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Abstract. Percolation model with nucleation and object growth is studied
by Monte Carlo simulations on a triangular lattice with point-like impurities.
Growing objects are needle-like objects and self-avoiding random walk chains. In
each run through the system the lattice is initially randomly occupied by point-
like impurities at given concentration ρimp. Then the seeds for the object growth
are randomly distributed at given concentration ρ. The percolation properties
and the jamming densities are compared for the two classes of growing objects on
the basis of the results obtained for a wide range of densities ρ and ρimp up to the
percolation threshold for the monomer deposition on a triangular lattice. Values
of the percolation thresholds θ∗p have lower values for the needle-like objects than
for the self-avoiding random walk chains. The difference is largest for the lowest
values of ρ and ρimp, and ceases near the values of the site percolation threshold
for monomers on the triangular lattice, ρ∗p ≃ 0.5. Values of the jamming coverage
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θJ decrease with ρimp for given ρ. This effect is more prominent for the growing
random walk chains.
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1. Introduction

Understanding and control of cluster growth on solid surfaces is of a great importance in
developing nanomaterials with new physical properties. Synthesis of nanoscale building
blocks with controlled structure, size, and shape have wide applications in electronics,
chemical engineering, medicine, etc. Seeded growth has emerged as a compelling method
to create a wide variety of nanocrystal samples [1–6]. Random sequential adsorption
(RSA) on a lattice is often used as a basic model for describing these processes [7].

RSA, or irreversible deposition, is a process in which the particles are randomly
and sequentially deposited onto a substrate. In the case of the monolayer deposition
depositing objects are not allowed to overlap. The adsorbed particles are permanently
fixed at their spatial positions. Once an object is placed it affects the geometry of all
later placements, so the dominant effect in RSA is the blocking of the available substrate
area. The quantity of interest is the coverage θ which is the fraction of the substrate
area occupied by the adsorbed particles. The deposition process ceases when no more
depositing objects can be placed in any position on the lattice. The system is then
jammed in a nonequilibrium disordered state for which the limiting (jamming) coverage
θJ is less than the corresponding density of closest packing [8–11].

During the deposition process the number of deposited objects increases causing the
growth of clusters of nearest-neighbor occupied sites. Percolation assumes the existence
of a large cluster that reaches two opposite sides of the substrate [12]. Formation of
a long-range connectivity in disordered systems attracts a considerable interest thanks
to its applications in numerous practical problems such as conductivity in composite
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materials, flow through porous media, polymerization, gelation, and even behavior of
scale-free random networks such as the Internet [13–21].

In modeling real deposition processes, one often needs to take into account the pos-
sibility of defects that interfere the deposition of the particles. The impact of defects
on the jamming and percolation in RSA of k -mers on a square lattice was studied in
[22–26]. Cornette et al [22, 23] investigated numerically both the bond and the site per-
colation problems for linear k-mers and self-avoiding walks in the presence of impurities.
The contaminated lattice was built by randomly selecting a fraction of the elements of
the lattice (either bonds or sites) that were considered forbidden for deposition. This
research suggested that the concentration of impurities at which percolation becomes
impossible decreases rapidly with increasing values of k. Centres and Ramirez-Pastor
[24] have investigated the dependence of percolation and jamming thresholds of lin-
ear k -mers on the concentration of defects for different values of k, ranging from 2 to
64. They reported that for each fixed value of k, percolation can occur when fraction
of imperfect bonds ρ is smaller than the critical concentration of defects. In [25], two
models were analyzed—in the first one it was assumed that some fraction of sites was
initially occupied by nonconducting point defects, and in the second one that some frac-
tion of the sites in the k -mers was nonconducting. The dependence of the percolation
threshold on the length of the k -mers and on the impurity concentration was analyzed.
Above some critical concentration of defects, percolation was found to be blocked even
at the jamming limit. Tarashevich et al [26] have studied the influence of defects on the
behavior of electrical conductivity in a monolayer produced by the isotropic and aniso-
tropic deposition of k -mers onto a square lattice. Two kinds of defects were involved
into consideration. The defects in the substrate (impurities) prevent deposition of the
particles. Additionally, it was supposed that some parts of the k -mers may be either con-
ducting or non-conducting (defective). Calculation of the electrical conductivities gave
an explicit confirmation that even a very small concentration of any kinds of defects
has a strong impact on the electrical conductivity. Jamming and percolation on a tri-
angular lattice with extended impurities was studied in [27]. For needle-like impurities
of various lengths ℓ at various concentrations p, percolation threshold θ∗p was determ-
ined for k -mers, angled objects and triangles of two different sizes. For sufficiently large
impurities, percolation threshold θ∗p of all examined objects was found to increase with
the concentration p, and this increase was more prominent for impurities of a larger
length ℓ.

Recently, we proposed a model of granular growth, from nucleation to percolation
and jamming [28]. This model can be regarded as a very simple picture of the size- and
shape-controlled nano-particles growth. Actually, we examine numerically a percolation
model with nucleation and simultaneous growth of multiple finite clusters, on a triangu-
lar lattice. Growing objects are needle-like objects, random walk chains, and ‘wrapping’
objects whose size is gradually increased by wrapping the walks in several different ways,
making triangles, rhombuses, and hexagons. For the growing needle-like objects and the
growing random walk chains, the percolation threshold θ∗p increases with the seed dens-
ity ρ for lower values of ρ, reaches a broad maximum, and slightly falls for higher values
of the seed density. The growing random walk chains cover the surface more efficiently
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than the needle-like objects, and percolation is reached at higher coverages for the grow-
ing random walk chains. The percolation threshold is most affected by the way of the
object growth at low seed concentrations. This influence ceases when the seed density
tends to the percolation threshold for monomers.

Here we present the results of Monte Carlo simulations of the seed-growth on surfaces
with point-like impurities at various concentrations on a triangular lattice. We compare
the results for the percolation thresholds and jamming coverages for growing needle-like
objects and growing random walk chains. To gain a better insight into the structure
of the jammed state, we consider the size distribution of deposited growing objects.
The main goal of the work is to investigate the way the seed growth and the deposit
formation is affected by the presence of impurities.

The paper is organized as follows. Section 2 describes the details of the model and
the simulations. Results and discussions are given in section 3, while section 4 contains
some additional comments and final remarks.

2. Definition of the model and the simulation method

Simulations of the object growth are performed on a two-dimensional triangular lattice
of size L with periodic boundary conditions. In each run through the system the lattice is
initially randomly occupied by point-like impurities at given concentration ρimp, and by
the seeds (monomers) for the object growth randomly distributed at given concentration
ρ. Concentrations ρimp and ρ are defined as fractions of the lattice occupied by impurities
and seeds, respectively.

The growing objects are needle like shapes (k -mers) of length ℓ= k− 1, and shapes
made by self-avoiding random walk chains. A self-avoiding shape of length ℓ is a sequence
of distinct vertices such that each vertex is a nearest neighbour of its predecessor. The
chains are formed by self-avoiding random walks with constraints that step i +1 cannot
return to the site at step i, and there is no intersection of the walk. At each Monte Carlo
step, the length ℓ of k -mers and random walk shains is increased or remains unchanged,
according to the rules that will be presented in the following text.

At the beginning of each run point-like impurities are distributed randomly through
the RSA process. The impurities are inserted randomly up to the chosen coverage
fraction ρimp less than ∼0.5, i.e. less than the percolation threshold for the monomers on
the triangular lattice [27]. Then the monomer seeds are deposited also through the RSA
model up to the chosen coverage ρ, also less than ∼0.5. After the initial configuration
is prepared, a random growing process is initiated in the system.

At each Monte Carlo step, a lattice site occupied by a seed is selected at random.
Then an unoccupied adjacent site is selected at random according to the rules for the
object growth—the needle-like objects or the self-avoiding random walk chains. In the
case of needle-like shapes, the chosen k -mer extends in the direction of the first step in
the formation of the depositing object. If the corresponding adjacent site is occupied
by an impurity or by the previously deposited object, the attempted k -mer elongation
is not possible and the object remains unchanged. In the case of random walk chains,
the selected chain randomly extends into one of the empty nearest neighbour sites. If
all nearest neighbour sites are occupied, the chosen chain does not change.
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Growth of the objects lead to the contact of two objects when they are separated
by a single lattice spacing. Then they are merged into a single cluster. The coverage of
the surface is increased in the process up to the percolation threshold, when a cluster
that extends through the whole system appears. Periodic boundary conditions can be
applied in two ways for triangular lattices, i.e. twisted (helical) boundary conditions and
conventional boundary conditions. Conventional boundary conditions (percolation on a
torus) have been used throughout the paper without losing generality, i.e. sites on an
open border are connected to corresponding sites on the opposite border. We say that
a percolating cluster arises in the system when the opposite borders of the finite lattice
are connected via some path of nearest neighbor sites occupied by the particles. The
tree-based union and find algorithm was used to determine the percolation threshold
[29]. Each cluster of connected sites is stored as a separate tree, having a single ‘root’
site. All sites in the cluster possess pointers to the root site, so it is simple to ascertain
whether two sites are members of the same cluster. When a deposited object connects
two separate clusters, they are amalgamated by adding a pointer from the root of
the smaller cluster to the root of the larger one. This procedure is repeated until the
percolation threshold is reached.

Another quantity of interest is the jamming limit θJ, which is reached when no more
depositing objects can be placed in any position on the lattice. In our model this is the
coverage fraction at which no more growing object can be increased according to the set
rules. Data are averaged over 500 independent runs through the system for each lattice
dimension and for each set of the parameters.

3. Results and discussion

Percolation and jamming properties are studied for growing k -mers and growing self-
avoiding random walks. Results are obtained for a wide range of impurity concentrations
ρimp and for a wide range of initial monomer (seed) densities ρ.

For percolation-type systems the dependence of the effective percolation threshold
θp (the mean value of threshold measured for a finite lattice) on the linear size L of
the lattice is described correctly by the finite-size scaling theory [12]. The effective
percolation threshold θp approaches the asymptotic value θ∗p for L→∞ via the power
law:

θp− θ∗p ∝ L−1/ν . (1)

Here θ∗p is the exact percolation threshold (as L→∞), and ν is the correlation length
critical exponent. For two-dimensional systems the theoretical value for ν is ν = 4/3.
Relationship (1) allows us to extrapolate the percolation threshold for an infinite system.
In general, finite-size scaling implies that estimates converge to θ∗p as L−1/n [12], but for
certain symmetric systems, such as a square open boundary for site percolation on a
square lattice, the convergence goes as L−1−1/n [29] and even faster for wrapping around
a periodic system [30].

Simulations were performed for lattice sizes ranging from L=100 to L=3200. Plot-
ting the obtained value θp of the percolation threshold for various lattice sizes against
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Figure 1. (a) Finite-size scaling of the percolation threshold θp against L−1/ν ,
with ν = 4/3, for growing needle-like objects (k−mers) for various values impurity
concentrations ρimp and for initial monomer density ρ=0.3. (b) Standard deviations
σ of the percolation threshold on double logarithmic scale for growing k -mers and
various values of impurity concentrations ρimp in the case of seed density ρ=0.3.
Straight lines correspond to the best fit according to the power law of equation (2)
with the exponents 0.711± 0.003, 0.753± 0.015, 0.752± 0.015, and 0.742± 0.012
for impurity concentrations ρimp = 0.1, 0.2, 0.3, 0.35, respectively.

L−1/ν , confirms the validity of the finite-size scaling in the system and determines the
asymptotic value of the percolation threshold θ∗p. Finite-size scaling of the percolation
threshold θp for the growing needle-like objects is illustrated in figure 1(a) for various
impurity concentrations ρimp and for initial monomer density ρ=0.3.

According to the scaling theory the standard deviation σ of the percolation threshold
measured for a finite lattice L satisfies the power law:

σ ∝ L−1/ν . (2)

In figure 1(b), the standard deviation σ vs L is shown on a double logarithmic scale for
the growing k -mers and initial monomer density ρ=0.3. For all impurity densities ρimp
we obtained the confirmation of the power law of equation (2) with the value of the
exponent 1/ν ranging from 0.710 to 0.755. These results are in a good agreement with
the universal value 1/ν = 3/4 for 2D percolations.

At low impurity concentrations it is easier to make connections between the growing
objects, and relatively low values of the seed densities are enough to achieve percolation.
For high impurity concentrations higher seed densities are needed for reaching the per-
colation threshold. The interplay between the seed density and the density of impurities
is illustrated in figure 2(a). This figure shows the minimum seed densities required to
achieve the percolation transition for a given value of the impurity density. Values of
the corresponding percolation thresholds are shown in figure 2(b) as a function of the
impurity concentration and in figure 2(c) as a function of the seed density.

Dependence of the percolation threshold on the initial seed density for various impur-
ity concentrations is shown for the growing needle-like objects in figure 3. At lower values
of the initial seed density ρ, θ∗p grows monotonically for all impurity concentrations. At
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Figure 2. (a) Interplay between the seed density ρ and the density of impurities
ρimp in the case of growing needle-like objects. At low impurity concentrations rel-
atively low values of seed densities are enough to achieve percolation. For higher
impurity concentrations higher seed densities are needed for reaching the percol-
ation threshold. (b) Corresponding values of the percolation threshold θ∗p vs the
impurity concentration ρimp. (c) Corresponding values of the percolation threshold
θ∗p vs the seed density ρ.

low values of the initial seed densities objects have enough space to grow, surface is por-
ous, and the percolation threshold is reached at low values of the coverage. As the seed
density increases, the contribution of small objects to the coverage increases and the
percolation threshold θ∗p is reached at higher coverages. Except for the highest impurity
concentrations, close to the percolation threshold, the percolation threshold reaches a
broad maximum for higher initial seed densities, and slightly falls for larger ρ, as shown
in the inset of figure 3.

In figure 4 dependence of the percolation threshold on the impurity concentration for
the growing needle-like objects is shown for various initial seed densities. At low values
of the initial seed densities, percolation threshold can be reached only for low values
of the impurity concentration. Value of ρimp at which the percolation can be reached
increases with the growth of ρ. Values of the percolation threshold θ∗p for various values
of the initial seed density ρ and impurity concentration ρimp shown in figures 3 and 4
for growing needle-like objects are also given in table 1 (see the appendix).

Values of the jamming coverage θJ for the growing needle-like objects are shown in
figure 5 as a function of the initial seed density ρ for various impurity concentrations
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Figure 3. Dependence of the percolation threshold θ∗p on the initial seed density ρ
for growing needle-like objects. Results are shown for various impurity concentra-
tions ρimp given in the legend. The inset shows the enlarged part of this graph that
displays a non-monotonic behavior.

ρimp. It can be seen that θJ monotonically grows with ρ for all impurity concentra-
tions. As expected, larger seed density provides growth of more objects, including espe-
cially the short ones, covering the surface more efficiently. Jamming coverage θJ vs the
impurity concentration ρimp is presented in figure 6 for various values of the seed dens-
ities ρ. For a given ρ, θJ decreases with ρimp, since larger impurity concentrations leave
less space for the growing objects.

In order to gain a better insight into the structure of coverings generated by the
process of the object growth, we consider the number of deposited k -mers N (k), nor-
malized by the initial number of seeds N 0. Dependence of the ratio N(k)/N0 on the
object length ℓ= k− 1 for the system in the jamming state is shown in figure 7 for
various values of the impurity concentrations ρimp and various values of the seed dens-
ities ρ given in the legend of each figure. At lower impurity concentrations (figure 7(a)),
maximum of the ratio N(k)/N0 is for the length equal unity for all seed concentrations,
i.e. dimers are the most numerous objects in the deposit at the jamming coverage.
For larger impurity concentrations (figures 7(b) and (c)), maximum of the object ratio
corresponds to monomers for sufficiently large seed densities.

In figure 8 dependence of the ratio N(k)/N0 on the object length for the system in
the jamming state is shown for various values of the seed densities ρ and various values
of the impurity concentrations ρimp given in the legends. It can be seen that at the
lower seed densities (figures 8(a) and (b)), dimers are the most numerous objects in the
deposit at the jamming coverage for all impurity concentrations. With the increase of the
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Figure 4. Dependence of the percolation threshold θ∗p on the impurity concentra-
tion ρimp for growing needle-like objects. Results are shown for various initial seed
densities ρ given in the legend.

seed concentrations, monomers prevail at larger values of the impurity concentrations
(figure 8(c)). Increase in the seed concentration and the impurity concentration suppress
the object growth and the ratio corresponding to monomers increases.

Values of the percolation threshold θ∗p against L−1/ν , for the growing self-avoiding
random walks are shown in figure 9(a) for various values impurity concentrations ρimp
and for initial monomer density ρ=0.3. These graphs also confirm the validity of the
finite-size scaling in the system and allow the determination of the asymptotic value
of the percolation threshold θ∗p. Note that, at high impurity concentrations there are
difficulties in reaching percolation on smaller lattices for low seed concentrations, but
they are less pronounced than in the case of k -mers.

In figure 9(b) the standard deviation σ vs L is shown on a double logarithmic scale for
the growing self-avoiding random walks for various values of the impurity concentrations
ρimp and for initial monomer density ρ=0.3. For all impurity concentrations and seed
densities we obtained the confirmation of the power law of equation (2) with the value
of the exponent 1/ν ranging from 0.731 to 0.746.

Dependence of the percolation threshold θ∗p on the seed concentration ρ for growing
random walk chains are shown in figure 10 for various impurity concentrations ρimp given
in the legend. Similarly as for the needle-like objects, θ∗p grows monotonically at lower
values of the initial seed density ρ. Except for the impurity concentrations close to the
percolation threshold for monomers, the percolation threshold for growing self-avoiding
random walk chains reaches a broad maximum for high initial seed densities.
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Figure 5. Jamming coverage θJ for growing needle-like objects (k -mers) vs the
initial seed density ρ for various impurity concentrations ρimp given in the legend.

Figure 6. Jamming coverage θJ for growing needle-like objects (k -mers) vs the
density of impurities ρimp for various initial seed densities ρ given in the legend.
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Figure 7. Dependence of the normalized number of deposited k -mers N(k)/N0 on
the object length ℓ= k− 1 for the system in the jamming state for: (a) ρimp = 0.1;
(b) ρimp = 0.3; (c) ρimp = 0.48. Results are given for various values of the seed
densities ρ that are indicated in the legend. Here, N 0 is the initial number of seeds
at a given seed density ρ.

Figures 3 and 10 show that for sufficiently low impurity concentrations ρimp, the
dependence of the percolation threshold θ∗p on the seed density ρ is non-monotonic.
First, we will explain the existence of a broad maximum in the dependence of the per-
colation threshold θ∗p on the seed density ρ in cases of low concentrations of impurities.
Namely, during the increase of seed (monomer) density from ρ=0 to ρ=0.5, all curves
must finish at the same point, θ∗p = 0.5, which corresponds to the percolation threshold
for monomers. However, for sufficiently high seed densities, the percolation threshold
reaches values higher than 0.5. In that case, dimers are the dominant component of the
deposit (see, for example, figure 7). Then short objects can grow from monomers (seeds)
in sufficient numbers so the lattice coverage can become greater than 0.5 without the
percolation transition occurring. In fact, the seed distribution reduces the connectivity
of clusters on the lattice and thereby increases the percolation threshold above 0.5.
However, lattice filling above a density of 0.5 does not occur when the impurity density
is very high because the growth of objects is then significantly prevented.
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Figure 8. Dependence of the normalized number of deposited k -mers N(k)/N0 on
the object length ℓ= k− 1 for the system in the jamming state for initial seed
densities: (a) ρ=0.1; (b) ρ=0.3; (c) ρ=0.48. Results are given for various values
of the impurity concentrations ρimp that are indicated in the legend. Here, N 0 is
the initial number of seeds at a given seed density ρ.

Dependence of θ∗p on the impurity concentration for the growing random walk chains
is shown in figure 11 for various seed concentrations given in the legend. For a given
seed concentration, θ∗p decreases with impurity concentration, reaches a minimum and
slightly increases for the impurity concentrations close to the percolation threshold for
monomers on the triangular lattice (∼0.5). Values of the percolation threshold θ∗p for
various values of the initial seed density ρ and impurity concentration ρimp shown in
figures 10 and 11 for growing random walk chains are also given in table 2 (see the
appendix).

Comparison of the influence of the seed density ρ and the impurity concentration ρimp
on the percolation threshold θ∗p for the growing needle-like objects (circles) and for the
growing random walk chains (squares) is given in figure 12. In figure 12(a) dependence
of θ∗p on ρ is shown for three different values of the impurity concentration given in the
legend. We can see that the values of θ∗p have lower values for the needle-like objects
than for the self-avoiding random walk chains in the whole seed density range. This
difference is more prominent for lower values of impurity concentrations and lower seed
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Figure 9. (a) Finite-size scaling of the percolation threshold θp against L−1/ν , with
ν = 4/3, for the growing random walk chains for various values impurity concen-
trations ρimp and for initial monomer density ρ=0.3. (b) Standard deviations σ
of the percolation threshold on double logarithmic scale for growing random walk
chains and various values of impurity concentrations ρimp in the case of seed dens-
ity ρ=0.3. Straight lines correspond to the best fit according to the power law
of equation (2) with the exponents 0.734± 0.009, 0.745± 0.008, 0.746± 0.008, and
0.734± 0.009 for impurity concentrations ρimp = 0.15, 0.2, 0.35, 0.45, respectively.

Figure 10. Dependence of the percolation threshold θ∗p on the initial seed density
ρ for growing random walk chains. Results are shown for various impurity concen-
trations ρimp given in the legend. The inset shows the enlarged part of this graph
that displays a non-monotonic behavior.
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Figure 11. Dependence of the percolation threshold θ∗p on the impurity concentra-
tion ρimp for the growing random walk chains. Results are shown for various initial
seed densities ρ given in the legend.

densities. Surface configuration formed during the object growth is more porous in the
case of the needle-like objects and the percolation occurs at lower coverage values. With
the growth of the seed density ρ or the impurity density ρimp, this difference decreases
and practically ceases when ρ or ρimp approach the value of the percolation threshold
for monomers on the triangular lattice. In figure 12(b) dependence of θ∗p on ρimp is
shown for the growing needle-like objects and for the growing random walk chains for
three different values of the seed concentration ρ given in the legend. These results also
indicate that the values of θ∗p have lower values for the needle-like objects than for the
self-avoiding random walk chains and that the difference is largest for the lowest values
of ρ and ρimp.

Jamming coverage θJ for the growing random walk chains grows with the seed dens-
ities for all values of impurity concentrations (figure 13). This growth starts from higher
values of θJ than in the case of the growing needle-like objects. At low values of the
seed concentrations the growing needle-like objects make porous surface configuration,
while the growing random walk chains are more flexible and cover the surface more
efficiently. From figure 14, showing the dependence of the jamming coverage θJ for the
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Figure 12. (a) Comparison of the influence of the seed density ρ on the percola-
tion threshold θ∗p for the growing needle-like objects (circles) and for the growing
random walk chains (squares). Dependence of θ∗p on ρ is shown for three different
values of the impurity concentration given in the legend. (b) Comparison of the
influence of the impurity concentration ρimp on the percolation threshold θ∗p for
the growing needle-like objects (circles) and for the growing random walk chains
(squares). Dependence of θ∗p on ρimp is shown for three different values of the seed
concentration given in the legend.

Figure 13. Jamming coverage θJ for the growing random walk chains vs the initial
seed density ρ for various impurity concentrations ρimp given in the legend.
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Figure 14. Jamming coverage θJ for the growing random walk chains vs the density
of impurities ρimp for various initial seed densities ρ given in the legend.

growing random walk chains on the density of impurities ρimp, it can be seen that the
jamming coverage decreases approximately linearly with ρimp.

Figure 15 shows the normalized number of deposited random walk chains N(k)/N0

as a function of the object length, for various impurity concentrations ρimp and vari-
ous initial seed densities ρ given in the legends. In figure 15(a) results for the lowest
impurity concentration considered, ρimp = 0.1, are presented. Maximum for the lowest
initial seed density ρ=0.1 is for ℓ= 5, i.e. for a random walk covering six lattice sites.
The maximum is shifted towards shorter random walk chains when the seed density
increases and for the highest values of ρ, close to the percolation threshold, monomers
are the most numerous objects making the deposit. In figures 15(b) and (c) results for
ρimp = 0.3 and ρimp = 0.48 are presented, respectively. As the impurity concentration
increases, the maximum is shifted towards lower ℓ, and the threshold for the predomin-
ance of monomers in the deposit is shifted to lower values of initial seed concentrations.
Nevertheless, even for the largest ρimp considered, there are considerable concentrations
of longer objects in the deposit.

Dependence of the normalized number of random walk chains N(k)/N0 on the walk
length is presented in figure 16 for various seed concentrations ρ and various impurity
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Figure 15. Dependence of the normalized number of deposited random walk chains
N(k)/N0 on the chain length ℓ= k− 1 for the system in the jamming state for:
(a) ρimp = 0.1; (b) ρimp = 0.3; (c) ρimp = 0.48. Results are given for various values
of the seed density ρ that are indicated in the legend. Here, N 0 is the initial number
of seeds at a given density ρ.

concentrations ρimp given in the legends. For ρ=0.1 and ρimp = 0.1 the maximum is at
ℓ= 5 (walks covering six lattice sites), and for ρ=0.1 and ρimp = 0.48 at ℓ= 1 (walks
covering two lattice sites). Increasing the values of ρ and ρimp causes the shifting of the
maximum towards lower values of ℓ. For ρ=0.3 the most numerous objects are dimers
only for the sufficiently low impurity concentrations. Further increase of ρ causes shifting
of the maximum to the monomers. For the values of ρ close to the percolation threshold
for monomers, the most numerous objects in the deposit are monomers for all values of
ρimp. When comparing the structure of the deposit for the growing needle-like objects
and the growing random walk chains, the latter form jamming configurations with longer
objects. The growing random walk chains are more flexible than the needle-like objects
and they can find the path for the growth more easily.
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Figure 16. Dependence of the normalized number of deposited random walk chains
N(k)/N0 on the chain length ℓ= k− 1 for the system in the jamming state for:
(a) ρ=0.1; (b) ρ=0.3; (c) ρ=0.48. Results are given for various values of the
impurity concentrations ρimp that are indicated in the legend. Here, N 0 is the
initial number of seeds at a given seed density ρ.

4. Concluding remarks

Percolation and jamming were studied for growing objects on a triangular lattice with
quenched impurities. Growing objects were needle-like shapes and random walk chains
and the simulations were performed for various seed concentrations ρ and various impur-
ity concentrations ρimp up to the percolation threshold for monomer deposition.

The presence of impurities requires higher seed concentrations to achieve percolation
during the object growth process on the surface. As a consequence, the percolation
threshold increases with the minimum seed density leading to percolation, and also
with the corresponding impurity concentration.

In the case of needle-like object growth, at the values of the initial seed densit-
ies ρ that are not close to the percolation threshold for the monomers, θ∗p increases
monotonically with the seed density ρ for all impurity concentrations ρimp. Except for
the highest impurity concentrations, close to the percolation threshold, the percolation
threshold reaches a broad maximum for high initial seed densities. When results for θ∗p
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are shown vs ρimp for fixed ρ, the obtained plots show an only slight dependence on ρimp.
Here should be noted that the value of ρimp at which the percolation can be reached
increases with the growth of ρ and hence has an indirect influence on the percolation
threshold.

When the growing objects are self-avoiding random walk chains, dependence of θ∗p on
the seed density ρ is similar as in the case of needle-like objects. On the other hand, for a
given seed concentration, θ∗p decreases with impurity concentration, reaches a minimum,
and slightly increases for the impurity concentrations close to the percolation threshold
for monomers on the triangular lattice. Growing random walk chains are able to avoid
the impurities more efficiently than the growing needle-like objects, and the increase of
the impurity concentration can decrease the percolation threshold. Comparison of the
influence of the seed density ρ and the impurity concentration ρimp on the percolation
threshold θ∗p for the growing needle-like objects and for the growing random walk chains
indicates that the values of θ∗p have lower values for the needle-like objects than for the
self-avoiding random walk chains. The difference is largest for the lowest values of ρ and
ρimp, and ceases near the values of the site percolation threshold for monomers on the
triangular lattice, ρ∗p ≃ 0.5.

Values of the jamming coverage θJ for the growing objects increase with the seed
concentration ρ for given impurity concentrations ρimp, and decrease with ρimp for given
ρ. The increase of θJ with ρ is more prominent for the growing needle-like objects, and
the decrease of θJ with ρimp is steeper for the growing random walk chains.

Structure of the jammed state depends on the rules for the object growth, on the
initial seed density ρ and on the impurity concentration ρimp. Comparing the jamming
configurations made by the growing needle-like objects and by the growing random
walk chains, the latter form jamming configurations with longer objects. The growing
random walk chains are more flexible than the needle-like objects and they can form
configurations with prevailing longer objects, especially at lower values of the seed
densities and the impurity concentrations.
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Appendix

Values of the percolation threshold θ∗p for various values of the initial seed density ρ and
impurity concentration ρimp for growing needle-like objects and random walk chains are
given in tables 1 and 2, respectively.
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Table 1. Values of the percolation threshold θ∗p for various values of the initial seed
density ρ and impurity concentration ρimp for the growing needle-like objects. The
numbers in parentheses are the numerical values of the standard uncertainty of θ∗p
referred to the last digits of the quoted values.

ρimp

ρ 0.0 0.1 0.2 0.3 0.4 0.45 0.48

0.1 0.373 64(10) 0.371 67(05)
0.15 0.420 98(16) 0.422 63(21) 0.424 04(86)
0.2 0.452 23(34) 0.453 84(23) 0.454 16(11) 0.454 58(26)
0.25 0.474 28(20) 0.474 31(11) 0.473 66(34) 0.472 29(16) 0.471 70(14)
0.3 0.489 20(15) 0.488 31(12) 0.486 29(20) 0.483 75(17) 0.481 83(12) 0.482 37(12)
0.35 0.499 12(31) 0.497 63(11) 0.495 49(19) 0.492 39(25) 0.489 43(11) 0.488 68(12) 0.489 38(19)
0.38 0.502 90(23) 0.501 58(12) 0.498 55(25) 0.495 86(24) 0.493 12(17) 0.492 23(10) 0.492 32(11)
0.4 0.504 36(15) 0.502 53(69) 0.500 76(05) 0.497 64(31) 0.495 43(15) 0.494 19(16) 0.493 62(11)
0.42 0.504 98(17) 0.504 00(13) 0.501 92(13) 0.499 67(08) 0.497 05(12) 0.495 73(33) 0.495 48(13)
0.43 0.505 10(28) 0.503 75(26) 0.502 23(27) 0.500 12(09) 0.497 84(14) 0.496 51(07) 0.495 92(16)
0.44 0.505 17(26) 0.503 95(13) 0.502 61(09) 0.500 61(18) 0.498 37(16) 0.497 72(18) 0.496 82(15)
0.45 0.504 92(11) 0.503 89(09) 0.502 66(12) 0.501 11(07) 0.499 08(11) 0.498 08(10) 0.497 43(10)
0.46 0.503 95(36) 0.503 63(07) 0.502 47(06) 0.501 36(15) 0.499 64(07) 0.498 60(18) 0.498 64(14)
0.47 0.503 29(13) 0.502 91(25) 0.501 97(06) 0.501 12(11) 0.500 15(19) 0.499 19(15) 0.498 83(08)
0.48 0.502 33(08) 0.501 99(16) 0.501 37(20) 0.500 76(12) 0.500 09(08) 0.499 64(07) 0.499 58(05)
0.49 0.500 44(42) 0.500 99(02) 0.500 84(03) 0.500 54(12) 0.500 04(04) 0.499 91(06) 0.499 86(28)

Table 2. Values of the percolation threshold θ∗p for various values of the initial seed
density ρ and impurity concentration ρimp for the growing random walk chains. The
numbers in parentheses are the numerical values of the standard uncertainty of θ∗p
referred to the last digits of the quoted values.

ρimp

ρ 0.0 0.1 0.2 0.3 0.4 0.45 0.48

0.1 0.485 07(39) 0.472 79(41) 0.460 03(18) 0.445 69(12) 0.444 61(05) 0.446 32(00)
0.15 0.496 28(33) 0.486 43(19) 0.475 61(18) 0.462 84(29) 0.461 27(15) 0.463 24(10)
0.2 0.502 50(27) 0.494 18(21) 0.484 83(14) 0.473 69(08) 0.471 96(18) 0.473 79(54) 0.476 72(12)
0.25 0.506 03(25) 0.499 38(25) 0.491 83(09) 0.481 77(12) 0.479 68(23) 0.479 63(12) 0.482 89(39)
0.3 0.508 20(52) 0.502 90(40) 0.497 00(34) 0.488 10(18) 0.486 12(20) 0.485 39(07) 0.486 76(04)
0.35 0.509 56(22) 0.505 67(24) 0.500 95(05) 0.493 77(07) 0.491 70(10) 0.490 34(11) 0.490 89(11)
0.38 0.509 42(16) 0.506 17(17) 0.502 62(17) 0.496 37(22) 0.494 39(16) 0.492 99(12) 0.492 95(12)
0.4 0.508 80(17) 0.506 80(37) 0.503 50(24) 0.498 05(07) 0.496 32(15) 0.494 46(23) 0.494 30(11)
0.42 0.508 31(18) 0.506 15(11) 0.503 59(17) 0.4999(08) 0.497 70(10) 0.496 41(05) 0.495 60(07)
0.43 0.507 20(41) 0.505 69(08) 0.503 26(14) 0.499 64(08) 0.498 26(12) 0.496 83(16) 0.496 34(04)
0.44 0.506 94(38) 0.505 30(11) 0.503 67(15) 0.500 06(12) 0.498 95(13) 0.497 62(12) 0.496 89(08)
0.45 0.505 94(10) 0.504 76(12) 0.503 13(14) 0.500 39(14) 0.499 41(09) 0.498 24(18) 0.497 89(17)
0.46 0.505 00(09) 0.504 08(07) 0.503 02(13) 0.500 87(24) 0.499 74(08) 0.498 99(13) 0.498 30(06)
0.47 0.503 81(20) 0.503 32(15) 0.502 52(09) 0.500 63(14) 0.500 06(14) 0.499 37(13) 0.498 76(13)
0.48 0.502 52(26) 0.502 34(15) 0.501 61(13) 0.500 60(13) 0.500 12(17) 0.499 46(15) 0.499 24(10)
0.49 0.500 38(42) 0.501 38(02) 0.500 77(10) 0.500 40(05) 0.500 08(03) 0.499 85(05) 0.499 70(32)
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