to the equilibrium was
found for generalized RSA of polydisperse mixtures of k-mers
on a one-dimensional lattice [18]. Reversible deposition of
two-component mixtures on a triangular lattice is analyzed in
Ref. [30]. Special attention was paid to the mixtures of objects
of different shapes but covering the same number of lattice
sites. Results show that kinetics of the adsorption-desorption
process is considerably influenced by the order of symmetry
of the shapes making the mixture.

Here we present the results of extensive simulations for
the reversible RSA of polydisperse mixtures on a triangular
lattice. The results are obtained by Monte Carlo simulations.
The depositing objects are made by self-avoiding random
walks on a two-dimensional (2D) triangular lattice. On
a triangular lattice objects with a symmetry axis of first,

second, third, and sixth order can be formed. In the case
of polydisperse mixtures we investigate the dependence of
the deposition kinetics on the number of components in the
mixture and on the length of the walks making the mixture,
and we investigate the influence of the symmetry properties
of depositing objects. We give the results not only for the
whole mixture but also for the individual components.

II. DEFINITION OF THE MODEL
AND THE SIMULATION METHOD

The polydisperse mixtures of extended objects on a 2D
triangular lattice used in our simulations are shown in Tables I
and II. Linear segments (k-mers) and angled objects that
constitute the ten-component mixtures and triangles that
constitute the five-component mixture of objects of various
sizes are presented in Table I. In Table II three different shapes
that can be made by self-avoiding walks of length l = 2 are
shown. It should be noted that size s of an object is taken as
the greatest projection of the walk that makes the object on
one of the six directions. Thus the size of a dot is s = 0; the
size of a one-step walk is s = 1; and, for example, the size of
the first object in Table II is s = 1.5 in lattice spacing.

The Monte Carlo simulations are performed on a 2D tri-
angular lattice of size L = 120. Periodic boundary conditions
are used in all directions. The finite-size effects, which are
generally weak, can be neglected for object sizes < L/8 [31].

At each Monte Carlo step a lattice site is selected at random
and one of the objects making the mixture is selected at
random, and we try to deposit the chosen shape of length l with
probability Pa . If the selected site is occupied by a deposited
object the adsorption attempt is rejected. If the selected site
is unoccupied, we fix the beginning of the walk that makes
the chosen shape at this site. Then we randomly pick one of
the six possible orientations with equal probability, start the
corresponding l-step walk in that direction, and search whether

TABLE II. (Color online) Various shapes (x) of length � = 2 on
a triangular lattice. Here n(x)

s denotes the order of the symmetry axis
of the shape.

(x) Shape n(x)
s �(x)

(A) 2

(B) 1 2

(C) 3
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all successive l sites are unoccupied. If so, we occupy these
l + 1 sites and deposit the object; otherwise, the deposition
attempt is rejected. Each adsorption attempt is followed by a
desorption one with probability Pdes. The desorption process
starts by choosing a lattice site at random. If the selected site is
unoccupied, the desorption step fails and the process continues
by choosing a new site for the adsorption attempt. On the other
hand, if the selected site is occupied by an adsorbed object,
the object is removed from the lattice.

The reversible RSA process for a three-component mixture
shown in Table II is as follows. From a large reservoir of
shapes, which contains the shapes (A), (B), and (C) with the
fractional concentrations r (A), r (B), and r (C), we choose one
shape at random. The concentrations r (A), r (B), and r (C) are
unaffected by adsorption or desorption events. We randomly
select a lattice site and try to deposit the chosen shape with
probability Pa in one of six orientations, which is randomly
chosen. We fix the beginning of the walk that makes the shape
at the selected site and search whether all successive l sites
are unoccupied. If so, we occupy these l + 1 sites and place
the object; otherwise the deposition attempt is rejected. When
the attempted process is desorption, and the selected site is
occupied by an object, the object is removed from the layer.
In the reversible case, after a long enough time, the process
reaches a steady state in which the rate of adsorption is exactly
balanced by the rate of desorption.

It would be interesting to examine how the kinetics of the
process is affected by the details of a desorption algorithm. We
have performed some additional simulations using a different
simulation algorithm in which an object is desorbed only if the
beginning of the walk making the shape is at the selected site.
In this case small and large objects desorb at the same rate.

The kinetics of the adsorption-desorption model depends
only on the ratio Pdes/Pa . In order to save the computer time t ,
it is convenient to take the adsorption probability to be Pa = 1,
i.e., to try an adsorption at each Monte Carlo step. The time t

is counted by the number of adsorption attempts and scaled by
the total number of lattice sites L2. The data are averaged over
1000 independent runs for each mixture of depositing objects
and each desorption probability Pdes.

III. RESULTS AND DISCUSSION

Simulations of the adsorption-desorption processes are per-
formed for n-component mixtures (n = 1,2, . . . ,10) of linear
segments (k-mers) and angled objects and for n-component
mixtures (n = 1,2, . . . ,5) of triangles. For example, the two-
component mixture of line segments consists of the lines of
length l = 1 and l = 2, the three-component mixture is made
by adding a line segment of length l = 3, and so on. An n-
component mixture contains the lines of length l = 1,2, . . . ,n

and all of them are adsorbed with equal probability. Mixtures
of the other two shapes, i.e., angled objects and triangles, are
made in a similar way.

Results are obtained for various low desorption probabili-
ties in the range from Pdes = 0.0001 to Pdes = 0.01. Results
for the time evolution of the partial and total coverages in the
case of Pdes = 0.0001 for the ten-component mixtures of line
segments and angled objects are shown in Figs. 1(a) and 2(a),
respectively, and results for the five-component mixture of
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FIG. 1. (Color online) Time dependence of the partial coverages
θ (i)(t) for the ten-component mixture of line segments (right-hand
axis) and the time dependence of the total coverage fraction θmix(t)
(left-hand axis) for two different desorption algorithms. In the first
algorithm the desorption attempt is successful if the selected site is
occupied by an object (a), and in the second algorithm an object is
desorbed if the beginning of the walk making the shape is at the
selected site (b). Results shown in panels (a) and (b) are obtained for
the same effective desorption probabilities for the smallest mixture
component [Pdes = 0.0001 in panel (a)].

triangles are shown in Fig. 3(a). Similar results are obtained
for all desorption probabilities. From these figures we can
see that only the time dependence of the partial coverage
of the shortest objects is monotonically increasing. Partial
coverage corresponding to any other component increases at
the early times of the deposition process, reaches a maximum,
and decreases slowly to its equilibrium value afterward. The
contribution of longer objects to the total coverage becomes
negligible for long times. Time evolution of the total coverage
of a mixture is a two-stage process. At very early times of the
process, when the coverage fraction is small, the adsorption
process is dominant and the coverage grows rapidly in time.
After this initial filling of the lattice, adsorption becomes
slower and the desorption can no longer be ignored. Then,
the change of the coverage requires the rearrangement of the
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FIG. 2. (Color online) Time dependence of the partial coverages
θ (i)(t) for the ten-component mixture of angled objects (right-hand
axis) and the time dependence of the total coverage fraction θmix(t)
(left-hand axis) for two different desorption algorithms. In the first
algorithm the desorption attempt is successful if the selected site is
occupied by an object (a), and in the second algorithm an object is
desorbed if the beginning of the walk making the shape is at the
selected site (b). Results shown in panels (a) and (b) are obtained for
the same effective desorption probabilities for the smallest mixture
component [Pdes = 0.0001 in panel (a)].

objects, which is caused by a long sequence of adsorption-
desorption events in which an object detaches from the lattice
and the gap that is created is immediately filled by one or more
new objects. In this late stage, RSA acts to preferentially adsorb
the shorter objects. This is a consequence of the fact that unlike
for long objects, many more possible places for deposition are
allowed for short objects falling into isolated empty locations.
Therefore, the partial coverages of longer objects decrease in
time. Fine-tuning of the incoming and outgoing flux of each
component occurs during this stage. In the final regime, the
coverage of the mixture increases due to the increase of the
number of the shortest objects in the layer.

Results obtained using the desorption algorithm in which an
object is removed from the lattice only if the beginning of the
object is at the selected site are shown in Figs. 1(b), 2(b),
and 3(b) for the ten-component mixture of line segments,
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FIG. 3. (Color online) Time dependence of the partial coverages
θ (i)(t) for the five-component mixture of triangles (right-hand axis)
and the time dependence of the total coverage fraction θmix(t)
(left-hand axis) for two different desorption algorithms. In the first
algorithm the desorption attempt is successful if the selected site is
occupied by an object (a), and in the second algorithm an object is
desorbed if the beginning of the walk making the shape is at the
selected site (b). Results shown in panels (a) and (b) are obtained for
the same effective desorption probabilities for the smallest mixture
component [Pdes = 0.0001 in panel (a)].

the ten-component mixture of angled objects, and the five-
component mixture of triangles, respectively. Desorption
probabilities are chosen to be the same as the effective
desorption probabilities for the smallest mixture components
in Figs. 1(a), 2(a), and 3(a). Comparing the graphs (a) and (b),
obtained using the two different desorption algorithms, we can
see that the approach to the equilibrium slows down when the
desorption probability of larger objects decreases. However,
regardless of the details of the algorithm, only the partial
coverage of the smallest object in the mixture monotonically
increases. The qualitative time dependence of larger objects’
partial coverage also remains unchanged. Furthermore, the
values of the equilibrium coverage for the mixture, as well as
the equilibrium coverages of the mixture components, are prac-
tically not affected by this change in the desorption algorithm.
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FIG. 4. (Color online) Dependence of the partial steady-state
coverage on the size s of the objects for the ten-component mixture
of line segments. The error bars for the steady-state coverages are
smaller than the symbol size.

Dependence of the partial steady-state coverage on the size
of the objects for the ten-component mixture of line segments
is shown in Fig. 4 for various desorption probabilities. It can
be seen that the presence of longer objects becomes negligible
in the final stage of the process. Similar graphs are obtained
for the ten-component mixture of angled objects and for the
five-component mixture of triangles. The reasons for these
results are intuitively clear. Due to the fact that the densification
kinetics is dictated by geometric exclusion effects, in the
competition for adsorption between different objects, the
smaller objects win. As expected, for all these mixtures, partial
steady-state coverage of the smallest component is higher
for lower probabilities. Increasing the desorption probability
enhances the contribution of the larger objects from the mixture
due to the geometric exclusion effects.

We have found that above the jamming limit, the time
evolution of the total coverage of the mixture can be described
by Eq. (1). Here values of the steady-state coverage θ∞,
the parameter �θ , and the relaxation time τ depend on the
desorption probability Pdes and on the mixture composition.
In Figs. 5–7 the results of the simulations are shown together
with the fits of Eq. (1) for two different mixtures of line
segments, angled objects, and triangles, respectively. We can
see that the Mittag-Leffler fitting function shows a very good
agreement with the simulation results in the region above the
jamming limit. The fitting values of the parameter τ show that
the relaxation time increases when the desorption probability
decreases, for all types of mixtures; i.e., the process is slower
for lower values of Pdes. Comparing the values of relaxation
time τ for mixtures of line segments, angled objects, and
triangles, with equal numbers of components, we can see that
the mixtures of triangles have the largest values of relaxation
time and the mixtures of angled objects have the smallest
values of relaxation time. This is in agreement with the results
for the monodisperse deposition [10], according to which
the dynamical behavior is severely slowed down with the
increase of the order of symmetry of the shape. Symmetry
properties of the shapes have a great influence in the later
times of the deposition process. Namely, in the late stages of
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FIG. 5. (Color online) Temporal behavior of the coverage θ (t) for
the ten-component mixture of line segments for Pdes = 0.0001 [gray
(red) line] and for the five-component mixture of line segments for
Pdes = 0.0005 [black (blue) line]. The dashed curves are the Mittag-
Leffler fits of Eq. (1).

the adsorption-desorption processes, the rare desorption events
are generally followed by immediate readsorption. The total
number of particles is not changed by these single-particle
events. However, when one badly sited object desorbs and
two particles adsorb in the opened good locations, the number
of particles is increased by one (“1 → 2”). Likewise, if two
well-sited objects desorb and a single object adsorbs in their
stead, the number of particles is decreased by one (“2 → 1”).
The steady-state is reached when the rate of the former process
is balanced by the rate of the latter one. A shape with a
symmetry axis of higher order has a greater number of possible
orientations for deposition into small isolated locations on the
lattice and, therefore, enhanced probability of single-particle
readsorption. This extends the mean waiting time between
consecutive two-particle events 1 → 2, responsible for the
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FIG. 6. (Color online) Temporal behavior of the coverage θ (t)
for the ten-component mixture of angled objects [gray (red) line] and
the five-component mixture of angled objects [black (blue) line]. All
the results are for Pdes = 0.0005. The dashed curves are the Mittag-
Leffler fits of Eq. (1).
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FIG. 7. (Color online) Temporal behavior of the coverage θ (t)
for the five-component mixture of triangles for Pdes = 0.0001 [grey
(red) line] and for the three-component mixture of triangles for Pdes =
0.0005 [black (blue) line]. The dashed curves are the Mittag-Leffler
fits of Eq. (1).

density growth above θjam, and causes a slowing down of the
densification.

Dependence of the steady-state coverage of the deposition
process on the number of components in the mixture is also
studied. The results for θ∞ are shown for the mixture of
line segments in Fig. 8 for various desorption probabilities.
Qualitatively similar dependence is obtained for the mixtures
of angled objects and for the mixtures of triangles. Figure 8
shows that the steady-state coverage decreases with the
number of components in the mixture according to a stretched
exponential law:

θ∞ = θ0 exp[−(n/α)β], (2)
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FIG. 8. (Color online) Dependence of the partial steady-state
coverage on the number of components for the mixture of line
segments. The number of components n in the mixture is always
increased by adding an object of a greater size. Here the error bars do
not exceed the size of the symbols. The lines are fits of the stretched
exponential function: θ∞ = θ0 exp[−(n/α)β ].
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FIG. 9. (Color online) Parameter α of the stretched exponential
fit of Eq. (2) vs the desorption probability Pdes for the mixtures of
line segments, angled objects, and triangles.

where θ0, α, and β are the fitting parameters. Figure 9 shows
the dependence of the parameter α on desorption probabilities
for the studied mixtures. Parameter β is in the range of 0.3–0.5
for all types of mixtures.

Plots of the total equilibrium coverage against the des-
orption probability are shown for the n-component mixtures
(n = 1,2, . . . ,10) of linear segments in Fig. 10(a), for the
n-component mixtures (n = 1,2, . . . ,10) of angled objects in
Fig. 10(b), and for the n-component mixtures (n = 1,2, . . . ,5)
of triangles in Fig. 10(c). From Fig. 10 we can see that decrease
of the steady-state coverages occurs via a stretched exponential
law of the form

θ∞ = θ0 exp[−(Pdes/γ )δ], (3)

where θ0, γ , and δ are the fitting parameters. Dependence of
the parameter γ on the number of components n is shown in
Fig. 11, for the mixtures of line segments, angled objects, and
triangles. Parameter δ is in the range from 0.3 to 0.5 for all
types of mixtures.

We have also performed numerical simulations of
adsorption-desorption processes for the three-component mix-
ture of various shapes, shown in Table II. These shapes are
made of self-avoiding walks of the same length l = 2, but they
differ in their symmetry properties. The results for the time
evolution of the partial and total coverages in the case of Pdes =
0.0005 are shown in Fig. 12. Similar results are obtained for
all desorption probabilities. Figure 12 shows that the partial
coverages of the shapes of higher order of symmetry (n(C)

s = 3;
n(A)

s = 2) are monotonously increasing functions of time and
have the same general features as the coverage for mixture.
On the other hand, the partial coverage of the shape (B) of
the lowest order of symmetry (n(B)

s = 1) is not monotonic
in time. When the coverage of the mixture approaches the
jamming limit θjam = 0.877, the coverage of the shape (B)
reaches a maximum, which is followed by a slow relaxation to
the smaller steady-state value. Results of the simulations show
that a larger value for the maximum of the coverage θ (B)(t) is
reached for smaller desorption probability and that the maxi-
mum of θ (B)(t) shifts towards longer times as the desorption
probability decreases. It is also obvious that the steady-state
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FIG. 10. (Color online) Dependence of the total steady-state
coverages on the desorption probability Pdes for the n-component
mixtures of (a) line segments, (b) angled objects, and (c) tri-
angles. The lines are fits of the stretched exponential function:
θ∞ = θ0 exp[−(Pdes/γ )δ].

value of the partial coverage fraction is always larger for the
shapes with a symmetry axis of higher order. The presented re-
sults suggest that at late enough times, when the coverage frac-
tion is sufficient to make the geometry of the unoccupied sites
complex, there is a strong dependence of the adsorption rate
on the shape of the adsorbing objects [7,10,30]. At long times,
adsorption events take place on isolated islands of connected

10-1

100

100 101

γ

n

line segments
angled objects

triangles

FIG. 11. (Color online) Parameter γ of the stretched exponential
fit of Eq. (3) vs the number of components n for the mixtures of line
segments, angled objects, and triangles.

unoccupied sites. The symmetry properties of the shapes have
a significant influence on the filling of small isolated locations
on the lattice. Indeed, there is only a restricted number of
possible orientations in which an object can reach a previously
opened location, provided that location is small enough. For the
more symmetric shapes there are a greater number of possible
orientations for deposition into an isolated location on the
lattice. The adsorption of asymmetric shapes is less efficient
than the adsorption of more regular and symmetric shapes. This
is reflected in the gradual decrease of the coverage fraction with
time for the shape with the symmetry axis of the lowest order.

From Fig. 12 we can see that the steady-state value of
the total coverage of the mixture was reached before the
partial coverages of the components achieved their steady-state
values. The coverage fraction of the mixture fluctuates around
its steady-state value, while the coverage fractions of the more
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FIG. 12. (Color online) Time dependences of the partial cover-
ages θn(t) for the three-component mixture of line segments, angled
objects, and triangles (right-hand axis) and the time dependence of the
total coverage fraction θmix(t) (left-hand axis) for the same mixture.
All the results are for Pdes = 0.0005 and for fractional concentrations
that are in proportion r (A) : r (B) : r (C) = 1:1:1.
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FIG. 13. Plot of the steady-state coverage fraction θ (A)+(B)+(C)
∞

against the desorption probability Pdes for fractional concentrations
that stand in proportion r (A) : r (B) : r (C) = 1:5:10. Closed symbols refer
to the data obtained from the numerical simulations. Open symbol
are the steady-state coverages θ (A)+(B)+(C)

∞ calculated from Eq. (4).

symmetric shapes continue to grow at the expense of the cov-
erage fraction of the component with the symmetry axis of the
lowest order, which decreases. In the late stage of the process
RSA acts to preferentially adsorb the more regular shapes
from the reservoir, but higher values of their coverage fractions
enhance the frequencies of desorption events. Moreover, the
least symmetric shape adsorbs less efficiently, but a lower value
of its coverage fraction decreases the frequency of desorption
events. The presence of the above-described mechanism
implies that each mixture component reaches a steady state.

Recently, we have proposed a simple formula for calcu-
lating the steady-state fraction θ

(x)+(y)
∞ in the binary mixture

(x) + (y) of equal-sized shapes (x) and (y) with fractional
concentrations r (x) and r (y) in an infinite reservoir [30]. We
have carried out extensive simulations of reversible RSA for
the three-component mixture of shapes shown in Table II
for various fractional concentrations, in order to see whether
a similar formula can be used to predict the value of the
steady-state coverage fraction of a mixture from the values of
the steady-state coverage fractions of pure component shapes.
We propose the following formula:

1

θ
(A)+(B)+(C)
∞

= r (A) 1

θ
(A)
∞

+ r (B) 1

θ
(B)
∞

+ r (C) 1

θ
(C)
∞

, (4)

where θ
(A)
∞ , θ

(B)
∞ , and θ

(C)
∞ are the steady-state coverage

fractions of the pure lattice shapes and r (A), r (B), and r (C)

are their fractional concentrations in the reservoir.
Formula (4) is supported by good agreement with the

numerical simulations. Figure 13 compares the steady-state
coverage fraction θ

(A)+(B)+(C)
∞ as a function of desorption

probability Pdes with the values obtained using Eq. (4). Objects
are deposited from the reservoir that contains the shapes (A),
(B), and (C) with fractional concentrations r (A), r (B), and
r (C), which stand in proportion 1:5:10. One clearly observes
that Eq. (4) very well predicts the values of θ

(A)+(B)+(C)
∞

from the values of the steady-state coverage fraction of
pure component shapes, in the whole range of desorption

probability Pdes considered. Similar agreement is confirmed
for various combinations of fractional concentrations.

IV. CONCLUDING REMARKS

We have studied the reversible RSA of polydisperse
mixtures on a triangular lattice by numerical simulations.
Mixtures were composed of shapes of different numbers
of segments and rotational symmetries. It was shown that
the coverage kinetics of a mixture has a richer behavior in
comparison to that of the reversible deposition of pure lattice
objects. In the case of mixtures in which components differ in
size, it turned out that only the time dependence of the smallest
objects is monotonically increasing. Partial coverage of any
other component increases at the early times of the deposition
process, reaches a maximum, and decreases to its equilibrium
value as a result of the interplay between the incoming and the
outgoing flux of each mixture component. The contribution
of longer objects to the total coverage becomes negligible in
the late times of the process. Such deposition kinetics gives
a good qualitative description of the segregation process in
polydisperse granular materials under vertical tapping.

Despite the complexity of the adsorption-desorption pro-
cesses of polydisperse mixtures, above the jamming limit,
the time evolution of the total coverage of a mixture can be
described by the Mittag-Leffler function for all the mixtures
we have examined. The same type of approach to the steady-
state coverage has been found for the adsorption-desorption
processes of monodisperse objects on a triangular lattice [10].

Simulations were performed for various numbers of com-
ponents making the mixture and for various desorption prob-
abilities. The number of components was increased by adding
an object of a greater length. It was found that the equilibrium
coverage decreases with the number of components making
the mixture and also with the desorption probability, via
corresponding stretched exponential laws.

Special attention has been paid to the mixtures containing
objects of various shapes, but made of the same number of
segments. It was found that the coverage kinetics of a mixture
strongly depends on the symmetry properties of the component
shapes. For sufficiently long times, the coverage fraction
of more symmetric shapes exceeds the coverage fraction of
less symmetric ones. After the total coverage of the mixture
reaches its steady-state value, the partial coverages of more
symmetric components continue to grow, while the coverage
fraction of the least symmetric object decreases until they
all achieve their steady-state values. We have proposed a
simple formula (4) that can be used to predict the value of
a steady-state coverage fraction of a mixture knowing the
steady-state coverage fractions of the pure component shapes.
Such a formula could be used to avoid the time-consuming
simulations of the reversible RSA of mixtures.
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