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1 Faculty of Electrical Engineering, University of Sarajevo, Sarajevo 71000,
Bosnia and Herzegovina

2 Polytechnic Faculty, University of Zenica, Zenica, Bosnia and Herzegovina
3 Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun

11080 Belgrade, Serbia
4 Faculty of Engineering, University of Novi Sad, Trg D. Obradovića 6, Novi
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Abstract. Percolation properties of an adsorbed polydisperse mixture of
extended objects on a triangular lattice are studied by Monte Carlo simula-
tions. The depositing objects of various shapes are formed by self-avoiding walks
on the lattice. We study polydisperse mixtures in which the size ℓ of the shape
making the mixture increases gradually with the number of components. This
study examines the influence of the shape of the primary object defining a poly-
disperse mixture on its percolation and jamming properties. The dependence of
the jamming density and percolation threshold on the number of components n
making the mixture is analyzed. Determining the contribution of the individual
components in the lattice covering allowed a better insight into the deposit struc-
ture of the n-component mixture at the percolation threshold. In addition, we
studied mixtures of objects of various shapes but the same size.
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1. Introduction

Percolation is a simple model of the formation of long-range connectivity in random
systems. In 1957 Broadbent and Hammersley, published the first paper on percolation
theory to model the flow of fluid in a random medium [1]. Later on, others applied and
generalized the theory, in particular by developing percolation theory on lattices and
studying it by computer simulations [2–6]. Percolation has a wide variety of applica-
tions, including porous media [7], microemulsions [8], disordered semiconductors and
superconductors [9], molecular and macromolecular liquids [10, 11], nano-tubes in com-
posites and suspensions [12, 13], thin metal films [14], layered materials [15], biological
networks and bioinformatics [16, 17], etc.

For most real percolating systems, some important physical properties depend on the
detailed geometry of the substrate and on the shape and size of the adsorbed particles.
Consequently, more general percolation problems can be formulated by including irre-
versible random deposition of extended objects occupying more than one site on the
lattice [18–23]. In random sequential adsorption (RSA) processes particles are randomly,
sequentially and irreversibly deposited on an initially empty substrate or lattice with
the restriction that they must not overlap with previously added objects [24–27]. The
kinetics of the process is characterized by the time evolution of the coverage, θ(t), i.e. the
fraction of the substrate covered by the deposited objects. This dependence has been
the object of numerous analysis, which include Monte Carlo approaches [28–32], series
expansion [33, 34], and rate equations [35, 36]. Due to the blocking of the substrate
area by the previously adsorbed particles, at large times the coverage θ(t) approaches
the jammed-state value θJ, where only gaps too small to accommodate new particles
are left in the monolayer.

Percolation in RSA systems assumes the existence of a spanning cluster formed by
the deposited objects that reaches two opposite sides of the lattice. In such systems,
the value of percolation threshold θ∗p is below the jamming limit θJ for the deposited
shapes. Interplay between jamming density θJ and percolation threshold θ∗p has been
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studied in detail for a large number of different objects [21, 37–45]. In reference [21]
the results for the percolation thresholds, jamming coverages and their ratios were
given for the deposition of various shapes on a triangular lattice. It was found that
for elongated shapes the percolation threshold monotonically decreases, while for more
compact shapes it monotonically increases with the object size. For various objects of the
same length, the percolation threshold of more compact objects exceeds the percolation
threshold of the elongated ones.

Polydispersity of incident particle size is observed in a large number of processes,
especially in colloidal particle and macromolecule adsorption. Irreversible deposition
in polydisperse systems was studied for binary mixtures [46–50], and for mixtures of
particles obeying various size distributions [51–55]. The impact upon the percolation
threshold of accounting for polydispersity in the shapes and sizes of the particles has
also been examined [56–59]. Efforts that address such non-monodisperse systems are
especially relevant in view of the fact that distributions over particle dimensions are
often present in experimental situations [60–63]. However, not much is known about
the influence of the particle size distribution on the properties of composite materials
and there are still many questions to be answered.

In this paper, the percolation behavior of an adsorbed polydisperse mixture has been
investigated by using Monte Carlo (MC) simulation and finite-size scaling analysis. Basic
depositing shapes, such as k -mers, angled objects, triangles, rhombuses, and hexagons,
are made by directed self-avoiding lattice steps [31]. The polydisperse mixtures are made
of n objects of various sizes of the same shape. The objects of larger size are made
using the same procedure as for the basic ones, with the edges of the shape gradually
enlarging the necessary number of times. Simulations are performed for polydisperse
mixtures containing isomorphic objects of various sizes which are generated from a
specific basic shape. This study examines the influence of the shape of the primary object
defining a polydisperse mixture on its percolation and jamming properties. Dependence
of the percolation threshold on the number of components making the mixture is also
analyzed. Special attention is devoted to the analysis of substrate coverage by individual
components forming a mixture at the mixture percolation threshold.

We organized the paper as follows. Section 2 describes the details of the model and
simulations. In section 3 results of numerical simulation are presented and discussed.
Finally, section 4 contains some additional comments and final remarks.

2. Definition of the model and the simulation method

Depositing objects used in our simulations are made by directed self-avoiding random
walks on a triangular lattice. Various shapes of length ℓ = 1, 2, and 3, and one object
of length six with different percolation and jamming behavior, are shown in table 1.
A random walk chain of length ℓ covers k = ℓ+ 1 lattice sites. Objects of larger sizes
are made by repeating each step of the basic shape the same number of times. In this
manner, all objects of larger sizes are isomorphic to the basic shape. In the case of
compact basic shapes such as triangles, rhombuses and hexagons, larger objects also
occupy all comprised sites. Formation of objects larger than the basic ones is illustrated
in table 2. The polydisperse mixtures are made of n objects of sequentially increasing
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Table 1. Basic objects of various shapes. The number of nearest neighbors is
denoted by m(x) for the corresponding shape, and ℓ denotes the length of the walk
that makes the shape.

(x) Shape m(x) ℓ(x)

(A) 8 1
(B) 10

(C) 10 2

(D) 9
(E) 12

(F) 12

(G) 11

(H) 12 3

(I) 12

(J) 10

(K) 12 6

Table 2. Illustration of the construction of the objects larger than the basic ones.

k -mer ℓ Angle (C) ℓ Triangle ℓ Rhombus ℓ Hexagon ℓ

1 2 2 3 6

2 4 5 8 18

3 6 9 15 36
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sizes of the basic shape, or of n objects of various shapes of the same length. Size of the
object is determined by the length ℓ of the walk making the object.

Monte Carlo simulations are performed on a triangular lattice with linear size up
to L= 3200 sites. At each Monte Carlo step a lattice site is selected at random. If the
selected site is unoccupied, one of the objects making the mixture is chosen with equal
probability and deposition of the selected object is tried in one of the six orientations.
We fix the beginning of the walk that makes the shape at the selected site, and search
whether all successive ℓ sites are unoccupied. If so, we occupy these ℓ+ 1 sites and
deposit the object. If the attempt fails, deposition of a new object from the mixture is
tried at a new randomly chosen site.
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During the process, the coverage of the surface is increased, and the percolation
threshold θp is reached when a cluster that extends through the whole system appears.
Here we check the connectivity between the left and the right edges of the lattice. The
tree-based union/find algorithm is used to determine the percolation threshold [64].
Each cluster of connected sites is stored as a separate tree, having a single ‘root’ site. All
sites in the cluster possess pointers to the root site, making it simple to ascertain whether
two sites belong to the same cluster. When a deposited object connects two separated
clusters, they are amalgamated by adding a pointer from the root of the smaller cluster
to the root of the larger one. This procedure is repeated until the percolation threshold
is reached, i.e. until the opposite sides of the lattice are connected by a single cluster.

Another quantity of interest is the jamming limit θJ when neither of the shapes
making the mixture can be placed in any position on the lattice. The jamming limit
is reached when the number of inaccessible sites (the occupied sites and the sites that
cannot be the beginning of any walk making the mixture) becomes equal to the total
number of lattice sites L2. For the approach to the jamming coverage and percolation,
periodic boundary conditions are used in all directions. The time is counted by the
number of attempts to select a lattice site and scaled by the total number of lattice
sites. The data is averaged over 500 independent runs for each mixture of depositing
objects, and each lattice size L.

3. Results and discussion

Simulations are performed for n-component mixtures of objects of various sizes, where
all objects in the mixture are isomorphic to a single basic object from table 1. The
number of components n is always increased by adding an object of a greater length,
starting from the basic one. For example, the two-component mixture of line segments
consists of the lines of length ℓ = 1 and ℓ = 2, the three-component mixture is made by
adding a line segment of length ℓ = 3, and so on. An n-component mixture contains lines
of length ℓ = 1,2, . . . ,n, and all of them are adsorbed with equal probability. Mixtures of
the other shapes from table 1 are made in a similar way. In the case of k -mers, mixture
with up to n = 30 components are examined, mixtures of angled objects are made up
to n = 10, and mixtures of triangles, as well as the other basic objects from table 1,
contain up to n = 5 components.

For percolation-type systems, it is known that the dependence of the effective per-
colation threshold θp (the mean value of threshold measured for a finite lattice) on the
linear size L of the lattice is described by the finite-size scaling theory [3]. The effective
percolation threshold θp approaches the asymptotic value θ∗p for L→∞ via the power
law:

θp − θ∗p ∝ L−1/ν . (1)

Here θ∗p is the exact percolation threshold (as L→∞), and ν is the correlation length
critical exponent. For two-dimensional systems the theoretical value for correlation
length is ν = 4/3. Relationship (1) allows us to extrapolate the percolation threshold
for an infinite system.
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Figure 1. Finite-size scaling of the percolation threshold θp against L−1/ν , with
ν = 4/3, for the four-component mixtures of the basic objects shown in the legend
(see, table 1). Each mixture is made of four different sizes of the basic shape.

Simulations were performed for lattice sizes ranging from L= 100 to L= 3200.
Plotting the obtained values of the effective percolation threshold θp for various lat-

tice sizes against L−1/ν confirms the validity of the finite-size scaling in the system and
determines the asymptotic value of the percolation threshold θ∗p. In figure 1 finite-size
scaling of the percolation threshold θp is illustrated for the four-component mixtures of
the basic shapes shown in table 1. Each mixture contains objects (components) of four
sizes that correspond to a specific basic shape.

Dependence of the percolation threshold θ∗p on the number of mixture components
n is shown in figure 2 for various basic shapes from table 1. For comparison, results are
shown for mixtures containing n = 1,2, . . . ,5 components. The exceptions are made for
rhombuses (J) and hexagons (K). Namely, maximum number of mixture components
that exhibit percolation is n = 4 for rhombuses, and n = 3 for hexagons. From this
figure it can be seen that for the elongated objects, such as k -mers (A), angled objects
(C), objects (F), (G), (H), and (I) from table 1, percolation threshold θ∗p decreases
with the number of mixture components. For these shapes percolation is reached more
easily with adding a longer component to the mixture. During deposition, larger objects
form large compact clusters of parallel objects. By effectively connecting, they create a
porous deposit, which reduces the percolation threshold. On the contrary, compact and
larger objects, such as triangles (D), rhombuses (J), and hexagons (K), are significantly
more difficult to connect into large clusters. During deposition, they effectively fill the
surface with groups of smaller and disconnected clusters, which increases the percolation
threshold θ∗p with the number of components.

Percolation properties depend on the connectivity of depositing shapes, i.e. on the
capability of the object to make connections with other depositing objects. The number
of nearest neighbors m seems to be a quantity that is closely related to the connectivity,
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Figure 2. Dependence of the percolation threshold θ∗p on the number of mixture
components n for various basic shapes given in the legend (see, table 1). The number
of components n is always increased by adding an object of a greater length.

Table 3. Values of the percolation thresholds θ∗p for various number of mixture
components n. Basic shapes are denoted as in table 1.

n 1 2 3 4 5

(A) 0.4841(13) 0.4738(2) 0.4620(1) 0.4516(2) 0.4427(2)
(C) 0.4585(11) 0.4367(1) 0.4180(2) 0.4026(2) 0.3906(3)
(D) 0.5249(1) 0.5389(1) 0.5513(3) 0.5620(5) 0.5710(4)
(F) 0.4360(2) 0.4087(2) 0.3895(2) 0.3758(1) 0.3655(2)
(G) 0.4824(2) 0.4511(2) 0.4286(2) 0.4123(3) 0.4001(1)
(H) 0.4391(1) 0.4090(1) 0.3876(2) 0.3729(2) 0.3615(2)
(I) 0.4484(3) 0.4195(1) 0.4006(3) 0.3863(5) 0.3754(5)
(J) 0.5397(4) 0.5592(2) 0.5742(2) 0.5866(7)
(K) 0.5843(2) 0.6120(4) 0.6312(2)

and it is included in table 1. It was shown that the percolation threshold decreases with
m for objects of the same length [21]. This feature reflexes also in the case of deposition
of mixtures of objects of various sizes of the same basic shape. For mixtures of elongated
objects, having larger number of nearest neighbours, the percolation threshold decreases
with adding longer objects to the mixtures. On the other hand, for mixtures of compact
objects (triangles, rhombuses and hexagons) the percolation threshold increases with
the number of components and the percolation can be reached only for a relatively
low number of mixture components. Values of the percolation thresholds θ∗p are given
in table 3 for n = 1,2, . . . ,5 component mixtures. Results are presented for all different
basic objects of length ℓ = 1,2 and 3.
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Comparison of the percolation properties of n-component mixtures and of the single
objects of various sizes (ℓ⩽ n) is given in figure 3. Dependence of the percolation
threshold θ∗p on the number of components n making the mixture is shown with filled
symbols and solid lines, and the dependence on the length ℓ of the single mixture com-
ponents with open symbols and dashed lines. Results for objects (B), (C), and (D)
are shown in figure 3(a). The percolation threshold of mixture of k -mers monotonically
decreases with the number n of k -mers making the mixture, i.e. with the longest mix-
ture component. On the other hand, the percolation threshold of single k -mers decreases
with the k -mer length, reaches a minimum, and increases for longer k -mers. For large
enough number of mixture components n, lower values of the percolation threshold can
be reached in the case of mixtures than in the case of single k -mers of the correspond-
ing the largest component length. Percolation threshold θ∗p for the angled objects also
decreases with the number of mixture components, but the decrease of θ∗p is even sharper
with the growth of the single angled objects. Adding larger triangles to the mixtures
leads to higher values of the percolation threshold, while the percolation threshold θ∗p
grows faster with the single objects size. The connectivity in the system is very poor
for large compact objects, but it is enhanced by the presence of smaller objects.

From figures 3(b) and (c) we can see that the percolation threshold monotonically
decreases with n for the elongated shapes (F), (G), (H), and (I). Mixtures of the elong-
ated shape (H) give the onset of percolation approximately at the same coverages as the
largest mixture components. For the less elongated shapes (G) and (I) the percolation
threshold for mixtures is higher than for the largest objects making the mixture. For
rhombuses (J), as compact objects, value of the percolation threshold increases with
the number of mixture components, as well as with the single object size determined
with the length ℓ of the walk.

Figure 4 presents the partial percolation coverages of all components at percolation
thresholds θ∗p for mixtures of k -mers, angled objects, and triangles. The partial per-
colation thresholds represent the contribution of individual components in the lattice
covering at the percolation threshold for n-component mixture. For the two-component
mixture of k -mers, the fractional participation of dimers in the percolation threshold
is 0.46, and 0.54 for three-mers. In mixtures with a sufficiently large number of com-
ponents, the contribution of large components in percolation coverages decreases as
their size increases. Similar results obtained for the mixtures of the basic components
covering four lattice sites, (F), (G), (H), (I), and (J), are shown in figure 5.

Comparison of the percolation threshold θ∗p and the jamming coverage θJ on the
number of components n for polydisperse mixtures of k -mers, angled objects, and tri-
angles is given in figure 6. For mixtures of k -mers, the jamming coverage θJ slightly
grows with n, while for the angled objects slightly decreases. For compact triangles
jammning value θJ, as well as the percolation threshold θ∗p, grows with adding larger
objects to the mixture. Jamming coverages θJ of polydisperse mixtures that correspond
to the basic objects (E), (F), (G), (H), (I), and (J) are shown in figure 7. The only object
that exhibits the decrease of the jamming coverage with adding larger objects to the
mixture is object (H), while the sharpest increase is for the mixtures of rhombuses (J).
On the other hand, the percolation threshold θ∗p decreases for most of these mixtures,
as can be seen from figure 2, and increases for the rhombuses.
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Figure 3. Dependence of the percolation threshold θ∗p on the number n of compon-
ents making the mixture (filled symbols and solid lines) and on the length ℓ of the
single mixture components (open symbols and dashed lines) for: (a) k -mers, angled
objects, and triangles; (b) basic shapes (F), and (G); (c) basic shapes (H), (I), and
(J) (see, table 1). The number of components n is always increased by adding an
object of a greater length.
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Figure 4. The partial percolation coverages vs the number of sites k = ℓ+ 1 covered
by the component shapes for n-component mixtures of (a) k -mers, (b) angled
objects, and (c) triangles.
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Figure 5. The partial percolation coverages vs the number of sites k = ℓ+ 1 covered
by the component shapes for n-component mixtures of objects (a) (F), (b) (G),
(c) (H), (d) (I), and (e) (J) (see, table 1).

The obtained results can be more easily intuitively understood through visual obser-
vation of the coverage achieved for various object combinations. Some typical snapshot
configurations at the percolation threshold are shown in figure 8. The snapshots of size
∆L2 = 1002 are taken from the central part of the lattice. Five-component mixtures
of angled objects (C), (H), and (J) give porous configurations thanks to their good
connectivity, leading to low values of the percolation thresholds. On the other hand,
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Figure 5. (Continued.)

mixtures of compact objects, such as triangles and rhombuses, cover the surface more
efficiently, at the same time having a lower connecting probability. This results in higher
values of the percolation threshold, while for mixtures with larger number of compon-
ents percolation cannot be reached. For triangles, maximum number of components that
exhibits percolation transition is five, for rhombuses four, and for hexagons three.

Mixtures of objects of the same size and various shapes are studied for objects
of sizes ℓ = 2 and 3. The percolation properties of a three-component mixture of linear
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Figure 5. (Continued.)

Figure 6. Comparison of the percolation coverage θ∗p (filled circles and solid lines)
and the jamming coverage θJ (open symbols and dashed lines) on the number of
mixture components n of k -mers, angled objects, and triangles. The number of
components n is always increased by adding an object of a greater length.

objects, angled shapes, and triangles are analyzed. In addition, various multi-component
mixtures of objects of size ℓ = 3 are also studied. Results for the percolation thresholds
θ∗p for these mixtures are given in table 4. It is interesting to note that the values of the
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Figure 7. Dependence of the jamming coverage θJ of polydisperse mixture on the
number of components n for the basic shapes given in the legend (see, table 1).

Figure 8. Typical configurations for five-component mixtures of basic shapes:
(a) angled objects (C), (b) triangles (D), (c) (H), (d) (I), (e), and for a four-
component mixture of rhombuses (J) at the percolation thresholds θ∗p (see, table 1).
The snapshots were made at the moment of percolation cluster formation. Objects
of different sizes are distinguished by color. Empty lattice nodes are black. Open
circles represent the ‘heads’ of objects (the starting point of a random walk).
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Figure 8. (Continued.)

percolation threshold θ∗p(mixt.) for these mixtures are very close to the mean values for
θ∗p of the corresponding components. For the three-component mixture of objects (B),
(C) and (D) this difference is on the fourth given digit, while for various mixtures of
length ℓ = 3, the difference can be noticed at the third given digit. This leads to the
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Figure 8. (Continued.)

conclusion that a certain value of the percolation threshold can be obtained by choosing
the right concentration of mixture components. Also, the percolation thresholds can be
tuned by adding objects of various sizes to the mixtures.
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Table 4. Values of the percolation thresholds θ
∗(x)
p for single objects (x ) and mix-

tures θ∗p(mixt.). The numbers in parentheses are the numerical values of the stand-

ard uncertainty of θ
∗(x)
p and θ∗p(mixt.) referred to the last digits of the quoted value.

(x ) ℓ θ
∗(x)
p Mixture θ∗p(mixt.)

(B) 0.4611 (9)
(C) 2 0.4585 (11) (B)+(C)+(D) 0.48 066 (16)
(D) 0.5214 (9)

(E) 0.4399 (12) (G)+(J) 0.51 121 (11)
(F) 0.4304 (12) (E)+(H)+(J) 0.46 591 (11)
(G) 3 0.4815 (11) (E)+(F)+(G)+(H)+(I)+(J) 0.46 148 (10)
(H) 0.4369 (11) (F)+(G)+(I) 0.45 516 (17)
(I) 0.4461 (5) (E)+(F)+(H)+(I) 0.43 747 (10)
(J) 0.5387 (6)

4. Concluding remarks

Percolation phenomena have been investigated in irreversible deposits of polydisperse
mixtures. Depositing objects of various sizes and shapes were made by directed self-
avoiding walks on the triangular lattice. Special attention has been paid to deposition
of mixtures containing objects of the same shape, but various sizes. Objects of larger
sizes were made by repeating each step of the basic shape the same number of times. In
the case of compact objects, such as triangles, rhombuses and hexagons—larger objects
of these basic shapes also occupied all comprised sites. For all possible basic shapes
covering k = 2,3 and 4 lattice sites, n-component mixtures were made. The number of
mixture components n was always increased by adding a larger object.

It was found that for elongated objects the percolation threshold θ∗p decreased with
the number of components, i.e. with adding larger objects to the mixture. This was the
case especially for the objects that have greater possibilities for blocking of comprised
sites, such as angled objects. Objects of this type make more porous deposits, and
the porosity is more pronounced with adding larger objects to the mixtures. On the
contrary, for compact objects, such as triangles, rhombuses and hexagons, percolation
threshold increased with n, and the percolation could be reached only for relatively low
number of these compact mixture components.

Percolation properties depend on the connectivity of depositing shapes, that is
related to the number of nearest neighbors m, for the one-component deposits, as well
as for the mixtures. Larger m makes formation of the paths through the deposit easier,
and the percolation sets on at lower coverages.

Mixtures of objects of the same size, but of various shapes, were also investigated. It
was found that the values of the percolation threshold for these mixtures were very close
to the mean values of θ∗p of the corresponding components. Adding objects of various
sizes to the mixtures has a greater influence on the percolation threshold than the shape
of mixture components.
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[50] Dias C S, Araújo N A M and Cadilhe A 2012 Analytical and numerical study of particles with binary adsorption

Phys. Rev. E 85 041120
[51] Brilliantov N V, Andrienko Y A, Krapivsky P L and Kurths J 1996 Fractal formation and ordering in random

sequential adsorption Phys. Rev. Lett. 76 4058
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